A Semi-Explicit Multi-Step Method for Solving Incompressible Navier-Stokes Equations

The fractional step method is a technique that results in a computationally-efficient implementation of Navier–Stokes solvers. In the finite element-based models, it is often applied in conjunction with implicit time integration schemes. On the other hand, in the framework of finite difference and f...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 8; no. 1; p. 119
Main Authors: Ryzhakov, Pavel, Marti, Julio
Format: Journal Article Publication
Language:English
Published: Basel MDPI AG 01.01.2018
Multidisciplinary Digital Publishing Institute
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The fractional step method is a technique that results in a computationally-efficient implementation of Navier–Stokes solvers. In the finite element-based models, it is often applied in conjunction with implicit time integration schemes. On the other hand, in the framework of finite difference and finite volume methods, the fractional step method had been successfully applied to obtain predictor-corrector semi-explicit methods. In the present work, we derive a scheme based on using the fractional step technique in conjunction with explicit multi-step time integration within the framework of Galerkin-type stabilized finite element methods. We show that under certain assumptions, a Runge–Kutta scheme equipped with the fractional step leads to an efficient semi-explicit method, where the pressure Poisson equation is solved only once per time step. Thus, the computational cost of the implicit step of the scheme is minimized. The numerical example solved validates the resulting scheme and provides the insights regarding its accuracy and computational efficiency.
AbstractList The fractional step method is a technique that results in a computationally-efficient implementation of Navier–Stokes solvers. In the finite element-based models, it is often applied in conjunction with implicit time integration schemes. On the other hand, in the framework of finite difference and finite volume methods, the fractional step method had been successfully applied to obtain predictor-corrector semi-explicit methods. In the present work, we derive a scheme based on using the fractional step technique in conjunction with explicit multi-step time integration within the framework of Galerkin-type stabilized finite element methods. We show that under certain assumptions, a Runge–Kutta scheme equipped with the fractional step leads to an efficient semi-explicit method, where the pressure Poisson equation is solved only once per time step. Thus, the computational cost of the implicit step of the scheme is minimized. The numerical example solved validates the resulting scheme and provides the insights regarding its accuracy and computational efficiency.
The fractional step method is a technique that results in a computationally-efficient implementation of Navier–Stokes solvers. In the finite element-based models, it is often applied in conjunction with implicit time integration schemes. On the other hand, in the framework of finite difference and finite volume methods, the fractional step method had been successfully applied to obtain predictor-corrector semi-explicit methods. In the present work, we derive a scheme based on using the fractional step technique in conjunction with explicit multi-step time integration within the framework of Galerkin-type stabilized finite element methods. We show that under certain assumptions, a Runge–Kutta scheme equipped with the fractional step leads to an efficient semi-explicit method, where the pressure Poisson equation is solved only once per time step. Thus, the computational cost of the implicit step of the scheme is minimized. The numerical example solved validates the resulting scheme and provides the insights regarding its accuracy and computational efficiency. Peer Reviewed
Author Ryzhakov, Pavel
Marti, Julio
Author_xml – sequence: 1
  givenname: Pavel
  orcidid: 0000-0002-4672-9038
  surname: Ryzhakov
  fullname: Ryzhakov, Pavel
– sequence: 2
  givenname: Julio
  surname: Marti
  fullname: Marti, Julio
BookMark eNptUNtKw0AQXaSC9fLiFwR8E6J7SbObx1LqBbw8VJ_DZDPRrWk23d0U_XtXLVTEgWFm4JzDnHNIRp3tkJBTRi-EKOgl9L2ijDJW7JExpzJPRcbk6Nd-QE68X9JYBROK0TF5miYLXJl0_t63RpuQ3A9tMOkiYJ_cY3i1ddJYlyxsuzHdS3LbabvqHXpvqhaTB9gYdBFt39An8_UAwdjOH5P9BlqPJ9t5RJ6v5k-zm_Tu8fp2Nr1LtRAypDXldZHLWmtALFQmOFZZk6ECmsmaQ6MalFBIBXnDoWKFqGHCOFeyYqBhIo4I-9HVftClQ41OQygtmN3x1dE_LwUtZM4j5-yH0zu7HtCHcmkH18U3I4xypSaZEhFFt8rOeu-wKWM23-aCA9OWjJZfkZe7yCPl_A-ld2YF7uM_8CcVYIPA
CitedBy_id crossref_primary_10_3390_app8040529
crossref_primary_10_1007_s40571_019_00229_0
crossref_primary_10_1016_j_cma_2019_03_007
crossref_primary_10_1007_s10694_018_0769_0
Cites_doi 10.1006/jcph.1993.1162
10.1002/(SICI)1097-0363(199801)27:1/4<13::AID-FLD647>3.0.CO;2-8
10.1016/j.rimni.2015.09.002
10.1137/1.9781611970753
10.1016/j.cma.2005.10.010
10.1002/0470013826
10.1016/S0045-7825(00)00260-7
10.1016/j.jcp.2005.11.014
10.1016/j.compfluid.2008.12.003
10.1016/0021-9991(67)90037-X
10.1016/j.jcp.2017.09.055
10.1002/fld.3881
10.1006/jcph.2001.6725
10.1007/978-3-642-65108-3
10.1007/s00450-010-0111-7
10.1002/fld.2674
10.1016/S0168-9274(97)00056-1
10.4208/cicp.240713.080514a
10.1016/0045-7825(82)90054-8
10.1016/S0045-7949(00)00123-1
10.1002/nme.3370
10.1016/0021-9991(91)90215-7
10.1016/0021-9991(85)90148-2
10.1007/s11831-010-9045-2
10.1137/S0036142997326938
10.1002/(SICI)1097-0363(19960530)22:10<987::AID-FLD394>3.0.CO;2-7
10.1007/BF00247678
10.1002/fld.4190
10.1016/j.jcp.2011.11.028
10.1002/fld.1122
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
Universitat Politècnica de Catalunya. DECA - Grup de Recerca del Departament d'Enginyeria Civil i Ambiental
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. DECA - Grup de Recerca del Departament d'Enginyeria Civil i Ambiental
Copyright Copyright MDPI AG 2018
Attribution 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/es
Copyright_xml – notice: Copyright MDPI AG 2018
– notice: Attribution 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/3.0/es/">http://creativecommons.org/licenses/by/3.0/es/</a>
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
XX2
DOI 10.3390/app8010119
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Recercat
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_recercat_cat_2072_309762
10_3390_app8010119
GroupedDBID .4S
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IPNFZ
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
RIG
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
2XV
IGS
ITC
XX2
ID FETCH-LOGICAL-c337t-d02d967dccaee98432eb4f4e8a047d2af8fe7a978a6f2ab193da512287b1aca53
IEDL.DBID PIMPY
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424388800119&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Nov 07 13:56:58 EST 2025
Mon Oct 20 01:23:31 EDT 2025
Tue Nov 18 21:30:46 EST 2025
Sat Nov 29 07:10:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-d02d967dccaee98432eb4f4e8a047d2af8fe7a978a6f2ab193da512287b1aca53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4672-9038
OpenAccessLink https://www.proquest.com/publiccontent/docview/2002885483?pq-origsite=%requestingapplication%
PQID 2002885483
PQPubID 2032433
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_309762
proquest_journals_2002885483
crossref_citationtrail_10_3390_app8010119
crossref_primary_10_3390_app8010119
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2018
Publisher MDPI AG
Multidisciplinary Digital Publishing Institute
Publisher_xml – name: MDPI AG
– name: Multidisciplinary Digital Publishing Institute
References Dadvand (ref_30) 2010; 17/3
Sanderse (ref_21) 2012; 231
Donea (ref_7) 1982; 30
Ryzhakov (ref_14) 2012; 70
Ryzhakov (ref_15) 2016; 81
Ascher (ref_20) 1997; 25
Chorin (ref_1) 1967; 2
ref_32
Guermond (ref_11) 2006; 195
Temam (ref_2) 1969; 32
Codina (ref_29) 2001; 190
Nithiarasu (ref_18) 2006; 7
Nikitin (ref_19) 2006; 51
Ha (ref_24) 2018; 352
Le (ref_25) 1991; 92
Griebel (ref_33) 2010; 25
Kim (ref_6) 1985; 59
Codina (ref_10) 2001; 170
Bathe (ref_27) 2001; 79
(ref_5) 1993; 108
Ryzhakov (ref_17) 2017; 33
Fishpool (ref_22) 2009; 38
Ryzhakov (ref_16) 2012; 90/12
ref_3
Pareschi (ref_26) 2000; 3
ref_28
Ryzhakov (ref_31) 2014; 74
ref_8
Drikakis (ref_12) 2014; 16
Strikwerda (ref_9) 1999; 37
Kampanis (ref_23) 2006; 215
Codina (ref_13) 1998; 27
ref_4
References_xml – volume: 108
  start-page: 51
  year: 1993
  ident: ref_5
  article-title: An analysis of the fractional step method
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1993.1162
– volume: 27
  start-page: 13
  year: 1998
  ident: ref_13
  article-title: A general algorithm for compressible and incompressible flows
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/(SICI)1097-0363(199801)27:1/4<13::AID-FLD647>3.0.CO;2-8
– volume: 33
  start-page: 58
  year: 2017
  ident: ref_17
  article-title: A modified fractional step method for fluid—Structure interaction problems
  publication-title: Rev. Int. Métodos Numér. Cálc. Diseño Ing.
  doi: 10.1016/j.rimni.2015.09.002
– ident: ref_32
  doi: 10.1137/1.9781611970753
– volume: 3
  start-page: 269
  year: 2000
  ident: ref_26
  article-title: Implicit-explicit Runge–Kutta schemes for stiff systems of differential equations
  publication-title: Recent Trends Numer. Anal.
– ident: ref_3
– volume: 195
  start-page: 6011
  year: 2006
  ident: ref_11
  article-title: An Overview of Projection methods for incompressible flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.10.010
– ident: ref_28
  doi: 10.1002/0470013826
– volume: 190
  start-page: 2681
  year: 2001
  ident: ref_29
  article-title: A stabilized finite element method for generalized stationary incompressible flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(00)00260-7
– volume: 215
  start-page: 589
  year: 2006
  ident: ref_23
  article-title: A staggered grid, high-order accurate method for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.11.014
– volume: 38
  start-page: 1289
  year: 2009
  ident: ref_22
  article-title: Stability bounds for explicit fractional-step schemes for the Navier–Stokes equations at high Reynolds number
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2008.12.003
– volume: 2
  start-page: 12
  year: 1967
  ident: ref_1
  article-title: A numerical method for solving incompressible viscous problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(67)90037-X
– volume: 352
  start-page: 246
  year: 2018
  ident: ref_24
  article-title: A GPU-accelerated semi-implicit fractional-step method for numerical solutions of incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.09.055
– volume: 74
  start-page: 919
  year: 2014
  ident: ref_31
  article-title: A two-step monolithic method for the efficient simulation of incompressible flows
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3881
– volume: 170
  start-page: 112
  year: 2001
  ident: ref_10
  article-title: Pressure stability in fractional step finite element method for incompressible flows
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6725
– ident: ref_4
  doi: 10.1007/978-3-642-65108-3
– volume: 25
  start-page: 65
  year: 2010
  ident: ref_33
  article-title: A multi-GPU accelerated solver for the three-dimensional two-phase incompressible Navier-Stokes equations
  publication-title: Comput. Sci. Res. Dev.
  doi: 10.1007/s00450-010-0111-7
– volume: 70
  start-page: 1
  year: 2012
  ident: ref_14
  article-title: An algorithm for the simulation of thermally coupled low speed flow problems
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2674
– volume: 25
  start-page: 151
  year: 1997
  ident: ref_20
  article-title: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(97)00056-1
– volume: 16
  start-page: 1135
  year: 2014
  ident: ref_12
  article-title: A unified fractional-step, artificial compressibility and pressure-projection formulation for solving the incompressible Navier–Stokes equations
  publication-title: Commun. Computat. Phys.
  doi: 10.4208/cicp.240713.080514a
– volume: 30
  start-page: 53
  year: 1982
  ident: ref_7
  article-title: Finite element solution of the unsteady Navier-Stokes equations by a fractional step method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(82)90054-8
– volume: 79
  start-page: 243
  year: 2001
  ident: ref_27
  article-title: The inf–sup condition and its evaluation for mixed finite element methods
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(00)00123-1
– volume: 7
  start-page: 369
  year: 2006
  ident: ref_18
  article-title: A matrix free fractional step method for static and dynamic incompressible solid mechanics
  publication-title: Int. J. Numer. Methods Eng. Sci. Mech.
– volume: 90/12
  start-page: 1435
  year: 2012
  ident: ref_16
  article-title: Improving mass conservation in simulation of incompressible flows
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.3370
– volume: 92
  start-page: 369
  year: 1991
  ident: ref_25
  article-title: An improvement of fractional step methods for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(91)90215-7
– volume: 59
  start-page: 308
  year: 1985
  ident: ref_6
  article-title: Application of a fractional-step method to incompressible Navier-Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(85)90148-2
– volume: 17/3
  start-page: 253
  year: 2010
  ident: ref_30
  article-title: An object-oriented environment for developing finite element codes for multi-disciplinary applications
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-010-9045-2
– volume: 37
  start-page: 37
  year: 1999
  ident: ref_9
  article-title: The accuracy of the fractional step method
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997326938
– ident: ref_8
  doi: 10.1002/(SICI)1097-0363(19960530)22:10<987::AID-FLD394>3.0.CO;2-7
– volume: 32
  start-page: 135
  year: 1969
  ident: ref_2
  article-title: Sur l’approximation de la solution des equations de Navier-Stokes par la methode des pase fractionaires
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00247678
– volume: 81
  start-page: 357
  year: 2016
  ident: ref_15
  article-title: An embedded approach for immiscible multi-fluid problems
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.4190
– volume: 231
  start-page: 3041
  year: 2012
  ident: ref_21
  article-title: Accuracy analysis of explicit Runge–Kutta methods applied to the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.11.028
– volume: 51
  start-page: 221
  year: 2006
  ident: ref_19
  article-title: Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier-Stokes equations
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1122
SSID ssj0000913810
Score 2.0808692
Snippet The fractional step method is a technique that results in a computationally-efficient implementation of Navier–Stokes solvers. In the finite element-based...
The fractional step method is a technique that results in a computationally-efficient implementation of Navier-Stokes solvers. In the finite element-based...
SourceID csuc
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 119
SubjectTerms Anàlisi numèrica
computational efficiency
finite element method
Finite volume method
Fluid mechanics
Flux de fluids
fractional step method
Física
Física de fluids
incompressible flows
Matemàtiques i estadística
Mathematical models
Mecànica de fluids
Mètodes numèrics
Navier-Stokes equations
Runge-Kutta
Runge-Kutta formulas
Àrees temàtiques de la UPC
Title A Semi-Explicit Multi-Step Method for Solving Incompressible Navier-Stokes Equations
URI https://www.proquest.com/docview/2002885483
https://recercat.cat/handle/2072/309762
Volume 8
WOSCitedRecordID wos000424388800119&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals - Not for CDI Discovery
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB609aAHtT6wPsqCHlRYTDep2ZxEpaKHluID9BQ2uxso1tY2qb_fmWRbBcWThxxCliXw7c58Mzv7DcCRMQa9QBpxnViPB75ockWin5GMLLpDaiyQFM0mwm5XPj9HPXc9OnNllTObWBjqUu2Z6rbRCJ-ZkaaM-RmVFkiJbNu_eB9z6iFFZ62uocYiVEl4S1ag2rvr9F7mORfSwJRNr1Qp9THap1NiSSprJLTzzS9VdDbVP6xz4XJu1v73Z9dh1VFPdlmulRos2OEGrHwTJNyAmtvqGTt2etQnm_B4yR7sW59TuV5f93NWXNrlVB_GOkUDaobMlz2MBpScYGhx0MYU5bXJwLKuIs-Lo0evOG17XEqLZ1vwdNN-vL7lrhkD174f5tx4wkTnoUHErY0komqTIA2sVF4QGqFSmdpQYUyqzlOhEuSFRiGZwIAsaSqtWv42VIajod0BpnExGGGEDTQSytRTymtZrVKdSIlz-3U4mUERa6dUTg0zBjFGLARb_AVbHQ7nY99LfY5fR50SojE6ETvRKo9JVHv-Qo_wQhH7HpIzUYf9Gaix29BZ_IXh7t-f92AZOZUsszT7UMknU3sAS_oj72eTBlSv2t3efaMI_RtufX4Cp0H2PQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS9xAFD7IKrQ-eGvFrZcOtIVaGJydpGbyICJecNFdFtyCfRonMxNYut3VTVT8U_5Gz8llFVr65kMf8hAyDEnm49zmzPcBfHbOoRdIY24TL3gYyBY3RPoZq9ijOyRhgaQQm4i6XXV5Gfdm4LE-C0NtlbVNLAy1G1uqke9QM4FSGF8H-9c3nFSjaHe1ltAoYXHmH-4xZcv22ke4vl-kPDnuH57ySlWA2yCIcu6EdPFu5PDVvY8Vvp5PwjT0yogwctKkKvWRweTK7KbSJBjgOINeETOLpGWsIZUINPmzIYJdNWC21-70fk6rOsSyqVqi5EENgljQPrQiHjei8nnh-Ro2u7V_2P_CqZ0s_m-_YwkWqvCZHZR4X4YZP1qB-RekiiuwXJmrjH2tOLW330H_gF343wNOLYcDO8hZcfCYU48b6xQi2gyjd3YxHlKBhaHVRDtZtAgnQ8-6hqIHHD3-hdMe35T06Nl7-PEq37oKjdF45NeAWQS0k0760GJQnApjxHdvTWoTpXDuoAnb9WJrW7Gtk-jHUGPWRcDQz8Bowqfp2OuSY-Svo74RZjQ6Qj-xJtdEDD69oUuKSOpAYIApm7BRw0ZXRinTz5j58O_HH-HNab9zrs_b3bN1eIsxoiqrThvQyCe3fhPm7F0-yCZbFf4ZXL02xp4A5FlHwQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fSxwxEB7krkj7oFVbelbbQBVqIVwuu95mH0SkevRQjwMV7FPMJlk4et7p7drSf82_zpn9cQotffOhD_uwbAi7my8zXyaTbwC2nHPoBdKY28QLHgayww2JfsYq9ugOqbBAUhSbiAYDdXkZDxfgvj4LQ2mVtU0sDLWbWoqRtymZQCnk10E7rdIihoe9_ZtbThWkaKe1LqdRQuTY__6Fy7dsr3-IY70tZe_o_Os3XlUY4DYIopw7IV3cjRx-hvexwlf1SZiGXhkRRk6aVKU-MrjQMt1UmgTJjjPoIXGVkXSMNVQxAs1_Eyl5GDagOeyfDr_PIzykuKk6otREDYJY0J60Ik03kvV54gUbNruzf_iCwsH1lv_nX_MalipazQ7KebACC36yCq-eiC2uwkplxjL2udLa3lmD8wN25q9HnFIRR3aUs-JAMqfcN3ZaFNdmyOrZ2XRMgReG1hTtZ5E6nIw9GxhiFdh6-gO7PbotZdOzN3DxLN_6FhqT6cS_A2YR6E466UOLZDkVxohdb01qE6Ww76AFO_XAa1upsFMxkLHG1RiBRD-CpAWf5m1vSu2Rv7b6QvjR6CD9zJpck2D4_IYuKSKpA4HEU7Zgo4aQroxVph_xs_7vxx9hEYGlT_qD4_fwEqmjKoNRG9DIZ3d-E17Yn_kom32opgKDq-eG2ANik1CC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Semi-Explicit+Multi-Step+Method+for+Solving+Incompressible+Navier-Stokes+Equations&rft.jtitle=Applied+sciences&rft.au=Ryzhakov%2C+Pavel&rft.au=Marti%2C+Julio&rft.date=2018-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=8&rft.issue=1&rft.spage=119&rft_id=info:doi/10.3390%2Fapp8010119&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon