A Denoising Autoencoder-Based Bearing Fault Diagnosis System for Time-Domain Vibration Signals

The condition monitoring of rotating machinery is always a focus of intelligent fault diagnosis. In view of the traditional methods’ excessive dependence on prior knowledge to manually extract features, their limited capacity to learn complex nonlinear relations in fault signals and the mixing of th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wireless communications and mobile computing Ročník 2021; číslo 1
Hlavní autoři: Gu, Yi, Cao, Jiawei, Song, Xin, Yao, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Hindawi 2021
John Wiley & Sons, Inc
Témata:
ISSN:1530-8669, 1530-8677
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The condition monitoring of rotating machinery is always a focus of intelligent fault diagnosis. In view of the traditional methods’ excessive dependence on prior knowledge to manually extract features, their limited capacity to learn complex nonlinear relations in fault signals and the mixing of the collected signals with environmental noise in the course of the work of rotating machines, this article proposes a novel approach for detecting the bearing fault, which is based on deep learning. To effectively detect, locate, and identify faults in rolling bearings, a stacked noise reduction autoencoder is utilized for abstracting characteristic from the original vibration of signals, and then, the characteristic is provided as input for backpropagation (BP) network classifier. The results output by this classifier represent different fault categories. Experimental results obtained on rolling bearing datasets show that this method can be used to effectively diagnose bearing faults based on original time-domain signals.
AbstractList The condition monitoring of rotating machinery is always a focus of intelligent fault diagnosis. In view of the traditional methods’ excessive dependence on prior knowledge to manually extract features, their limited capacity to learn complex nonlinear relations in fault signals and the mixing of the collected signals with environmental noise in the course of the work of rotating machines, this article proposes a novel approach for detecting the bearing fault, which is based on deep learning. To effectively detect, locate, and identify faults in rolling bearings, a stacked noise reduction autoencoder is utilized for abstracting characteristic from the original vibration of signals, and then, the characteristic is provided as input for backpropagation (BP) network classifier. The results output by this classifier represent different fault categories. Experimental results obtained on rolling bearing datasets show that this method can be used to effectively diagnose bearing faults based on original time‐domain signals.
Author Song, Xin
Cao, Jiawei
Yao, Jian
Gu, Yi
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0001-7962-9466
  surname: Gu
  fullname: Gu, Yi
  organization: School of Artificial Intelligence and Computer ScienceJiangnan UniversityWuxiJiangsu 214122Chinajiangnan.edu.cn
– sequence: 2
  givenname: Jiawei
  surname: Cao
  fullname: Cao, Jiawei
  organization: School of Artificial Intelligence and Computer ScienceJiangnan UniversityWuxiJiangsu 214122Chinajiangnan.edu.cn
– sequence: 3
  givenname: Xin
  surname: Song
  fullname: Song, Xin
  organization: School of Artificial Intelligence and Computer ScienceJiangnan UniversityWuxiJiangsu 214122Chinajiangnan.edu.cn
– sequence: 4
  givenname: Jian
  surname: Yao
  fullname: Yao, Jian
  organization: School of Artificial Intelligence and Computer ScienceJiangnan UniversityWuxiJiangsu 214122Chinajiangnan.edu.cn
BookMark eNp9kEtLAzEUhYNUsK3u_AEBlzqaZ6dZ9mFVKLhodemQydypKW1Skxmk_94ZW1wIujoX7ncu95we6jjvAKFLSm4plfKOEUbvVKoIkfwEdankJBkO0rTzMw_UGerFuCaE8AbuorcRnoLzNlq3wqO68uCMLyAkYx2hwGPQod3MdL2p8NTqlfPRRrzYxwq2uPQBL-0Wkqnfauvwq82Drqx3eGFXTm_iOTotG4GLo_bRy-x-OXlM5s8PT5PRPDGcp1UCBEpTEJlLrkDkmoDUSnNlNDDDFClLYSQ1JeNUMZESkrMml-YSWCqMGPI-ujrc3QX_UUOssrWvQ_tBxprkKSNCiIZiB8oEH2OAMjO2-v63CtpuMkqytses7TE79tiYbn6ZdsFuddj_hV8f8HfrCv1p_6e_AIEggWM
CitedBy_id crossref_primary_10_3390_sym13112047
crossref_primary_10_1155_je_1670810
crossref_primary_10_3390_app12030972
crossref_primary_10_1177_09544070231198905
crossref_primary_10_1007_s11760_024_03171_8
crossref_primary_10_1038_s41598_025_85275_w
crossref_primary_10_3390_a15100347
crossref_primary_10_3390_app12178474
Cites_doi 10.1016/j.neucom.2015.12.131
10.1016/j.ymssp.2015.10.025
10.1016/j.engappai.2008.07.006
10.1016/j.isatra.2016.08.022
10.1126/science.1127647
10.1155/2018/2919637
10.1016/j.eswa.2007.12.010
10.1016/j.isatra.2018.04.005
10.1016/j.ymssp.2010.07.013
10.1109/78.735315
10.1016/j.engappai.2015.07.020
10.1016/j.eswa.2016.11.024
10.1109/TIM.2017.2759418
10.1109/CCDC.2015.7162738
10.1016/j.ymssp.2013.06.004
10.1016/j.sigpro.2016.07.028
10.1109/ChiCC.2016.7554408
10.1007/978-3-642-24412-4_3
10.1109/TIA.2017.2661250
10.1016/j.isatra.2016.06.004
10.1016/j.measurement.2016.04.007
10.1109/ICASSP.2013.6639343
10.1162/neco.2006.18.7.1527
10.1016/j.ymssp.2003.11.003
10.1016/j.ymssp.2017.03.034
ContentType Journal Article
Copyright Copyright © 2021 Yi Gu et al.
Copyright © 2021 Yi Gu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2021 Yi Gu et al.
– notice: Copyright © 2021 Yi Gu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2021/9790053
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Zhong, Shan
Editor_xml – sequence: 1
  givenname: Shan
  surname: Zhong
  fullname: Zhong, Shan
ExternalDocumentID 10_1155_2021_9790053
GrantInformation_xml – fundername: Six Talent Peaks Project in Jiangsu Province
  grantid: XYDXX-127
– fundername: National Natural Science Foundation of China
  grantid: 61772241
GroupedDBID .3N
.4S
.DC
.GA
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABIJN
ABPVW
ACGFO
ADBBV
ADIZJ
AENEX
AEUQT
AFBPY
AFKRA
AIAGR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ARCSS
ASPBG
ATUGU
AVWKF
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
EDO
F00
F01
F04
F21
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HZ~
I-F
IAO
ITC
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LITHE
LP6
LP7
M0N
MK4
MY~
N04
N05
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WLBEL
XPP
XV2
~IA
~WT
.Y3
24P
31~
5VS
AAEVG
AAMMB
AANHP
AAYXX
AAZKR
ACBWZ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AEUCX
AFFHD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
AZFZN
BDRZF
BFHJK
CITATION
EJD
FEDTE
H13
HF~
HVGLF
LH4
LW6
O8X
PHGZM
PHGZT
PQGLB
ROL
WYUIH
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c337t-e0efcd05b539e4ba0e5a9a39cae2c290ff4c51cf231924700b2867a35e274c483
IEDL.DBID RHX
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674763700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-8669
IngestDate Sat Aug 23 14:44:14 EDT 2025
Tue Nov 18 21:07:11 EST 2025
Sat Nov 29 01:44:02 EST 2025
Sun Jun 02 18:51:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-e0efcd05b539e4ba0e5a9a39cae2c290ff4c51cf231924700b2867a35e274c483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7962-9466
OpenAccessLink https://dx.doi.org/10.1155/2021/9790053
PQID 2530720444
PQPubID 2034344
ParticipantIDs proquest_journals_2530720444
crossref_citationtrail_10_1155_2021_9790053
crossref_primary_10_1155_2021_9790053
hindawi_primary_10_1155_2021_9790053
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_1_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_10_2
e_1_2_8_11_2
Vincent P. (e_1_2_8_25_2) 2010; 11
References_xml – ident: e_1_2_8_11_2
  doi: 10.1016/j.neucom.2015.12.131
– ident: e_1_2_8_16_2
  doi: 10.1016/j.ymssp.2015.10.025
– ident: e_1_2_8_23_2
  doi: 10.1016/j.engappai.2008.07.006
– ident: e_1_2_8_27_2
– ident: e_1_2_8_14_2
  doi: 10.1016/j.isatra.2016.08.022
– ident: e_1_2_8_10_2
  doi: 10.1126/science.1127647
– ident: e_1_2_8_18_2
  doi: 10.1155/2018/2919637
– ident: e_1_2_8_24_2
  doi: 10.1016/j.eswa.2007.12.010
– ident: e_1_2_8_5_2
  doi: 10.1016/j.isatra.2018.04.005
– ident: e_1_2_8_21_2
  doi: 10.1016/j.ymssp.2010.07.013
– ident: e_1_2_8_2_2
  doi: 10.1109/78.735315
– ident: e_1_2_8_13_2
  doi: 10.1016/j.engappai.2015.07.020
– ident: e_1_2_8_6_2
  doi: 10.1016/j.eswa.2016.11.024
– ident: e_1_2_8_17_2
  doi: 10.1109/TIM.2017.2759418
– ident: e_1_2_8_1_2
  doi: 10.1109/CCDC.2015.7162738
– ident: e_1_2_8_20_2
  doi: 10.1016/j.ymssp.2013.06.004
– ident: e_1_2_8_15_2
  doi: 10.1016/j.sigpro.2016.07.028
– ident: e_1_2_8_9_2
  doi: 10.1109/ChiCC.2016.7554408
– ident: e_1_2_8_3_2
  doi: 10.1007/978-3-642-24412-4_3
– ident: e_1_2_8_8_2
  doi: 10.1109/TIA.2017.2661250
– ident: e_1_2_8_12_2
  doi: 10.1016/j.isatra.2016.06.004
– ident: e_1_2_8_19_2
  doi: 10.1016/j.measurement.2016.04.007
– ident: e_1_2_8_26_2
  doi: 10.1109/ICASSP.2013.6639343
– ident: e_1_2_8_4_2
  doi: 10.1162/neco.2006.18.7.1527
– ident: e_1_2_8_22_2
  doi: 10.1016/j.ymssp.2003.11.003
– volume: 11
  start-page: 3371
  year: 2010
  ident: e_1_2_8_25_2
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_7_2
  doi: 10.1016/j.ymssp.2017.03.034
SSID ssj0003021
Score 2.314708
Snippet The condition monitoring of rotating machinery is always a focus of intelligent fault diagnosis. In view of the traditional methods’ excessive dependence on...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial intelligence
Back propagation
Background noise
Bearings
Breakdowns
Classifiers
Datasets
Deep learning
Fault detection
Fault diagnosis
Fault location
Feature extraction
Machinery
Machinery condition monitoring
Methods
Neural networks
Noise
Noise reduction
Roller bearings
Rotating machinery
Rotating machines
Signal monitoring
Time domain analysis
Vibration monitoring
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELX4lOBQKLSCFioftidk4bXjxD5VC8sKiQohtaA9ETm2QyNtk2U3C38fT-KFVgg4cPYoivzGM_MmzhuEOpI5yTIlCbee6URZkhGdxzkRMsniyHLB80Yy_2dyfi6HQ3URGm7TcK1yHhObQG0rAz3yQya8NzJQN_sxviUwNQq-roYRGotouctYF_z8LCGPkZhTFvRSKZFxrOYX34UAzt89VIkCJ_wvJa3-AS58XzyLzU3CGWy891U30YdQauJe6xsf0YIrt9D6PwKE2-i6h_uurApoGODerK5A1tK6CTnyyc3iI38MYGWgZ6Ma99tbecUUtzLn2Ne7GH4hIf3qry5KfAXUG4DGv4ob0GX-hC4HJ7-PT0mYuEAM50lNHHW5sVRkgisXZZo6oZXmymjHDFM0zyMjuib3RaHnbQmlGZNxorlwntyaSPLPaKmsSreDsPWmzm9CBgpHwlrJuTU5tcpHDKWF2EUH801PTZAjh6kYo7ShJUKkAFEaINpF3x-tx60Mxwt2nYDfG2Z7c-TScGan6RNsX15f_orW4GFtI2YPLdWTmdtHK-auLqaTb40LPgArSt_0
  priority: 102
  providerName: ProQuest
Title A Denoising Autoencoder-Based Bearing Fault Diagnosis System for Time-Domain Vibration Signals
URI https://dx.doi.org/10.1155/2021/9790053
https://www.proquest.com/docview/2530720444
Volume 2021
WOSCitedRecordID wos000674763700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: K7-
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: PIMPY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Open Access Journals
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1RFgkOiFWslQ9wQhYmjhP72FIqEFBFbCociBzbgUiQojaF38duUsQiBJdISSY5zBt75jnOG4Ad7hnuJYJjqi3T8ZMwwTINUsx4mAS-poymI8n8s7DT4d2uiCqRpMHPT_g22zl6frAvQuHipQY1zlzwXhx3PyZcSrxKFpVgHgRivL_927NfMs_Mo6O8b9mPKXiUV9oLMF8VhKhRIrgIEyZfgrlPMoHLcN9ALZP3MkfrUWNY9Jz4pDZ93LQpSKOmDVZ3py2HTwVqlXvnsgEqxciRrUqR-9EDt3rPMsvRjSPIDg50mT049eQVuG4fXR0e46ovAlaUhgU2xKRKE5YwKoyfSGKYFJIKJY2nPEHS1FfsQKW2dLPsKiQk8XgQSsqMpaDK53QVJvNebtYAaWtqPGIx4ra205pTqlVKtLDjWkjG1mFv7LNYVaLhrnfFUzwiD4zFzsNx5eF12P2wfinFMn6x26nc_4fZ1hibuBpZg9izKLvGOr6_8b-3bMKsOy2XTbZgsugPzTZMq9ciG_TrMNU86kQXdaidhtgeI3Znr0Un59FtfRRl72h9xKs
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAqIc-K5aKOBDe0JWXTtO7ANCW5ZVq11WSBTUE6ljOzRSm7S7WSr-FL8RTz4KCAGnHjh7ZDn208y8if0GYFNxr3imFRUuMJ0oSzJq8jinUiVZHDkhRd5I5k-S6VQdHup3S_CtfwuD1yp7n9g4aldZrJFvcxnQyFHd7NXZOcWuUfh3tW-h0cJi7L9eBMo2f7k_DOe7xfnozcHrPdp1FaBWiKSmnvncOiYzKbSPMsO8NNoIbY3nlmuW55GVOzYPiU_gJgljGVdxYoT0gcDZSIkw7zW4HgmVoFb_OKGXnl8w3umzMqriWPcX7aXEGsPOtk40gv6XEHjzGLn3RfFbLGgC3Oju_7Y19-BOl0qTQYv9-7Dkywdw-yeBxYfwaUCGvqwKLIiQwaKuULbT-RndDcHbkd2waBwZmcVJTYbtrcNiTloZdxLyeYJPZOiwOjVFST5iaQGBTN4Xn1F3-hF8uJIPXIXlsir9GhAXTH3Y9AwVnKRzSghnc-Z08IjaSLkOL_pDTm0nt45dP07ShnZJmSIk0g4S67B1aX3Wyoz8wW6zw8s_zDZ6pKSdT5qnP2Dy-O_Dz-HW3sHbSTrZn46fwApO3BadNmC5ni38U7hhv9TFfPasgT-Bo6sG1Xf51j0T
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZRE9sCNaCvjQnpA1qR0n9gGhKWFENdWoEot6InW8QKSSlJlMq_41fh1-WQoIAaceOPvJSuLvrXn-HsCWZE6yQknKbch04iItqPaJp0KmRRJbLrhvKfP309lMHh6qgxX4NtyFwbbKwSa2htrWBmvkIyYCGhmym4183xZxkE1ennylOEEK_7QO4zQ6iEzd-VlI3xYv9rJw1tuMTV6_e_WG9hMGqOE8baiLnDc2EoXgysWFjpzQSnNltGOGqcj72Igd40MQFPKUNIoKJpNUc-FCMmdiycO-V-Bq8MICdWya0gsvwCPWc7VGVCaJGpruhcB6w85IpQoV4Bd3eP0z5uFn5W9-oXV2k9v_82e6A7f6EJuMO524CyuuugdrPxEv3oePY5K5qi6xUELGy6ZGOk_r5nQ3OHVLdsND48pEL48bknXdiOWCdPTuJMT5BK_O0Kz-osuKfMCSAwKcvC0_IR_1A3h_KS_4EFarunKPgNgg6sIBFMjsJKyVnFvjI6uCpVRaiHV4Phx4bnoadpwGcpy36ZgQOcIj7-GxDtsX0icd_cgf5LZ67PxDbHNATd7bqkX-AzIbf19-BjcClvL9vdn0MdzEfbta1CasNvOlewLXzGlTLuZPW00gcHTZmPoOIQRFzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Denoising+Autoencoder-Based+Bearing+Fault+Diagnosis+System+for+Time-Domain+Vibration+Signals&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Gu%2C+Yi&rft.au=Cao%2C+Jiawei&rft.au=Song%2C+Xin&rft.au=Yao%2C+Jian&rft.date=2021&rft.pub=Hindawi&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F9790053&rft.externalDocID=10_1155_2021_9790053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon