Wind Power Forecasting by the BP Neural Network with the Support of Machine Learning

The goal of the research is to increase the accuracy of wind power forecasts while maintaining the power system’s stability and safety. First, the wireless sensor network (WSN) is used to collect the meteorological data of wind power plants in real time. Second, the real-time data collected by WSN a...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering Vol. 2022; pp. 1 - 10
Main Authors: Tian, Weihua, Bao, Yan, Liu, Wei
Format: Journal Article
Language:English
Published: New York Hindawi 28.04.2022
John Wiley & Sons, Inc
Subjects:
ISSN:1024-123X, 1563-5147
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The goal of the research is to increase the accuracy of wind power forecasts while maintaining the power system’s stability and safety. First, the wireless sensor network (WSN) is used to collect the meteorological data of wind power plants in real time. Second, the real-time data collected by WSN are combined with the meteorological forecast data of some meteorological organizations. Then, the fruit fly optimization algorithm (FOA) is improved, and the improved fruit fly optimization algorithm (IFOA) and back propagation neural network (BPNN) are combined to construct the wind power forecast model. Finally, the signal reception of the WSN and the error of wind power forecast under different receiving distances and different antenna heights are tested. The results show that with the increase of receiving and transmitting distance, the signal strength decreases, the packet loss rate increases, and the electromagnetic wave of wind plants will cause some interference to the signal strength. The fly optimization algorithm-back propagation (IFOA-BP) wind power forecast model has a better effect than other models in wind power prediction and can better fit the actual tested wind power. Its root mean square error (RMSE) and mean absolute error (MAE) are 0.16 and 0.11, respectively. The research results provide a reference for improving the forecast accuracy of wind power.
AbstractList The goal of the research is to increase the accuracy of wind power forecasts while maintaining the power system’s stability and safety. First, the wireless sensor network (WSN) is used to collect the meteorological data of wind power plants in real time. Second, the real-time data collected by WSN are combined with the meteorological forecast data of some meteorological organizations. Then, the fruit fly optimization algorithm (FOA) is improved, and the improved fruit fly optimization algorithm (IFOA) and back propagation neural network (BPNN) are combined to construct the wind power forecast model. Finally, the signal reception of the WSN and the error of wind power forecast under different receiving distances and different antenna heights are tested. The results show that with the increase of receiving and transmitting distance, the signal strength decreases, the packet loss rate increases, and the electromagnetic wave of wind plants will cause some interference to the signal strength. The fly optimization algorithm-back propagation (IFOA-BP) wind power forecast model has a better effect than other models in wind power prediction and can better fit the actual tested wind power. Its root mean square error (RMSE) and mean absolute error (MAE) are 0.16 and 0.11, respectively. The research results provide a reference for improving the forecast accuracy of wind power.
Author Liu, Wei
Bao, Yan
Tian, Weihua
Author_xml – sequence: 1
  givenname: Weihua
  orcidid: 0000-0002-5460-0832
  surname: Tian
  fullname: Tian, Weihua
  organization: School of AutomationShenyang Institute of EngineeringShenyangLiaoningChinasie.edu.cn
– sequence: 2
  givenname: Yan
  surname: Bao
  fullname: Bao, Yan
  organization: School of AutomationShenyang Institute of EngineeringShenyangLiaoningChinasie.edu.cn
– sequence: 3
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: School of AutomationShenyang Institute of EngineeringShenyangLiaoningChinasie.edu.cn
BookMark eNp9kNFKwzAUhoNMcJve-QABL7UuSZMmvdThVJg6cKJ3JU1TlzmTmaaUvb2Z25WgV_-B8_3nwDcAPeusBuAUo0uMGRsRRMiI54yIDB2APmZZmjBMeS_OiNAEk_TtCAyaZokQwQyLPpi_GlvBmeu0hxPntZJNMPYdlhsYFhpez-Cjbr1cxQid8x-wM2Hxs3pu12vnA3Q1fJBqYayGUy29je1jcFjLVaNP9jkEL5Ob-fgumT7d3o-vpolKUx6SKs9EXmFa1pTjumRc6UogRSUpM0E4TWssZalZ3ORCVEywEpUK8apMicI4T4fgbHd37d1Xq5tQLF3rbXxZkCxDnNIMi0iRHaW8axqv60KZIINxNnhpVgVGxdZesbVX7O3F0sWv0tqbT-k3f-HnOzx6qGRn_qe_AWNAfbI
CitedBy_id crossref_primary_10_3390_pr11051530
crossref_primary_10_3390_en18020350
crossref_primary_10_3390_en18071571
crossref_primary_10_1587_elex_22_20250200
crossref_primary_10_1155_2022_5159027
crossref_primary_10_1080_17445302_2023_2260941
crossref_primary_10_17780_ksujes_1667861
crossref_primary_10_1049_rpg2_13159
crossref_primary_10_1109_TSG_2023_3325390
crossref_primary_10_3390_app12146908
crossref_primary_10_3390_su15119107
crossref_primary_10_3390_en15239146
crossref_primary_10_3390_en17174263
crossref_primary_10_3390_a15100338
crossref_primary_10_3390_machines12070445
crossref_primary_10_1109_ACCESS_2025_3543594
Cites_doi 10.1016/j.ins.2020.10.034
10.1038/s41583-020-00395-8
10.3390/electronics10020219
10.1109/jsyst.2019.2961172
10.1080/15567036.2020.1755390
10.1038/s41928-021-00554-4
10.1109/access.2020.3004430
10.1002/ima.22406
10.1007/s11554-020-01008-4
10.1002/we.2497
10.1186/s41601-021-00214-x
10.1002/we.2460
10.1109/jiot.2018.2878528
10.1007/s00477-020-01920-y
10.1016/j.psep.2019.10.002
10.1016/j.procs.2021.04.013
10.2478/rtuect-2020-0012
10.1002/tee.23326
10.1007/s12205-021-1115-5
10.1016/j.renene.2020.03.170
10.1002/we.2556
10.18517/ijaseit.11.2.12385
10.1007/s10973-021-10743-0
10.1016/j.procs.2021.02.079
10.1145/3457408
ContentType Journal Article
Copyright Copyright © 2022 Weihua Tian et al.
Copyright © 2022 Weihua Tian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Weihua Tian et al.
– notice: Copyright © 2022 Weihua Tian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1155/2022/7952860
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest MSED
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1563-5147
Editor Jan, Naeem
Editor_xml – sequence: 1
  givenname: Naeem
  surname: Jan
  fullname: Jan, Naeem
EndPage 10
ExternalDocumentID 10_1155_2022_7952860
GrantInformation_xml – fundername: Department of Education of Liaoning Province
  grantid: LJKZ1099
GroupedDBID 29M
2WC
3V.
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
ABDBF
ABJCF
ABUWG
ACIPV
ACIWK
ADBBV
AENEX
AFKRA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
E3Z
EBS
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IEA
IOF
ISR
ITC
K6V
K7-
KQ8
L6V
M7S
MK~
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RHW
RHX
RNS
TR2
TUS
XSB
YQT
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
OVT
PHGZM
PHGZT
PQGLB
7TB
8FD
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c337t-d9689d14bf471fb57ced80c4a2b682743f1aabe5b57988d585b0bc07db32c1193
IEDL.DBID M7S
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795696400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1024-123X
IngestDate Fri Jul 25 10:10:44 EDT 2025
Sat Nov 29 06:37:27 EST 2025
Tue Nov 18 21:26:55 EST 2025
Sun Jun 02 18:50:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-d9689d14bf471fb57ced80c4a2b682743f1aabe5b57988d585b0bc07db32c1193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5460-0832
OpenAccessLink https://www.proquest.com/docview/2660744618?pq-origsite=%requestingapplication%
PQID 2660744618
PQPubID 237775
PageCount 10
ParticipantIDs proquest_journals_2660744618
crossref_citationtrail_10_1155_2022_7952860
crossref_primary_10_1155_2022_7952860
hindawi_primary_10_1155_2022_7952860
PublicationCentury 2000
PublicationDate 2022-04-28
PublicationDateYYYYMMDD 2022-04-28
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-28
  day: 28
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Mathematical problems in engineering
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 22
23
24
25
26
B. Sun (17) 2019; 13
10
11
12
13
14
15
16
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 7
  doi: 10.1016/j.ins.2020.10.034
– volume: 13
  start-page: 1298
  issue: 3
  year: 2019
  ident: 17
  article-title: Network coding-based maximum lifetime algorithm for sliding window in WSNs
  publication-title: KSII Transactions on Internet and Information Systems
– ident: 11
  doi: 10.1038/s41583-020-00395-8
– ident: 14
  doi: 10.3390/electronics10020219
– ident: 5
  doi: 10.1109/jsyst.2019.2961172
– ident: 4
  doi: 10.1080/15567036.2020.1755390
– ident: 8
  doi: 10.1038/s41928-021-00554-4
– ident: 21
  doi: 10.1109/access.2020.3004430
– ident: 19
  doi: 10.1002/ima.22406
– ident: 22
  doi: 10.1007/s11554-020-01008-4
– ident: 3
  doi: 10.1002/we.2497
– ident: 25
  doi: 10.1186/s41601-021-00214-x
– ident: 2
  doi: 10.1002/we.2460
– ident: 16
  doi: 10.1109/jiot.2018.2878528
– ident: 12
  doi: 10.1007/s00477-020-01920-y
– ident: 18
  doi: 10.1016/j.psep.2019.10.002
– ident: 24
  doi: 10.1016/j.procs.2021.04.013
– ident: 9
  doi: 10.2478/rtuect-2020-0012
– ident: 20
  doi: 10.1002/tee.23326
– ident: 23
  doi: 10.1007/s12205-021-1115-5
– ident: 26
  doi: 10.1016/j.renene.2020.03.170
– ident: 6
  doi: 10.1002/we.2556
– ident: 1
  doi: 10.18517/ijaseit.11.2.12385
– ident: 13
  doi: 10.1007/s10973-021-10743-0
– ident: 15
  doi: 10.1016/j.procs.2021.02.079
– ident: 10
  doi: 10.1145/3457408
SSID ssj0021518
Score 2.3958
Snippet The goal of the research is to increase the accuracy of wind power forecasts while maintaining the power system’s stability and safety. First, the wireless...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Back propagation networks
Deep learning
Electromagnetic radiation
Energy
Machine learning
Mathematical models
Meteorological data
Methods
Neural networks
Optimization
Power plants
Real time
Receiving
Root-mean-square errors
Sensors
Signal reception
Signal strength
Turbines
Weather forecasting
Wind power
Wireless communications
Wireless networks
Wireless sensor networks
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46FHzxtzidkof5JMU2TdL0UcWxF8eQiX0ruaRVQTZZp-J_76XNBjpEH0uu93DX9L6vuX5HSFcaAFmUIrAaVMDBpkFqNFIVCxGDpJQ2hnrYRDIYqCxLh14kqVo-wsdq5-g5u0hSwZREbr6qhOvcuutnC16FRav54405Cb44m_e3_7j3W-VZf3KU9-N56RVc15XeNtn0gJBeNhncISvFeJdseXBI_dar9sjoAV3RoRtqRt08TaMr17FM4ZMihqNXQ-p0NtDToGnspu4La73kBnciyKaTkt7WrZMF9aqqj_vkvnczuu4HfiRCYOI4mQU2lSq1EYcSi0oJIjGFVaHhmoFUSDDjMtIaCoErqVIWuQCEYMLEQsxMhGDtgLTGk3FxSGhkYsm10oUNLecQQag4L5EhCo3ZY7ZNzufhyo3XC3djK17ymjcIkbvg5j64bXK2sH5tdDJ-sev6yP9h1pmnJfebqsoRSyDg4TJSR__zckw23KU7_GGqQ1qz6VtxQtbM--y5mp7WD9EXsMi-6Q
  priority: 102
  providerName: Hindawi Publishing
Title Wind Power Forecasting by the BP Neural Network with the Support of Machine Learning
URI https://dx.doi.org/10.1155/2022/7952860
https://www.proquest.com/docview/2660744618
Volume 2022
WOSCitedRecordID wos000795696400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: 24P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2VpZW4QFtasRRWPtBTFZEPO3FOVUEgqopVRKm65RJ57ISuhHaBLCD-fWe8Xjig0kMvkZKxrChje-bZk_cAdnKLmDetipxBHUl0ZVRaQ1DFYZJi0eYuQy82UQyHejQqq7Dh1oWyysWa6BdqN7W8R75LgYSincwT_fnyKmLVKD5dDRIaS7DMLAmJL937_gC46Mn8V7iUufmy0aLwXSnG_OluUapUe3LKx5D06jdj4bvxk7XZB5zDtf991dewGlJN8WU-Nt7Ai2byFtZC2inCpO7W4fQnvYuoWC5NsFKnNR3XQgu8F5Qdir1KMIMH9TScl4wL3rv1JpYEpfRdTFtx7IsyGxH4Ws_fwY_Dg9P9oyiILUQ2y4pZ5Mpcly6R2FK4alEVtnE6ttKkmGuCrlmbGIONIkuptSOUgTHauHCYpTahNPA99CbTSbMBIrFZLo02jYudlJhgrKVsCXsqQ-MidX34tPjetQ1M5CyIcVF7RKJUzd6pg3f68PGh9eWcgeMv7XaC6_7RbGvhtDpM165-9Njm8-YPsMKd8XFSqregN7u-abbhpb2djbvrASzvHQyrkwEsfSuigR-LdK3UGVmqr8fVL7o7ORr9ATcA5ew
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQQXyqcoFPChPaGoiWMnzqFCfFWttl3tYRF7Cx7boZWq3dIsVP1T_Y3MJE57QMCpB85jWXL8MjPPHs8D2CwcYhEanXiLJlHoq6RylqiKx0xi2RQ-x05sohyPzWxWTVbgcngLw2WVg0_sHLVfOD4j36ZAQtFOFZl5e_o9YdUovl0dJDR6WIzCxTlRtnZn_yPt75aUu5-mH_aSqCqQuDwvl4mvClP5TGFDfrlBXbrgTeqUlVgY4mh5k1mLQZOlMsZTOo0purT0mEuXZdx8iVz-LZWbkv-rUZlcETyKnv3TO8m9APPZUGivNZ8xyO2y0tJ0zTCvQ-CdI-be58e_xYIuwO2u_W-f5gHcj6m0eNdj_yGshPkjWItptYhOq30M0y-0djFhOTjBSqTOtlzrLfBCUPYr3k8EdyihmcZ9Sbzgs-nOxJKnRE_EohGHXdFpELEf7bcn8PlG1vYUVueLeXgGInN5oayxwadeKcwwNUo1xK21JdxLvw5vhv2tXey0zoIfJ3XHuLSuGQ11RMM6bF2NPu07jPxh3GaEyj-GbQwgqaM7autrhDz_u_k13N2bHh7UB_vj0Qu4xxPz1Zk0G7C6PPsRXsJt93N53J696pAv4OtN4-kXcvw8zA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1V5UNcKF8VhQI-tCcUbeLYiXNACCgrqsIqhyJWXILHdqAS2i3NQtW_xq9jJnHaAwJOPXC2Zcn288w8ezwPYKdwiEVodeItmkShr5LKWaIqHjOJZVv4HHuxiXI2M_N5Va_Bz_EvDKdVjjaxN9R-6fiOfEKOhLydKjIzaWNaRL03fX78LWEFKX5pHeU0BogchLNTom_ds_092utdKaevD1-9SaLCQOLyvFwlvipM5TOFLdnoFnXpgjepU1ZiYYiv5W1mLQZNLZUxnkJrTNGlpcdcuizjQkxk_q-UxDE5nbDWH8_JHnnS4Rue5LqA-XxMutea7xvkpKy0NH1hzAt3eO0L8_DTo9_8Qu_sphv_8zLdgpsxxBYvhjNxG9bC4g5sxHBbRGPW3YXDD7QOomaZOMEKpc52nAMu8ExQVCxe1oIrl9BIsyFVXvCddd_EUqhEW8SyFe_6ZNQgYp3az_fg_aXMbRPWF8tFuA8ic3mhrLHBp14pzDA1SrXEubWl8yD9Fjwd97pxsQI7C4F8bXompnXDyGgiMrZg97z38VB55A_9diJs_tFtewRME81U11yg5cHfm5_AdYJR83Z_dvAQbvC4_KImzTasr06-h0dw1f1YHXUnj_tDIODTZcPpF2gCRfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Power+Forecasting+by+the+BP+Neural+Network+with+the+Support+of+Machine+Learning&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Tian%2C+Weihua&rft.au=Bao%2C+Yan&rft.au=Liu%2C+Wei&rft.date=2022-04-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F7952860&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon