Wind Power Forecasting by the BP Neural Network with the Support of Machine Learning
The goal of the research is to increase the accuracy of wind power forecasts while maintaining the power system’s stability and safety. First, the wireless sensor network (WSN) is used to collect the meteorological data of wind power plants in real time. Second, the real-time data collected by WSN a...
Uloženo v:
| Vydáno v: | Mathematical problems in engineering Ročník 2022; s. 1 - 10 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Hindawi
28.04.2022
John Wiley & Sons, Inc |
| Témata: | |
| ISSN: | 1024-123X, 1563-5147 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The goal of the research is to increase the accuracy of wind power forecasts while maintaining the power system’s stability and safety. First, the wireless sensor network (WSN) is used to collect the meteorological data of wind power plants in real time. Second, the real-time data collected by WSN are combined with the meteorological forecast data of some meteorological organizations. Then, the fruit fly optimization algorithm (FOA) is improved, and the improved fruit fly optimization algorithm (IFOA) and back propagation neural network (BPNN) are combined to construct the wind power forecast model. Finally, the signal reception of the WSN and the error of wind power forecast under different receiving distances and different antenna heights are tested. The results show that with the increase of receiving and transmitting distance, the signal strength decreases, the packet loss rate increases, and the electromagnetic wave of wind plants will cause some interference to the signal strength. The fly optimization algorithm-back propagation (IFOA-BP) wind power forecast model has a better effect than other models in wind power prediction and can better fit the actual tested wind power. Its root mean square error (RMSE) and mean absolute error (MAE) are 0.16 and 0.11, respectively. The research results provide a reference for improving the forecast accuracy of wind power. |
|---|---|
| AbstractList | The goal of the research is to increase the accuracy of wind power forecasts while maintaining the power system’s stability and safety. First, the wireless sensor network (WSN) is used to collect the meteorological data of wind power plants in real time. Second, the real-time data collected by WSN are combined with the meteorological forecast data of some meteorological organizations. Then, the fruit fly optimization algorithm (FOA) is improved, and the improved fruit fly optimization algorithm (IFOA) and back propagation neural network (BPNN) are combined to construct the wind power forecast model. Finally, the signal reception of the WSN and the error of wind power forecast under different receiving distances and different antenna heights are tested. The results show that with the increase of receiving and transmitting distance, the signal strength decreases, the packet loss rate increases, and the electromagnetic wave of wind plants will cause some interference to the signal strength. The fly optimization algorithm-back propagation (IFOA-BP) wind power forecast model has a better effect than other models in wind power prediction and can better fit the actual tested wind power. Its root mean square error (RMSE) and mean absolute error (MAE) are 0.16 and 0.11, respectively. The research results provide a reference for improving the forecast accuracy of wind power. |
| Author | Liu, Wei Bao, Yan Tian, Weihua |
| Author_xml | – sequence: 1 givenname: Weihua orcidid: 0000-0002-5460-0832 surname: Tian fullname: Tian, Weihua organization: School of AutomationShenyang Institute of EngineeringShenyangLiaoningChinasie.edu.cn – sequence: 2 givenname: Yan surname: Bao fullname: Bao, Yan organization: School of AutomationShenyang Institute of EngineeringShenyangLiaoningChinasie.edu.cn – sequence: 3 givenname: Wei surname: Liu fullname: Liu, Wei organization: School of AutomationShenyang Institute of EngineeringShenyangLiaoningChinasie.edu.cn |
| BookMark | eNp9kNFKwzAUhoNMcJve-QABL7UuSZMmvdThVJg6cKJ3JU1TlzmTmaaUvb2Z25WgV_-B8_3nwDcAPeusBuAUo0uMGRsRRMiI54yIDB2APmZZmjBMeS_OiNAEk_TtCAyaZokQwQyLPpi_GlvBmeu0hxPntZJNMPYdlhsYFhpez-Cjbr1cxQid8x-wM2Hxs3pu12vnA3Q1fJBqYayGUy29je1jcFjLVaNP9jkEL5Ob-fgumT7d3o-vpolKUx6SKs9EXmFa1pTjumRc6UogRSUpM0E4TWssZalZ3ORCVEywEpUK8apMicI4T4fgbHd37d1Xq5tQLF3rbXxZkCxDnNIMi0iRHaW8axqv60KZIINxNnhpVgVGxdZesbVX7O3F0sWv0tqbT-k3f-HnOzx6qGRn_qe_AWNAfbI |
| CitedBy_id | crossref_primary_10_3390_pr11051530 crossref_primary_10_3390_en18020350 crossref_primary_10_3390_en18071571 crossref_primary_10_1587_elex_22_20250200 crossref_primary_10_1155_2022_5159027 crossref_primary_10_1080_17445302_2023_2260941 crossref_primary_10_17780_ksujes_1667861 crossref_primary_10_1049_rpg2_13159 crossref_primary_10_1109_TSG_2023_3325390 crossref_primary_10_3390_app12146908 crossref_primary_10_3390_su15119107 crossref_primary_10_3390_en15239146 crossref_primary_10_3390_en17174263 crossref_primary_10_3390_a15100338 crossref_primary_10_3390_machines12070445 crossref_primary_10_1109_ACCESS_2025_3543594 |
| Cites_doi | 10.1016/j.ins.2020.10.034 10.1038/s41583-020-00395-8 10.3390/electronics10020219 10.1109/jsyst.2019.2961172 10.1080/15567036.2020.1755390 10.1038/s41928-021-00554-4 10.1109/access.2020.3004430 10.1002/ima.22406 10.1007/s11554-020-01008-4 10.1002/we.2497 10.1186/s41601-021-00214-x 10.1002/we.2460 10.1109/jiot.2018.2878528 10.1007/s00477-020-01920-y 10.1016/j.psep.2019.10.002 10.1016/j.procs.2021.04.013 10.2478/rtuect-2020-0012 10.1002/tee.23326 10.1007/s12205-021-1115-5 10.1016/j.renene.2020.03.170 10.1002/we.2556 10.18517/ijaseit.11.2.12385 10.1007/s10973-021-10743-0 10.1016/j.procs.2021.02.079 10.1145/3457408 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Weihua Tian et al. Copyright © 2022 Weihua Tian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2022 Weihua Tian et al. – notice: Copyright © 2022 Weihua Tian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1155/2022/7952860 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College Middle East & Africa Database (ProQuest) ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1563-5147 |
| Editor | Jan, Naeem |
| Editor_xml | – sequence: 1 givenname: Naeem surname: Jan fullname: Jan, Naeem |
| EndPage | 10 |
| ExternalDocumentID | 10_1155_2022_7952860 |
| GrantInformation_xml | – fundername: Department of Education of Liaoning Province grantid: LJKZ1099 |
| GroupedDBID | 29M 2WC 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABDBF ABJCF ABUWG ACIPV ACIWK ADBBV AENEX AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH E3Z EBS ESX GROUPED_DOAJ HCIFZ I-F IAO IEA IOF ISR ITC K6V K7- KQ8 L6V M7S MK~ M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RHW RHX RNS TR2 TUS XSB YQT ~8M 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AFFHD AGXDD AIDQK AIDYY ALUQN CITATION H13 OVT PHGZM PHGZT PQGLB 7TB 8FD AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c337t-d9689d14bf471fb57ced80c4a2b682743f1aabe5b57988d585b0bc07db32c1193 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795696400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1024-123X |
| IngestDate | Fri Jul 25 10:10:44 EDT 2025 Sat Nov 29 06:37:27 EST 2025 Tue Nov 18 21:26:55 EST 2025 Sun Jun 02 18:50:30 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-d9689d14bf471fb57ced80c4a2b682743f1aabe5b57988d585b0bc07db32c1193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5460-0832 |
| OpenAccessLink | https://dx.doi.org/10.1155/2022/7952860 |
| PQID | 2660744618 |
| PQPubID | 237775 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2660744618 crossref_citationtrail_10_1155_2022_7952860 crossref_primary_10_1155_2022_7952860 hindawi_primary_10_1155_2022_7952860 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-28 |
| PublicationDateYYYYMMDD | 2022-04-28 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Mathematical problems in engineering |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 22 23 24 25 26 B. Sun (17) 2019; 13 10 11 12 13 14 15 16 18 19 1 2 3 4 5 6 7 8 9 20 21 |
| References_xml | – ident: 7 doi: 10.1016/j.ins.2020.10.034 – volume: 13 start-page: 1298 issue: 3 year: 2019 ident: 17 article-title: Network coding-based maximum lifetime algorithm for sliding window in WSNs publication-title: KSII Transactions on Internet and Information Systems – ident: 11 doi: 10.1038/s41583-020-00395-8 – ident: 14 doi: 10.3390/electronics10020219 – ident: 5 doi: 10.1109/jsyst.2019.2961172 – ident: 4 doi: 10.1080/15567036.2020.1755390 – ident: 8 doi: 10.1038/s41928-021-00554-4 – ident: 21 doi: 10.1109/access.2020.3004430 – ident: 19 doi: 10.1002/ima.22406 – ident: 22 doi: 10.1007/s11554-020-01008-4 – ident: 3 doi: 10.1002/we.2497 – ident: 25 doi: 10.1186/s41601-021-00214-x – ident: 2 doi: 10.1002/we.2460 – ident: 16 doi: 10.1109/jiot.2018.2878528 – ident: 12 doi: 10.1007/s00477-020-01920-y – ident: 18 doi: 10.1016/j.psep.2019.10.002 – ident: 24 doi: 10.1016/j.procs.2021.04.013 – ident: 9 doi: 10.2478/rtuect-2020-0012 – ident: 20 doi: 10.1002/tee.23326 – ident: 23 doi: 10.1007/s12205-021-1115-5 – ident: 26 doi: 10.1016/j.renene.2020.03.170 – ident: 6 doi: 10.1002/we.2556 – ident: 1 doi: 10.18517/ijaseit.11.2.12385 – ident: 13 doi: 10.1007/s10973-021-10743-0 – ident: 15 doi: 10.1016/j.procs.2021.02.079 – ident: 10 doi: 10.1145/3457408 |
| SSID | ssj0021518 |
| Score | 2.3957138 |
| Snippet | The goal of the research is to increase the accuracy of wind power forecasts while maintaining the power system’s stability and safety. First, the wireless... |
| SourceID | proquest crossref hindawi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Back propagation networks Deep learning Electromagnetic radiation Energy Machine learning Mathematical models Meteorological data Methods Neural networks Optimization Power plants Real time Receiving Root-mean-square errors Sensors Signal reception Signal strength Turbines Weather forecasting Wind power Wireless communications Wireless networks Wireless sensor networks |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46Fbw4f-J0Sg7zJGVt2rTJSVQcXhwDJ-5WmqTVgWxznYr_ve-l2XYQ9eC1CSH0JXnfl75-HyEtEzMts5h7QsnQi5ifwZYSoeebQsoozLlJlDWbSLpdMRjInrtwK11Z5fxMtAe1GWu8I29DIoFsF8WBuJi8eugahV9XnYXGKllDlYTAlu7dLwgXPKl-hWOozRcO5oXvnCPnZ-1EciasOOUyJW08Ixf-GH47m23C6dT_O9VtsuWgJr2s1sYOWclHu6TuYCd1m7rcI_1HmAvtoV0aRadOnZVYC03VJwV0SK96FBU8YKRuVTJO8e7WNqElKMB3Oi7onS3KzKnTa33aJw-dm_71refMFjwdhsnMMzIW0gSRKiBdFYonOjfC11HGVCyAuoZFkGUq59AihTDAMpSvtJ8YFTIdAAw8ILXReJQfEpowDksDg2-A3SgAHVrFEpCHUj7P_LhBzufvO9VOiRwNMV5Sy0g4TzE6qYtOg5wtek8qBY4f-rVc6P7o1pwHLXXbtUyXETv6vfmYbOJg-DmJiSapzaZv-QlZ1--zYTk9tavvC5wp3f0 priority: 102 providerName: ProQuest |
| Title | Wind Power Forecasting by the BP Neural Network with the Support of Machine Learning |
| URI | https://dx.doi.org/10.1155/2022/7952860 https://www.proquest.com/docview/2660744618 |
| Volume | 2022 |
| WOSCitedRecordID | wos000795696400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1563-5147 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: P5Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1563-5147 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: K7- dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1563-5147 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database (ProQuest) customDbUrl: eissn: 1563-5147 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NIESG) customDbUrl: eissn: 1563-5147 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1563-5147 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1563-5147 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: 24P dateStart: 19950101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46FXzxtzidJQ_zSYpd2rTJo5ONiayUObH6Upqk1YFssk7F_95Lmw10iL4USq73cNfrfV9zuUOoqXwieepTmwnu2h5xUggp5tqOyjn33IyqQJTDJoIwZHHMI9MkqVjewodsp-k5uQg4JcwHbr7KqK7cGvTiBa-CpFWdeCO6BZ8bz-vbfzz7LfNsPGvK-zFa-gSXeaW7g7YMIMSXlQd30Uo23kPbBhxiE3rFPhregyoc6aFmWM_TlGmhK5ax-MSA4XA7wrrPBmgKq8JurP-wlkt6cCeAbDzJcb8sncyw6ar6dIDuup3hVc82IxFs6brBzFbcZ1y1PJFDUskFDWSmmCO9lAifAcF081aaiozCCmdMARcQjpBOoIRLZAvA2iGqjSfj7AjhgFBwoHaRAg4iABpI4XPAB0I4NHX8OjqfmyuRpl-4HlvxkpS8gdJEGzcxxq2js4X0a9Un4xe5prH8H2KNuVsSE1RFAlgCAI_nt9jx_7ScoE19qzd_CGug2mz6lp2idfk-GxVTC621O2E0sNDqTWBbuujzFq4RfYSV6LofPVjla_YFKRzDPQ |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL1CtFXZlNKHmJa2XsysUERix7G9QIg-EGhgNIupmF0a20lBQjNTMi3ip_jG3ps4sEBtVyy6tmXJ9vF92NfnAPR9xp0pMhlpa0SU8rjAI6VFFPvKmFSU0ivbiE2o0UhPp2a8AjfdXxgqq-xsYmOo_dzRHfkOOhL0dmmW6L3Fj4hUo-h1tZPQaGExLK-vMGWrd48-4_4OOD_4Mvl0GAVVgcgJoZaRN5k2PklthXa5slK50uvYpQW3mcYcTVRJUdhSYovR2mM4bWPrYuWt4C5JiHwJTf6jVGhF52qootsED71n-_WOExegmHaF9lLSHQPfUUZy3ZBh3rnAJ2eUe1-d3_MFjYM7WP_fluY5PAuhNNtvsb8BK-XsBayHsJoFo1W_hMkpzp2NSQ6OkRKpK2qq9Wb2mmH0yz6OGTGU4EijtiSe0d1000SSp5iesHnFTpqi05IFPtrvr-Drg8ztNazO5rNyE5jiEqFP4PaYvVkMqpzNDEZW1sayiLMebHf7m7vAtE6CHxd5k3FJmRMa8oCGHgxuey9ahpE_9OsHqPyj21YHkjyYozq_Q8ibvzd_gKeHk5Pj_PhoNHwLazQwPZ1xvQWry8uf5Tt47H4tz-vL9w3yGXx7aDz9BvOXOww |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hKIhLaXkIWig-wKmKNnHixD4gxKMrEGWVAxUrLiG2kxYJ7S6bBcRf669jJnHggEpPHDjbihT7m8dnj-cD2LIxNyqPhSe1Cr2I-zmalAw935ZKRWEhbKJrsYmk15P9vkqn4G_7FobKKlufWDtqOzR0Rt7BQILRLooD2SldWUR62N0d3XikIEU3ra2cRgORk-LhHulbtXN8iHu9zXn3x9nBkecUBjwThsnEsyqWygaRLtFHl1okprDSN1HOdSyRr4VlkOe6EDiipLSYWmtfGz-xOuQmCKgRE7r_mQQ5JpUTpuLiiexhJG2e4XHqCxj226J7Iei8gXcSJbisG2M-h8PZP8TD769exIU62HUX3vMyfYKPLsVme41NfIapYrAICy7dZs6ZVUtwdo7rwFKSiWOkUGryimrAmX5gmBWz_ZRR5xL8Uq8plWd0Zl0PkRQq0hY2LNlpXYxaMNen9vcy_HqTf1uB6cFwUKwCS7hAkyDQW2R1GpMto2OFGZfWvsj9eA2-t3udGdeBnYRArrOaiQmRETIyh4w12H6aPWo6j_xj3paDzX-mrbeAyZybqrJntHx5fXgT5hBG2c_j3slXmKfv0o0al-swPRnfFhvwwdxNrqrxt9oIGFy-NZweAcgNRDA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Power+Forecasting+by+the+BP+Neural+Network+with+the+Support+of+Machine+Learning&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Tian%2C+Weihua&rft.au=Bao%2C+Yan&rft.au=Liu%2C+Wei&rft.date=2022-04-28&rft.pub=Hindawi&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F7952860&rft.externalDocID=10_1155_2022_7952860 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon |