A Denoising Autoencoder-Based Bearing Fault Diagnosis System for Time-Domain Vibration Signals
The condition monitoring of rotating machinery is always a focus of intelligent fault diagnosis. In view of the traditional methods’ excessive dependence on prior knowledge to manually extract features, their limited capacity to learn complex nonlinear relations in fault signals and the mixing of th...
Gespeichert in:
| Veröffentlicht in: | Wireless communications and mobile computing Jg. 2021; H. 1 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Hindawi
2021
John Wiley & Sons, Inc |
| Schlagworte: | |
| ISSN: | 1530-8669, 1530-8677 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The condition monitoring of rotating machinery is always a focus of intelligent fault diagnosis. In view of the traditional methods’ excessive dependence on prior knowledge to manually extract features, their limited capacity to learn complex nonlinear relations in fault signals and the mixing of the collected signals with environmental noise in the course of the work of rotating machines, this article proposes a novel approach for detecting the bearing fault, which is based on deep learning. To effectively detect, locate, and identify faults in rolling bearings, a stacked noise reduction autoencoder is utilized for abstracting characteristic from the original vibration of signals, and then, the characteristic is provided as input for backpropagation (BP) network classifier. The results output by this classifier represent different fault categories. Experimental results obtained on rolling bearing datasets show that this method can be used to effectively diagnose bearing faults based on original time-domain signals. |
|---|---|
| AbstractList | The condition monitoring of rotating machinery is always a focus of intelligent fault diagnosis. In view of the traditional methods’ excessive dependence on prior knowledge to manually extract features, their limited capacity to learn complex nonlinear relations in fault signals and the mixing of the collected signals with environmental noise in the course of the work of rotating machines, this article proposes a novel approach for detecting the bearing fault, which is based on deep learning. To effectively detect, locate, and identify faults in rolling bearings, a stacked noise reduction autoencoder is utilized for abstracting characteristic from the original vibration of signals, and then, the characteristic is provided as input for backpropagation (BP) network classifier. The results output by this classifier represent different fault categories. Experimental results obtained on rolling bearing datasets show that this method can be used to effectively diagnose bearing faults based on original time‐domain signals. |
| Author | Song, Xin Cao, Jiawei Yao, Jian Gu, Yi |
| Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0001-7962-9466 surname: Gu fullname: Gu, Yi organization: School of Artificial Intelligence and Computer ScienceJiangnan UniversityWuxiJiangsu 214122Chinajiangnan.edu.cn – sequence: 2 givenname: Jiawei surname: Cao fullname: Cao, Jiawei organization: School of Artificial Intelligence and Computer ScienceJiangnan UniversityWuxiJiangsu 214122Chinajiangnan.edu.cn – sequence: 3 givenname: Xin surname: Song fullname: Song, Xin organization: School of Artificial Intelligence and Computer ScienceJiangnan UniversityWuxiJiangsu 214122Chinajiangnan.edu.cn – sequence: 4 givenname: Jian surname: Yao fullname: Yao, Jian organization: School of Artificial Intelligence and Computer ScienceJiangnan UniversityWuxiJiangsu 214122Chinajiangnan.edu.cn |
| BookMark | eNp9kEtLAzEUhYNUsK3u_AEBlzqaZ6dZ9mFVKLhodemQydypKW1Skxmk_94ZW1wIujoX7ncu95we6jjvAKFLSm4plfKOEUbvVKoIkfwEdankJBkO0rTzMw_UGerFuCaE8AbuorcRnoLzNlq3wqO68uCMLyAkYx2hwGPQod3MdL2p8NTqlfPRRrzYxwq2uPQBL-0Wkqnfauvwq82Drqx3eGFXTm_iOTotG4GLo_bRy-x-OXlM5s8PT5PRPDGcp1UCBEpTEJlLrkDkmoDUSnNlNDDDFClLYSQ1JeNUMZESkrMml-YSWCqMGPI-ujrc3QX_UUOssrWvQ_tBxprkKSNCiIZiB8oEH2OAMjO2-v63CtpuMkqytses7TE79tiYbn6ZdsFuddj_hV8f8HfrCv1p_6e_AIEggWM |
| CitedBy_id | crossref_primary_10_3390_sym13112047 crossref_primary_10_1155_je_1670810 crossref_primary_10_3390_app12030972 crossref_primary_10_1177_09544070231198905 crossref_primary_10_1007_s11760_024_03171_8 crossref_primary_10_1038_s41598_025_85275_w crossref_primary_10_3390_a15100347 crossref_primary_10_3390_app12178474 |
| Cites_doi | 10.1016/j.neucom.2015.12.131 10.1016/j.ymssp.2015.10.025 10.1016/j.engappai.2008.07.006 10.1016/j.isatra.2016.08.022 10.1126/science.1127647 10.1155/2018/2919637 10.1016/j.eswa.2007.12.010 10.1016/j.isatra.2018.04.005 10.1016/j.ymssp.2010.07.013 10.1109/78.735315 10.1016/j.engappai.2015.07.020 10.1016/j.eswa.2016.11.024 10.1109/TIM.2017.2759418 10.1109/CCDC.2015.7162738 10.1016/j.ymssp.2013.06.004 10.1016/j.sigpro.2016.07.028 10.1109/ChiCC.2016.7554408 10.1007/978-3-642-24412-4_3 10.1109/TIA.2017.2661250 10.1016/j.isatra.2016.06.004 10.1016/j.measurement.2016.04.007 10.1109/ICASSP.2013.6639343 10.1162/neco.2006.18.7.1527 10.1016/j.ymssp.2003.11.003 10.1016/j.ymssp.2017.03.034 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Yi Gu et al. Copyright © 2021 Yi Gu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright © 2021 Yi Gu et al. – notice: Copyright © 2021 Yi Gu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 7XB 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1155/2021/9790053 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1530-8677 |
| Editor | Zhong, Shan |
| Editor_xml | – sequence: 1 givenname: Shan surname: Zhong fullname: Zhong, Shan |
| ExternalDocumentID | 10_1155_2021_9790053 |
| GrantInformation_xml | – fundername: Six Talent Peaks Project in Jiangsu Province grantid: XYDXX-127 – fundername: National Natural Science Foundation of China grantid: 61772241 |
| GroupedDBID | .3N .4S .DC .GA 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 52M 52O 52T 52U 52W 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABIJN ABPVW ACGFO ADBBV ADIZJ AENEX AEUQT AFBPY AFKRA AIAGR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ARCSS ASPBG ATUGU AVWKF AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BROTX BRXPI CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBS EDO F00 F01 F04 F21 G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ H.T H.X HCIFZ HZ~ I-F IAO ITC ITG ITH IX1 JPC K7- KQQ LAW LITHE LP6 LP7 M0N MK4 MY~ N04 N05 NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PIMPY Q.N QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS UB1 W8V W99 WBKPD WIH WLBEL XPP XV2 ~IA ~WT .Y3 24P 31~ 5VS AAEVG AAMMB AANHP AAYXX AAZKR ACBWZ ACCMX ACRPL ACXQS ACYXJ ADNMO AEFGJ AEIMD AEUCX AFFHD AFZJQ AGQPQ AGXDD AIDQK AIDYY ALUQN AZFZN BDRZF BFHJK CITATION EJD FEDTE H13 HF~ HVGLF LH4 LW6 O8X PHGZM PHGZT PQGLB ROL WYUIH 7SC 7SP 7XB 8FD 8FE 8FG ABUWG JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c337t-e0efcd05b539e4ba0e5a9a39cae2c290ff4c51cf231924700b2867a35e274c483 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674763700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-8669 |
| IngestDate | Sat Aug 23 14:44:14 EDT 2025 Tue Nov 18 21:07:11 EST 2025 Sat Nov 29 01:44:02 EST 2025 Sun Jun 02 18:51:36 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-e0efcd05b539e4ba0e5a9a39cae2c290ff4c51cf231924700b2867a35e274c483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7962-9466 |
| OpenAccessLink | https://dx.doi.org/10.1155/2021/9790053 |
| PQID | 2530720444 |
| PQPubID | 2034344 |
| ParticipantIDs | proquest_journals_2530720444 crossref_citationtrail_10_1155_2021_9790053 crossref_primary_10_1155_2021_9790053 hindawi_primary_10_1155_2021_9790053 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Wireless communications and mobile computing |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_8_27_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_15_2 e_1_2_8_10_2 e_1_2_8_11_2 Vincent P. (e_1_2_8_25_2) 2010; 11 |
| References_xml | – ident: e_1_2_8_11_2 doi: 10.1016/j.neucom.2015.12.131 – ident: e_1_2_8_16_2 doi: 10.1016/j.ymssp.2015.10.025 – ident: e_1_2_8_23_2 doi: 10.1016/j.engappai.2008.07.006 – ident: e_1_2_8_27_2 – ident: e_1_2_8_14_2 doi: 10.1016/j.isatra.2016.08.022 – ident: e_1_2_8_10_2 doi: 10.1126/science.1127647 – ident: e_1_2_8_18_2 doi: 10.1155/2018/2919637 – ident: e_1_2_8_24_2 doi: 10.1016/j.eswa.2007.12.010 – ident: e_1_2_8_5_2 doi: 10.1016/j.isatra.2018.04.005 – ident: e_1_2_8_21_2 doi: 10.1016/j.ymssp.2010.07.013 – ident: e_1_2_8_2_2 doi: 10.1109/78.735315 – ident: e_1_2_8_13_2 doi: 10.1016/j.engappai.2015.07.020 – ident: e_1_2_8_6_2 doi: 10.1016/j.eswa.2016.11.024 – ident: e_1_2_8_17_2 doi: 10.1109/TIM.2017.2759418 – ident: e_1_2_8_1_2 doi: 10.1109/CCDC.2015.7162738 – ident: e_1_2_8_20_2 doi: 10.1016/j.ymssp.2013.06.004 – ident: e_1_2_8_15_2 doi: 10.1016/j.sigpro.2016.07.028 – ident: e_1_2_8_9_2 doi: 10.1109/ChiCC.2016.7554408 – ident: e_1_2_8_3_2 doi: 10.1007/978-3-642-24412-4_3 – ident: e_1_2_8_8_2 doi: 10.1109/TIA.2017.2661250 – ident: e_1_2_8_12_2 doi: 10.1016/j.isatra.2016.06.004 – ident: e_1_2_8_19_2 doi: 10.1016/j.measurement.2016.04.007 – ident: e_1_2_8_26_2 doi: 10.1109/ICASSP.2013.6639343 – ident: e_1_2_8_4_2 doi: 10.1162/neco.2006.18.7.1527 – ident: e_1_2_8_22_2 doi: 10.1016/j.ymssp.2003.11.003 – volume: 11 start-page: 3371 year: 2010 ident: e_1_2_8_25_2 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research – ident: e_1_2_8_7_2 doi: 10.1016/j.ymssp.2017.03.034 |
| SSID | ssj0003021 |
| Score | 2.314708 |
| Snippet | The condition monitoring of rotating machinery is always a focus of intelligent fault diagnosis. In view of the traditional methods’ excessive dependence on... |
| SourceID | proquest crossref hindawi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Artificial intelligence Back propagation Background noise Bearings Breakdowns Classifiers Datasets Deep learning Fault detection Fault diagnosis Fault location Feature extraction Machinery Machinery condition monitoring Methods Neural networks Noise Noise reduction Roller bearings Rotating machinery Rotating machines Signal monitoring Time domain analysis Vibration monitoring |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6uoAd3cScHPUkwTRrbnGR0HARFBBc8WdIk1cLY6kxH_755bcYFUQ-e8wih38vb-vI9hLZDHbswIxMkkzaFapUksXOUJFDKCB6JNK7JdG7OovPz-PZWXviCW9-3VQ5tYm2oTamhRr7HhNNGBuxmB0_PBKZGwd9VP0JjFI0HjAWg56cRebfEnDLPl0rdCfblsPFdCMj5gz0ZSVDCLy5p8gFy4df8m22uHU5n9r9HnUMzPtTErUY35tGILRbQ9CcCwkV018JtW5Q5FAxwa1CVQGtpbI8cOudm8KG7BrDSUYNuhdtNV17exw3NOXbxLoYnJKRdPqq8wDeQegPQ-DK_B17mJXTdOb46OiF-4gLRnEcVsdRm2lCRCi5tmCpqhZKKS60s00zSLAu1CHTmgkKXt0WUpizejxQX1iW32iG9jMaKsrArCHPDFA-NipiRoWJuM2FNBnTw1tqQ6lW0O_zoifZ05DAVo5vUaYkQCUCUeIhW0c679FNDw_GD3LbH7w-xjSFyib-z_eQDtrXfl9fRFGzWFGI20FjVG9hNNKFfqrzf26pV8A2M5-AY priority: 102 providerName: ProQuest |
| Title | A Denoising Autoencoder-Based Bearing Fault Diagnosis System for Time-Domain Vibration Signals |
| URI | https://dx.doi.org/10.1155/2021/9790053 https://www.proquest.com/docview/2530720444 |
| Volume | 2021 |
| WOSCitedRecordID | wos000674763700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: P5Z dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: K7- dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: PIMPY dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1530-8677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-cH6AP4id-zJEHfZJg1jS2edzchqKO4hfTB0uaplrQTrZO_31zayd-IPpSaHNN4O6au1-S_g5g19W-TTMSQRNpIlytktS3gZLWlYoF90Tkj8l0bs68btfv9WRQkiQNf27h22iH8Lx-ID2J_lKBii_QeS-Oex8TLmdOSYvK7ECHcnK-_du7XyLP3CNC3rf0xxQ8jiudJVgsE0LSKCy4DFMmW4GFTzSBq3DfIC2T9VOE9aQxyvtIPhmbAW3aEBSTpnVWbOmo0VNOWsXZuXRICjJyYrNSgj960Fb_WaUZuUGAjOYgl-kDsievwXWnfXV0TMu6CFRz7uXUMJPomIlIcGncSDEjlFRcamUc7UiWJK4WdZ3Y1M2iK4-xyPEPPcWFsRBUW3usw3TWz8wGEB47irux8pxYusqxnQkTJ0jaboxxmd6E_YnOQl2ShmPtiqdwDB6ECFHDYanhTdj7kH4pyDJ-kdst1f-HWHVim7D8soahY62MhXVcd-t_vWzDPN4WyyZVmM4HI7MDs_o1T4eDGsw0293gogaVU4_aayDu7LPg5Dy4rY297B3v3MTP |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTxQxFH9B0KgH8TMiiD3AyTR02ymdHgxZXDeQXTcmIuHk2Gk7MAnO4O6sxH_Kv9G--QCNQU4cPPflpW_6y_ua9vcANiIbhzQjkzTTPsVulaZxCJS0Z4yTQsk0rsl0DsdqMomPjvSHBfjZvYXBa5WdT6wdtSst9si3uAxo5MhutnP2jeLUKPy72o3QaGAx8j_OQ8k2e7M_COe7yfnw3cHbPdpOFaBWCFVRz3xmHZOpFNpHqWFeGm2EtsZzyzXLssjKns1C4hNqE8VYyuNtZYT0oYCzwZqg9xYsRSJWyNU_UvTC8wvGW35WFize1t1Feymxx9Db0koj6P8IgXdOsPY-z_-KBXWAGy7_b5_mITxoU2nSb7D_CBZ88Rju_0aw-AQ-98nAF2WODRHSn1cl0nY6P6W7IXg7shs2jStDMz-tyKC5dZjPSEPjTkI-T_CJDB2UX01ekENsLSCQycf8GHmnn8KnGzHwGSwWZeGfAxGOGxE5o7jTkeFBmfQuQ7p7733E7Aq87g45sS3dOk79OE3qskvKBCGRtJBYgc0L6bOGZuQKuY0WL9eIrXVISVqfNEsuYfLi38uv4O7ewftxMt6fjFbhHipumk5rsFhN5_4l3Lbfq3w2Xa_hT-DLTYPqFxm-PTc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAceCMKBXxoT8harx038QGhLWFFtdWqElD1RHDsCUQqSdnNUvHX-HV48iggBJx64GzLipNv_M1Mxt8AbEUuCW5GoXlhMKdsleFJIEo-ttZrFes8acV0Dvfj-Tw5OjIHa_BtuAtDZZXDmdge1L52lCMfSR3QKEndbFT0ZREH6fT5yWdOHaToT-vQTqODyAy_nobwbflsLw3felvK6cs3L17xvsMAd0rFDUeBhfNC51oZjHIrUFtjlXEWpZNGFEXk9NgVwQkKcUosRC6TndgqjSGYc2FnYd0LcDGwsCYbm8X8jAWUkL1Wqwi73zFD0b3WlG8Yj0xsyAB-ocPLHykOPy1_44WW7KY3_ufXdBOu9y42m3Q2cQvWsLoN134SXrwD7yYsxaouKVHCJqumJjlPjwu-G0jds93w0DQytavjhqVdNWK5ZJ28Owt-PqOrMzytP9myYoeUciCAs9flB9Kjvgtvz2WD92C9qiu8D0x5aVXkbSy9iawMi2n0BcngI2Ik3AY8HT545noZduoGcpy14ZjWGcEj6-GxAdtns086-ZE_zNvqsfOPaZsDarL-rFpmPyDz4O_DT-BKwFK2vzefPYSrtG6Xi9qE9WaxwkdwyX1pyuXicWsJDN6fN6a-AzgBRfE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Denoising+Autoencoder-Based+Bearing+Fault+Diagnosis+System+for+Time-Domain+Vibration+Signals&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Gu%2C+Yi&rft.au=Cao%2C+Jiawei&rft.au=Song%2C+Xin&rft.au=Yao%2C+Jian&rft.date=2021&rft.pub=Hindawi&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F9790053&rft.externalDocID=10_1155_2021_9790053 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon |