An Effective Hybrid Multiobjective Flexible Job Shop Scheduling Problem Based on Improved Genetic Algorithm
Multiobjective Flexible Job Shop Scheduling Problem (MO-FJSP) is a scheduling problem used in manufacturing sectors to use energy efficiently and thriftily. The scheduling problem aims to increase productivity and reduce energy consumption via a mathematical model. With this paper, an effective gene...
Uložené v:
| Vydané v: | Scientific programming Ročník 2022; s. 1 - 10 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Hindawi
22.03.2022
John Wiley & Sons, Inc |
| Predmet: | |
| ISSN: | 1058-9244, 1875-919X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Multiobjective Flexible Job Shop Scheduling Problem (MO-FJSP) is a scheduling problem used in manufacturing sectors to use energy efficiently and thriftily. The scheduling problem aims to increase productivity and reduce energy consumption via a mathematical model. With this paper, an effective genetic algorithm is proposed for MO-FJSP based on maximum completion time, total machine load, and bottleneck machine load. The solution method utilizes a hybrid multiobjective genetic algorithm. A combination of global selection and fast selection is used for initialization and obtaining a uniformly distributed initial population. The cross-variance operator is adaptively improved to enhance the searching in the population. Following that an elite retention mechanism is designed to address the possible limitations of the elite strategy in maintaining population diversity. As a result, an improved harmonic search algorithm is introduced to improve the quality of individuals in the elite pool. The proposed hybrid method is implemented in MATLAB R2018a. Tests were conducted using the benchmark Kacem test set, the BR data data set, and with the actual production cases. The algorithm succeeded in achieving 13 nondominated solutions in the initial 20 runs. Moreover, the method obtains the optimal value criterion for the solution accuracy factor. As a whole, results of the evaluation testify that the proposed method can be used to solve the MO-FJSP with high accuracy and fast convergence. The method also provides feasible and effective scheduling solutions for the decision-makers in actual production. Based on the promising results obtained, it is deduced that the method has a wide applicability range particularly in manufacturing sector. |
|---|---|
| AbstractList | Multiobjective Flexible Job Shop Scheduling Problem (MO-FJSP) is a scheduling problem used in manufacturing sectors to use energy efficiently and thriftily. The scheduling problem aims to increase productivity and reduce energy consumption via a mathematical model. With this paper, an effective genetic algorithm is proposed for MO-FJSP based on maximum completion time, total machine load, and bottleneck machine load. The solution method utilizes a hybrid multiobjective genetic algorithm. A combination of global selection and fast selection is used for initialization and obtaining a uniformly distributed initial population. The cross-variance operator is adaptively improved to enhance the searching in the population. Following that an elite retention mechanism is designed to address the possible limitations of the elite strategy in maintaining population diversity. As a result, an improved harmonic search algorithm is introduced to improve the quality of individuals in the elite pool. The proposed hybrid method is implemented in MATLAB R2018a. Tests were conducted using the benchmark Kacem test set, the BR data data set, and with the actual production cases. The algorithm succeeded in achieving 13 nondominated solutions in the initial 20 runs. Moreover, the method obtains the optimal value criterion for the solution accuracy factor. As a whole, results of the evaluation testify that the proposed method can be used to solve the MO-FJSP with high accuracy and fast convergence. The method also provides feasible and effective scheduling solutions for the decision-makers in actual production. Based on the promising results obtained, it is deduced that the method has a wide applicability range particularly in manufacturing sector. |
| Author | Fang, Junfeng |
| Author_xml | – sequence: 1 givenname: Junfeng orcidid: 0000-0003-2099-0382 surname: Fang fullname: Fang, Junfeng organization: Nanjing Huaqing Intelligence Technology Co., LtdNanjing 211135JiangsuChina |
| BookMark | eNp9kMtOAjEUhhuDiYDufIAmLnWkl2mZWSLhZjCaoIm7SdvpQHFosTOD8vaWwMpEV-fPOd-5_R3Qss5qAK4xuseYsR5BhPQIJiiN4zPQxkmfRSlO31tBI5ZEKYnjC9CpqjVCOMEItcHHwMJRUWhVm52G0730JodPTVkbJ9en7LjU30aWGj46CRcrt4ULtdJ5Uxq7hC_ehdIGPohK59BZONtsvdsFPdFW10bBQbl03tSrzSU4L0RZ6atT7IK38eh1OI3mz5PZcDCPFKX9OsqpLArG4r5KkoJzxpVME876ghPBMcI5pogqwQqMYkapRBJhqnBQXJKcxbQLbo5zwyGfja7qbO0ab8PKjPCYc8oJJYEiR0p5V1VeF5kytQh_29oLU2YYZQdTs4Op2cnU0HT3q2nrzUb4_V_47RFfGZuLL_M__QPSL4VL |
| CitedBy_id | crossref_primary_10_1155_2023_9791030 crossref_primary_10_1007_s43995_023_00017_1 |
| Cites_doi | 10.1016/j.cor.2007.02.014 10.1080/00207543.2012.751509 10.22452/mjcs.vol20no2.6 10.1016/j.jclepro.2017.01.166 10.1016/j.rcim.2013.04.001 10.4028/www.scientific.net/amr.97-101.2449 10.1016/j.promfg.2020.01.353 10.1177/1687814018801442 10.1016/j.energy.2017.07.005 10.1007/s00170-010-2642-2 10.1016/j.ijpe.2013.01.028 10.3934/mbe.2019065 10.1108/ijicc-10-2018-0136 10.4028/www.scientific.net/amr.291-294.2537 10.1016/j.ejor.2004.11.012 10.1016/j.jmsy.2011.08.004 10.1080/00207543.2010.481293 10.1016/j.jclepro.2017.01.011 10.4028/www.scientific.net/amr.186.546 10.1016/j.apm.2016.09.022 10.1109/access.2020.3008373 10.1007/s10489-013-0512-y 10.1016/j.ijpe.2014.03.006 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Junfeng Fang. Copyright © 2022 Junfeng Fang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2022 Junfeng Fang. – notice: Copyright © 2022 Junfeng Fang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1155/2022/2120944 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1875-919X |
| Editor | Hussain, Jamil |
| Editor_xml | – sequence: 1 givenname: Jamil surname: Hussain fullname: Hussain, Jamil |
| EndPage | 10 |
| ExternalDocumentID | 10_1155_2022_2120944 |
| GroupedDBID | .DC 0R~ 24P 4.4 5VS AAFWJ AAJEY ABJNI ACCMX ACGFS ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BCNDV DU5 EBS EST ESX H13 HZ~ IOS KQ8 MIO MV1 NGNOM O9- OK1 RHU RHW RHX AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY ALUQN CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c337t-d3bff5547c88f6656cb98657a62a6101d1303ca5f104533b0b013c133b6b2d543 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793477000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1058-9244 |
| IngestDate | Fri Jul 25 09:30:19 EDT 2025 Sat Nov 29 04:07:04 EST 2025 Tue Nov 18 21:25:52 EST 2025 Wed Apr 16 06:25:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-d3bff5547c88f6656cb98657a62a6101d1303ca5f104533b0b013c133b6b2d543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2099-0382 |
| OpenAccessLink | https://dx.doi.org/10.1155/2022/2120944 |
| PQID | 2646636232 |
| PQPubID | 2046410 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2646636232 crossref_citationtrail_10_1155_2022_2120944 crossref_primary_10_1155_2022_2120944 hindawi_primary_10_1155_2022_2120944 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-22 |
| PublicationDateYYYYMMDD | 2022-03-22 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Scientific programming |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 22 23 24 25 26 27 28 29 J. Jiang (9) 2011; 8 H. Chen (17) 2015; 46 Y. Pan (14) 2011; 51 11 12 L. Wang (15) 13 L. D. B. Hao (19) 2013; 146 16 18 1 2 4 (21) 2017; 144 5 6 7 8 20 H. E. Huajun (3) 2007; 4 L. Wang (10) 2017; 41 |
| References_xml | – ident: 5 doi: 10.1016/j.cor.2007.02.014 – ident: 7 doi: 10.1080/00207543.2012.751509 – ident: 16 doi: 10.22452/mjcs.vol20no2.6 – ident: 24 doi: 10.1016/j.jclepro.2017.01.166 – ident: 2 doi: 10.1016/j.rcim.2013.04.001 – ident: 29 doi: 10.4028/www.scientific.net/amr.97-101.2449 – volume: 4 year: 2007 ident: 3 article-title: Job scheduling model OF machining system for green manufacturing publication-title: Chinese Journal of Mechanical Engineering – ident: 1 doi: 10.1016/j.promfg.2020.01.353 – ident: 18 doi: 10.1177/1687814018801442 – volume: 51 start-page: 667 issue: 5 year: 2011 ident: 14 article-title: Research on multi-agent-based flexible job-shop scheduling[J] publication-title: Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology – ident: 23 doi: 10.1016/j.energy.2017.07.005 – ident: 6 doi: 10.1007/s00170-010-2642-2 – volume: 8 start-page: 2197 issue: 11 year: 2011 ident: 9 article-title: Hybrid genetic algorithm for flexible job-shop scheduling with multi-objective[J] publication-title: Journal of Information and Computational Science – volume: 146 start-page: 423 issue: 2 year: 2013 ident: 19 article-title: Hybrid flow shop scheduling considering machine electricity consumption cost[J] publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2013.01.028 – ident: 22 doi: 10.3934/mbe.2019065 – ident: 27 doi: 10.1108/ijicc-10-2018-0136 – ident: 13 doi: 10.4028/www.scientific.net/amr.291-294.2537 – ident: 28 doi: 10.1016/j.ejor.2004.11.012 – start-page: 160 ident: 15 article-title: A Communication Strategy of Proactive Nodes Based on Loop Theorem in Wireless Sensor Networks – ident: 4 doi: 10.1016/j.jmsy.2011.08.004 – ident: 8 doi: 10.1080/00207543.2010.481293 – volume: 144 start-page: 228 year: 2017 ident: 21 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.01.011 – ident: 12 doi: 10.4028/www.scientific.net/amr.186.546 – ident: 26 doi: 10.1016/j.apm.2016.09.022 – ident: 11 doi: 10.1109/access.2020.3008373 – ident: 20 doi: 10.1007/s10489-013-0512-y – volume: 46 start-page: 344 issue: 4 year: 2015 ident: 17 article-title: Multi-objective flexible job-shop scheduling problem based on NSGA-II with close relative variation[J] publication-title: Transactions of the Chinese Society for Agricultural Machinery – volume: 41 start-page: 494 issue: 4 year: 2017 ident: 10 article-title: Multi-objective flexible job shop energy-saving scheduling problem based on improved genetic algorithm[J] publication-title: Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology – ident: 25 doi: 10.1016/j.ijpe.2014.03.006 |
| SSID | ssj0018100 |
| Score | 2.2749295 |
| Snippet | Multiobjective Flexible Job Shop Scheduling Problem (MO-FJSP) is a scheduling problem used in manufacturing sectors to use energy efficiently and thriftily.... |
| SourceID | proquest crossref hindawi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Completion time Critical path Decision making Energy consumption Flexibility Gene expression Genetic algorithms Heuristic Job shop scheduling Job shops Manufacturing Mathematical models Methods Optimization Population Scheduling Search algorithms |
| Title | An Effective Hybrid Multiobjective Flexible Job Shop Scheduling Problem Based on Improved Genetic Algorithm |
| URI | https://dx.doi.org/10.1155/2022/2120944 https://www.proquest.com/docview/2646636232 |
| Volume | 2022 |
| WOSCitedRecordID | wos000793477000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1875-919X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018100 issn: 1058-9244 databaseCode: 24P dateStart: 19920101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64oeDF3-J0Sg7zJMUubdr0OMUxPIzhD9itNElrp7MdW1X8731p04EO0VtbXlp4afJ9L8n7HkAHKUWgMz4s1pWR5apAWHq9zOJJRKUtA1v5SVlswh8O-XgcjIxI0mJ1Cx_RTofn9JLqHE_XbUCDM31y624wXm4W8K5diQ4wHLsIV_X59h9tvyHPRqpD3o_JyhRc4kp_B7YMISS9qgd3YS3O9mC7LrZAzNjbh5deRiqpYZyfyOBTZ1qRMn02F8_maV-rW4ppTG5zQe7TfIbNU8QSnXJORlXpGHKFuKVInpFqPQGvtfQ0fp30pk_5fFKkrwfw2L95uB5YplKCJR3HLyzliCRBYuBLzhMPKZoUAfeYH3k0Qn7UVRqpZMQSDL6Q34ly9VNieCo8QRVznUNoZnkWHwFhzEfPcS-hQeLGigdKZ-HhfMo4jW1GW3BRezGURkZcV7OYhmU4wViofR4an7fgfGk9q-QzfrHrmA75w6xd91ZoxtoiREqHtAlpHD3-31tOYFPf6pNklLahWczf4lNYl-_FZDE_gwZ1R2flH_YFm77Elg |
| linkProvider | Hindawi Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+Hybrid+Multiobjective+Flexible+Job+Shop+Scheduling+Problem+Based+on+Improved+Genetic+Algorithm&rft.jtitle=Scientific+programming&rft.au=Fang%2C+Junfeng&rft.date=2022-03-22&rft.pub=Hindawi&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F2120944&rft.externalDocID=10_1155_2022_2120944 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon |