An Effective Hybrid Multiobjective Flexible Job Shop Scheduling Problem Based on Improved Genetic Algorithm

Multiobjective Flexible Job Shop Scheduling Problem (MO-FJSP) is a scheduling problem used in manufacturing sectors to use energy efficiently and thriftily. The scheduling problem aims to increase productivity and reduce energy consumption via a mathematical model. With this paper, an effective gene...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific programming Ročník 2022; s. 1 - 10
Hlavný autor: Fang, Junfeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Hindawi 22.03.2022
John Wiley & Sons, Inc
Predmet:
ISSN:1058-9244, 1875-919X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Multiobjective Flexible Job Shop Scheduling Problem (MO-FJSP) is a scheduling problem used in manufacturing sectors to use energy efficiently and thriftily. The scheduling problem aims to increase productivity and reduce energy consumption via a mathematical model. With this paper, an effective genetic algorithm is proposed for MO-FJSP based on maximum completion time, total machine load, and bottleneck machine load. The solution method utilizes a hybrid multiobjective genetic algorithm. A combination of global selection and fast selection is used for initialization and obtaining a uniformly distributed initial population. The cross-variance operator is adaptively improved to enhance the searching in the population. Following that an elite retention mechanism is designed to address the possible limitations of the elite strategy in maintaining population diversity. As a result, an improved harmonic search algorithm is introduced to improve the quality of individuals in the elite pool. The proposed hybrid method is implemented in MATLAB R2018a. Tests were conducted using the benchmark Kacem test set, the BR data data set, and with the actual production cases. The algorithm succeeded in achieving 13 nondominated solutions in the initial 20 runs. Moreover, the method obtains the optimal value criterion for the solution accuracy factor. As a whole, results of the evaluation testify that the proposed method can be used to solve the MO-FJSP with high accuracy and fast convergence. The method also provides feasible and effective scheduling solutions for the decision-makers in actual production. Based on the promising results obtained, it is deduced that the method has a wide applicability range particularly in manufacturing sector.
AbstractList Multiobjective Flexible Job Shop Scheduling Problem (MO-FJSP) is a scheduling problem used in manufacturing sectors to use energy efficiently and thriftily. The scheduling problem aims to increase productivity and reduce energy consumption via a mathematical model. With this paper, an effective genetic algorithm is proposed for MO-FJSP based on maximum completion time, total machine load, and bottleneck machine load. The solution method utilizes a hybrid multiobjective genetic algorithm. A combination of global selection and fast selection is used for initialization and obtaining a uniformly distributed initial population. The cross-variance operator is adaptively improved to enhance the searching in the population. Following that an elite retention mechanism is designed to address the possible limitations of the elite strategy in maintaining population diversity. As a result, an improved harmonic search algorithm is introduced to improve the quality of individuals in the elite pool. The proposed hybrid method is implemented in MATLAB R2018a. Tests were conducted using the benchmark Kacem test set, the BR data data set, and with the actual production cases. The algorithm succeeded in achieving 13 nondominated solutions in the initial 20 runs. Moreover, the method obtains the optimal value criterion for the solution accuracy factor. As a whole, results of the evaluation testify that the proposed method can be used to solve the MO-FJSP with high accuracy and fast convergence. The method also provides feasible and effective scheduling solutions for the decision-makers in actual production. Based on the promising results obtained, it is deduced that the method has a wide applicability range particularly in manufacturing sector.
Author Fang, Junfeng
Author_xml – sequence: 1
  givenname: Junfeng
  orcidid: 0000-0003-2099-0382
  surname: Fang
  fullname: Fang, Junfeng
  organization: Nanjing Huaqing Intelligence Technology Co., LtdNanjing 211135JiangsuChina
BookMark eNp9kMtOAjEUhhuDiYDufIAmLnWkl2mZWSLhZjCaoIm7SdvpQHFosTOD8vaWwMpEV-fPOd-5_R3Qss5qAK4xuseYsR5BhPQIJiiN4zPQxkmfRSlO31tBI5ZEKYnjC9CpqjVCOMEItcHHwMJRUWhVm52G0730JodPTVkbJ9en7LjU30aWGj46CRcrt4ULtdJ5Uxq7hC_ehdIGPohK59BZONtsvdsFPdFW10bBQbl03tSrzSU4L0RZ6atT7IK38eh1OI3mz5PZcDCPFKX9OsqpLArG4r5KkoJzxpVME876ghPBMcI5pogqwQqMYkapRBJhqnBQXJKcxbQLbo5zwyGfja7qbO0ab8PKjPCYc8oJJYEiR0p5V1VeF5kytQh_29oLU2YYZQdTs4Op2cnU0HT3q2nrzUb4_V_47RFfGZuLL_M__QPSL4VL
CitedBy_id crossref_primary_10_1155_2023_9791030
crossref_primary_10_1007_s43995_023_00017_1
Cites_doi 10.1016/j.cor.2007.02.014
10.1080/00207543.2012.751509
10.22452/mjcs.vol20no2.6
10.1016/j.jclepro.2017.01.166
10.1016/j.rcim.2013.04.001
10.4028/www.scientific.net/amr.97-101.2449
10.1016/j.promfg.2020.01.353
10.1177/1687814018801442
10.1016/j.energy.2017.07.005
10.1007/s00170-010-2642-2
10.1016/j.ijpe.2013.01.028
10.3934/mbe.2019065
10.1108/ijicc-10-2018-0136
10.4028/www.scientific.net/amr.291-294.2537
10.1016/j.ejor.2004.11.012
10.1016/j.jmsy.2011.08.004
10.1080/00207543.2010.481293
10.1016/j.jclepro.2017.01.011
10.4028/www.scientific.net/amr.186.546
10.1016/j.apm.2016.09.022
10.1109/access.2020.3008373
10.1007/s10489-013-0512-y
10.1016/j.ijpe.2014.03.006
ContentType Journal Article
Copyright Copyright © 2022 Junfeng Fang.
Copyright © 2022 Junfeng Fang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Junfeng Fang.
– notice: Copyright © 2022 Junfeng Fang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2022/2120944
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-919X
Editor Hussain, Jamil
Editor_xml – sequence: 1
  givenname: Jamil
  surname: Hussain
  fullname: Hussain, Jamil
EndPage 10
ExternalDocumentID 10_1155_2022_2120944
GroupedDBID .DC
0R~
24P
4.4
5VS
AAFWJ
AAJEY
ABJNI
ACCMX
ACGFS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BCNDV
DU5
EBS
EST
ESX
H13
HZ~
IOS
KQ8
MIO
MV1
NGNOM
O9-
OK1
RHU
RHW
RHX
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-d3bff5547c88f6656cb98657a62a6101d1303ca5f104533b0b013c133b6b2d543
IEDL.DBID RHX
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793477000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1058-9244
IngestDate Fri Jul 25 09:30:19 EDT 2025
Sat Nov 29 04:07:04 EST 2025
Tue Nov 18 21:25:52 EST 2025
Wed Apr 16 06:25:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-d3bff5547c88f6656cb98657a62a6101d1303ca5f104533b0b013c133b6b2d543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2099-0382
OpenAccessLink https://dx.doi.org/10.1155/2022/2120944
PQID 2646636232
PQPubID 2046410
PageCount 10
ParticipantIDs proquest_journals_2646636232
crossref_citationtrail_10_1155_2022_2120944
crossref_primary_10_1155_2022_2120944
hindawi_primary_10_1155_2022_2120944
PublicationCentury 2000
PublicationDate 2022-03-22
PublicationDateYYYYMMDD 2022-03-22
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-22
  day: 22
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Scientific programming
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 22
23
24
25
26
27
28
29
J. Jiang (9) 2011; 8
H. Chen (17) 2015; 46
Y. Pan (14) 2011; 51
11
12
L. Wang (15)
13
L. D. B. Hao (19) 2013; 146
16
18
1
2
4
(21) 2017; 144
5
6
7
8
20
H. E. Huajun (3) 2007; 4
L. Wang (10) 2017; 41
References_xml – ident: 5
  doi: 10.1016/j.cor.2007.02.014
– ident: 7
  doi: 10.1080/00207543.2012.751509
– ident: 16
  doi: 10.22452/mjcs.vol20no2.6
– ident: 24
  doi: 10.1016/j.jclepro.2017.01.166
– ident: 2
  doi: 10.1016/j.rcim.2013.04.001
– ident: 29
  doi: 10.4028/www.scientific.net/amr.97-101.2449
– volume: 4
  year: 2007
  ident: 3
  article-title: Job scheduling model OF machining system for green manufacturing
  publication-title: Chinese Journal of Mechanical Engineering
– ident: 1
  doi: 10.1016/j.promfg.2020.01.353
– ident: 18
  doi: 10.1177/1687814018801442
– volume: 51
  start-page: 667
  issue: 5
  year: 2011
  ident: 14
  article-title: Research on multi-agent-based flexible job-shop scheduling[J]
  publication-title: Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology
– ident: 23
  doi: 10.1016/j.energy.2017.07.005
– ident: 6
  doi: 10.1007/s00170-010-2642-2
– volume: 8
  start-page: 2197
  issue: 11
  year: 2011
  ident: 9
  article-title: Hybrid genetic algorithm for flexible job-shop scheduling with multi-objective[J]
  publication-title: Journal of Information and Computational Science
– volume: 146
  start-page: 423
  issue: 2
  year: 2013
  ident: 19
  article-title: Hybrid flow shop scheduling considering machine electricity consumption cost[J]
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2013.01.028
– ident: 22
  doi: 10.3934/mbe.2019065
– ident: 27
  doi: 10.1108/ijicc-10-2018-0136
– ident: 13
  doi: 10.4028/www.scientific.net/amr.291-294.2537
– ident: 28
  doi: 10.1016/j.ejor.2004.11.012
– start-page: 160
  ident: 15
  article-title: A Communication Strategy of Proactive Nodes Based on Loop Theorem in Wireless Sensor Networks
– ident: 4
  doi: 10.1016/j.jmsy.2011.08.004
– ident: 8
  doi: 10.1080/00207543.2010.481293
– volume: 144
  start-page: 228
  year: 2017
  ident: 21
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2017.01.011
– ident: 12
  doi: 10.4028/www.scientific.net/amr.186.546
– ident: 26
  doi: 10.1016/j.apm.2016.09.022
– ident: 11
  doi: 10.1109/access.2020.3008373
– ident: 20
  doi: 10.1007/s10489-013-0512-y
– volume: 46
  start-page: 344
  issue: 4
  year: 2015
  ident: 17
  article-title: Multi-objective flexible job-shop scheduling problem based on NSGA-II with close relative variation[J]
  publication-title: Transactions of the Chinese Society for Agricultural Machinery
– volume: 41
  start-page: 494
  issue: 4
  year: 2017
  ident: 10
  article-title: Multi-objective flexible job shop energy-saving scheduling problem based on improved genetic algorithm[J]
  publication-title: Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology
– ident: 25
  doi: 10.1016/j.ijpe.2014.03.006
SSID ssj0018100
Score 2.2749295
Snippet Multiobjective Flexible Job Shop Scheduling Problem (MO-FJSP) is a scheduling problem used in manufacturing sectors to use energy efficiently and thriftily....
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Completion time
Critical path
Decision making
Energy consumption
Flexibility
Gene expression
Genetic algorithms
Heuristic
Job shop scheduling
Job shops
Manufacturing
Mathematical models
Methods
Optimization
Population
Scheduling
Search algorithms
Title An Effective Hybrid Multiobjective Flexible Job Shop Scheduling Problem Based on Improved Genetic Algorithm
URI https://dx.doi.org/10.1155/2022/2120944
https://www.proquest.com/docview/2646636232
Volume 2022
WOSCitedRecordID wos000793477000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1875-919X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018100
  issn: 1058-9244
  databaseCode: 24P
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64oeDF3-J0Sg7zJMUubdr0OMUxPIzhD9itNElrp7MdW1X8731p04EO0VtbXlp4afJ9L8n7HkAHKUWgMz4s1pWR5apAWHq9zOJJRKUtA1v5SVlswh8O-XgcjIxI0mJ1Cx_RTofn9JLqHE_XbUCDM31y624wXm4W8K5diQ4wHLsIV_X59h9tvyHPRqpD3o_JyhRc4kp_B7YMISS9qgd3YS3O9mC7LrZAzNjbh5deRiqpYZyfyOBTZ1qRMn02F8_maV-rW4ppTG5zQe7TfIbNU8QSnXJORlXpGHKFuKVInpFqPQGvtfQ0fp30pk_5fFKkrwfw2L95uB5YplKCJR3HLyzliCRBYuBLzhMPKZoUAfeYH3k0Qn7UVRqpZMQSDL6Q34ly9VNieCo8QRVznUNoZnkWHwFhzEfPcS-hQeLGigdKZ-HhfMo4jW1GW3BRezGURkZcV7OYhmU4wViofR4an7fgfGk9q-QzfrHrmA75w6xd91ZoxtoiREqHtAlpHD3-31tOYFPf6pNklLahWczf4lNYl-_FZDE_gwZ1R2flH_YFm77Elg
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+Hybrid+Multiobjective+Flexible+Job+Shop+Scheduling+Problem+Based+on+Improved+Genetic+Algorithm&rft.jtitle=Scientific+programming&rft.au=Fang%2C+Junfeng&rft.date=2022-03-22&rft.pub=Hindawi&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F2120944&rft.externalDocID=10_1155_2022_2120944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon