On the Economics of Adversarial Machine Learning

Given the widespread deployment of machine learning algorithms, the security of these algorithms and thus, the field of adversarial machine learning gained popularity in the research community. In this article, we loosen several unrealistic restrictions found in prior art and bring economical-inspir...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security Vol. 19; pp. 4670 - 4685
Main Authors: Merkle, Florian, Samsinger, Maximilian, Schottle, Pascal, Pevny, Tomas
Format: Journal Article
Language:English
Published: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1556-6013, 1556-6021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Given the widespread deployment of machine learning algorithms, the security of these algorithms and thus, the field of adversarial machine learning gained popularity in the research community. In this article, we loosen several unrealistic restrictions found in prior art and bring economical-inspired adversarial machine learning one step closer to being applicable in the real world. First, we extend our own game-theoretical framework such that it allows any arbitrary number of actions for both actors, and analytically determine equilibrium strategies and conditions where mixed strategies are expected for the specific case in which both actors choose from any two arbitrary actions. Then, we pay special attention to an adversary's knowledge about the attacked system by modeling them as a white-, gray-, or black-box adversary. We conduct extensive experiments for three architectures, two training procedures, and four adversarial attacks in different variations as direct and transfer attacks, resulting in 300 data points consisting of the respective accuracy and robustness values and the computational costs for both actors. We then instantiate our model with this data and explore the structure of the game for a wide range of each game parameter, overcoming the complexity by applying algorithmic game theory. We discover surprising properties in the actors' strategies, such as the feasibility of cheap attacks that have been dismissed as practically irrelevant so far - examples include universal adversarial perturbations or (transfer) attacks utilizing only few optimization steps. For the defender, we find that given recent attacks and countermeasures, a rational defender would try to hide as much as possible from their infrastructure.
AbstractList Given the widespread deployment of machine learning algorithms, the security of these algorithms and thus, the field of adversarial machine learning gained popularity in the research community. In this article, we loosen several unrealistic restrictions found in prior art and bring economical-inspired adversarial machine learning one step closer to being applicable in the real world. First, we extend our own game-theoretical framework such that it allows any arbitrary number of actions for both actors, and analytically determine equilibrium strategies and conditions where mixed strategies are expected for the specific case in which both actors choose from any two arbitrary actions. Then, we pay special attention to an adversary’s knowledge about the attacked system by modeling them as a white-, gray-, or black-box adversary. We conduct extensive experiments for three architectures, two training procedures, and four adversarial attacks in different variations as direct and transfer attacks, resulting in 300 data points consisting of the respective accuracy and robustness values and the computational costs for both actors. We then instantiate our model with this data and explore the structure of the game for a wide range of each game parameter, overcoming the complexity by applying algorithmic game theory. We discover surprising properties in the actors’ strategies, such as the feasibility of cheap attacks that have been dismissed as practically irrelevant so far - examples include universal adversarial perturbations or (transfer) attacks utilizing only few optimization steps. For the defender, we find that given recent attacks and countermeasures, a rational defender would try to hide as much as possible from their infrastructure.
Author Merkle, Florian
Samsinger, Maximilian
Pevny, Tomas
Schottle, Pascal
Author_xml – sequence: 1
  givenname: Florian
  orcidid: 0000-0003-3562-5265
  surname: Merkle
  fullname: Merkle, Florian
  email: florian.merkle@uibk.ac.at
  organization: Department of Information Systems, Productions and Logistic, University of Innsbruck, Innsbruck, Austria
– sequence: 2
  givenname: Maximilian
  orcidid: 0000-0002-8521-8142
  surname: Samsinger
  fullname: Samsinger, Maximilian
  email: m.samsinger@gmail.com
  organization: Department of Digital Business and Software Engineering, MCI Innsbruck, Innsbruck, Austria
– sequence: 3
  givenname: Pascal
  orcidid: 0000-0001-8710-9188
  surname: Schottle
  fullname: Schottle, Pascal
  email: pascal.schoettle@mci.edu
  organization: Department of Digital Business and Software Engineering, MCI Innsbruck, Innsbruck, Austria
– sequence: 4
  givenname: Tomas
  orcidid: 0000-0002-5768-9713
  surname: Pevny
  fullname: Pevny, Tomas
  email: pevnytom@fel.cvut.cz
  organization: Department of Computer Science, Czech Technical University in Prague, Prague, Czech Republic
BookMark eNp9kE1rAjEQhkOxULX9AYUeFnpem4_dZHMUUStYPNSeQzY7qRFNbLIW-u-7opTSQ08zh_eZd3gGqOeDB4TuCR4RguXTejF7HVFMixFjQlZUXqE-KUuec0xJ72cn7AYNUtpiXBSEV32EVz5rN5BNTfBh70zKgs3GzSfEpKPTu-xFm43zkC1BR-_8-y26tnqX4O4yh-htNl1PnvPlar6YjJe56R5oc1PLWgoujMWGN8wKQSQ0nNaVoYSBMBiINKLBuuGWGq6JLQvLi6amGnNo2BA9nu8eYvg4QmrVNhyj7yoVwyUlFWOV7FLknDIxpBTBqkN0ex2_FMHqJEadxKiTGHUR0zHiD2Ncq1sXfBu12_1LPpxJBwC_mgrBCynZN_RgccE
CODEN ITIFA6
CitedBy_id crossref_primary_10_1109_TVT_2024_3432614
Cites_doi 10.1007/978-3-030-01258-8_39
10.1109/TIFS.2015.2509941
10.1109/CVPR.2017.17
10.1007/978-3-319-68711-7_21
10.1145/1143844.1143889
10.1126/science.1130992
10.1145/2020408.2020495
10.1609/aaai.v35i6.16641
10.2307/1969529
10.1016/j.ijpe.2008.04.002
10.1109/sp.2017.49
10.1145/3411508.3421376
10.1145/1014052.1014066
10.1109/SP40000.2020.00045
10.1145/3437880.3460407
10.1109/CVPRW.2018.00211
10.1007/s10994-010-5188-5
10.1007/978-3-642-17197-0_9
10.1016/j.patcog.2018.07.023
10.23919/EUSIPCO.2018.8553214
10.1109/SaTML54575.2023.00031
10.1109/cvpr.2018.00474
10.1109/CVPR.2009.5206848
10.1007/978-3-319-46493-0_38
10.1109/TIFS.2012.2237397
10.1007/978-3-030-90370-1_9
10.2200/s00108ed1v01y200802aim003
10.1007/978-3-642-40994-3_25
10.1109/CVPR.2016.282
10.1109/TIFS.2017.2718494
10.1137/0112064
10.1109/ACSAC.2001.991552
10.1109/TIFS.2009.2019154
10.1145/1161366.1161393
10.1145/3128572.3140448
10.48550/ARXIV.1706.06083
10.1109/CVPR.2017.243
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TIFS.2024.3379829
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 4685
ExternalDocumentID 10_1109_TIFS_2024_3379829
10476499
Genre orig-research
GrantInformation_xml – fundername: Czech Science Foundation (GACR)
  grantid: 19-29680L; 22-32620S
  funderid: 10.13039/501100001824
– fundername: Austrian Science Fund (FWF)
  grantid: I 4057-N31
  funderid: 10.13039/501100002428
– fundername: Czech Science Foundation
  grantid: 22-32620S
  funderid: 10.13039/501100001824
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-cb9b9767cf0c6d3f7719ed62b8c213e7c0e19c7d0ad6f2c6a1f54f64db2a06ed3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001216477200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-6013
IngestDate Mon Jun 30 05:15:53 EDT 2025
Tue Nov 18 22:14:28 EST 2025
Sat Nov 29 02:51:35 EST 2025
Wed Aug 27 02:05:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-cb9b9767cf0c6d3f7719ed62b8c213e7c0e19c7d0ad6f2c6a1f54f64db2a06ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8521-8142
0000-0003-3562-5265
0000-0001-8710-9188
0000-0002-5768-9713
OpenAccessLink https://ieeexplore.ieee.org/document/10476499
PQID 3052183389
PQPubID 85506
PageCount 16
ParticipantIDs ieee_primary_10476499
proquest_journals_3052183389
crossref_citationtrail_10_1109_TIFS_2024_3379829
crossref_primary_10_1109_TIFS_2024_3379829
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
Carlini (ref42) 2019
ref56
ref15
ref58
ref53
Zhang (ref2)
ref11
ref55
ref54
ref16
ref19
ref18
ref50
Pang (ref3)
Athalye (ref21)
Grosse (ref41)
ref46
ref45
Xiao (ref61)
Brendel (ref14)
ref48
Cohen (ref23)
ref47
Gilmer (ref39) 2018
Biggio (ref9)
ref44
Pinot (ref37)
ref43
ref49
ref8
ref7
Jacobsen (ref59)
ref6
ref5
ref40
ref35
ref34
ref31
ref30
ref33
Szegedy (ref12)
ref32
ref1
Tramer (ref22); 33
Pita (ref25)
Robey (ref38)
Brückner (ref10) 2012; 13
Kerckhoffs (ref62) 1883; 9
Papernot (ref17) 2016
Shapiro (ref26) 1999
ref20
Wong (ref24)
Krizhevsky (ref51) 2009
Loshchilov (ref52)
ref28
Zhao (ref4) 2023
ref27
ref29
ref60
Meunier (ref36)
References_xml – ident: ref18
  doi: 10.1007/978-3-030-01258-8_39
– ident: ref32
  doi: 10.1109/TIFS.2015.2509941
– start-page: 7472
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref2
  article-title: Theoretically principled trade-off between robustness and accuracy
– ident: ref6
  doi: 10.1109/CVPR.2017.17
– ident: ref33
  doi: 10.1007/978-3-319-68711-7_21
– ident: ref34
  doi: 10.1145/1143844.1143889
– ident: ref28
  doi: 10.1126/science.1130992
– start-page: 7717
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref37
  article-title: Randomization matters how to defend against strong adversarial attacks
– year: 2016
  ident: ref17
  article-title: Transferability in machine learning: From phenomena to black-box attacks using adversarial samples
  publication-title: arXiv:1605.07277
– volume: 9
  start-page: 5
  issue: 1
  year: 1883
  ident: ref62
  article-title: La cryptographie militaire
  publication-title: J. Des. Sci. Militaires
– volume-title: Learning Multiple Layers of Features From Tiny Images
  year: 2009
  ident: ref51
– year: 2023
  ident: ref4
  article-title: Mitigating the accuracyrobustness trade-off via multi-teacher adversarial distillation
  publication-title: arXiv:2306.16170
– start-page: 17258
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref3
  article-title: Robustness and accuracy could be reconcilable by definition
– ident: ref8
  doi: 10.1145/2020408.2020495
– year: 2018
  ident: ref39
  article-title: Motivating the rules of the game for adversarial example research
  publication-title: arXiv:1807.06732
– ident: ref56
  doi: 10.1609/aaai.v35i6.16641
– ident: ref46
  doi: 10.2307/1969529
– ident: ref55
  doi: 10.1016/j.ijpe.2008.04.002
– ident: ref16
  doi: 10.1109/sp.2017.49
– volume: 13
  start-page: 2617
  issue: 1
  year: 2012
  ident: ref10
  article-title: Static prediction games for adversarial learning problems
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  volume-title: Proc. The 12th Int. Conf. Learn. Represent.
  ident: ref38
  article-title: Adversarial training should be cast as a non-zero-sum game
– ident: ref44
  doi: 10.1145/3411508.3421376
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref61
  article-title: Spatially transformed adversarial examples
– ident: ref1
  doi: 10.1145/1014052.1014066
– start-page: 1310
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref23
  article-title: Certified adversarial robustness via randomized smoothing
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref14
  article-title: Decision-based adversarial attacks: Reliable attacks against black-box machine learning models
– start-page: 1884
  volume-title: Proc. AAAI
  ident: ref25
  article-title: Armor security for Los Angeles international airport
– ident: ref53
  doi: 10.1109/SP40000.2020.00045
– ident: ref57
  doi: 10.1145/3437880.3460407
– ident: ref60
  doi: 10.1109/CVPRW.2018.00211
– ident: ref7
  doi: 10.1007/s10994-010-5188-5
– start-page: 7677
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref36
  article-title: Mixed Nash equilibria in the adversarial examples game
– ident: ref30
  doi: 10.1007/978-3-642-17197-0_9
– start-page: 1
  volume-title: Proc. 39th Int. Conf. Mach. Learn.
  ident: ref41
  article-title: ‘Why do so?’—A practical perspective on machine learning security
– ident: ref13
  doi: 10.1016/j.patcog.2018.07.023
– ident: ref58
  doi: 10.23919/EUSIPCO.2018.8553214
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref12
  article-title: Intriguing properties of neural networks
– ident: ref40
  doi: 10.1109/SaTML54575.2023.00031
– volume-title: Information Rules: A Strategic Guide To the Network Economy
  year: 1999
  ident: ref26
– ident: ref49
  doi: 10.1109/cvpr.2018.00474
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref24
  article-title: Fast is better than free: Revisiting adversarial training
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref52
  article-title: SGDR: Stochastic gradient descent with warm restarts
– ident: ref20
  doi: 10.1109/CVPR.2009.5206848
– ident: ref48
  doi: 10.1007/978-3-319-46493-0_38
– start-page: 274
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref21
  article-title: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples
– volume: 33
  start-page: 1633
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref22
  article-title: On adaptive attacks to adversarial example defenses
– ident: ref31
  doi: 10.1109/TIFS.2012.2237397
– ident: ref5
  doi: 10.1007/978-3-030-90370-1_9
– year: 2019
  ident: ref42
  article-title: On evaluating adversarial robustness
  publication-title: arXiv:1902.06705
– ident: ref45
  doi: 10.2200/s00108ed1v01y200802aim003
– ident: ref11
  doi: 10.1007/978-3-642-40994-3_25
– ident: ref43
  doi: 10.1109/CVPR.2016.282
– ident: ref35
  doi: 10.1109/TIFS.2017.2718494
– ident: ref47
  doi: 10.1137/0112064
– ident: ref27
  doi: 10.1109/ACSAC.2001.991552
– start-page: 1467
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref9
  article-title: Poisoning attacks against support vector machines
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref59
  article-title: Excessive invariance causes adversarial vulnerability
– ident: ref29
  doi: 10.1109/TIFS.2009.2019154
– ident: ref54
  doi: 10.1145/1161366.1161393
– ident: ref19
  doi: 10.1145/3128572.3140448
– ident: ref15
  doi: 10.48550/ARXIV.1706.06083
– ident: ref50
  doi: 10.1109/CVPR.2017.243
SSID ssj0044168
Score 2.4086645
Snippet Given the widespread deployment of machine learning algorithms, the security of these algorithms and thus, the field of adversarial machine learning gained...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4670
SubjectTerms Adversarial machine learning
Algorithms
Computational modeling
Data points
economics of information security
Game theory
Games
Machine learning
Perturbation methods
Robustness
Training
Title On the Economics of Adversarial Machine Learning
URI https://ieeexplore.ieee.org/document/10476499
https://www.proquest.com/docview/3052183389
Volume 19
WOSCitedRecordID wos001216477200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1556-6021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044168
  issn: 1556-6013
  databaseCode: RIE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH1yeuL3LwJFTTJk2ao4iLgq6CCnsreYogu7IPf79JmuqCKHjrISntl0zmmyTfDMAJcYIqoV0mpaoyWqoyk4yQjObGR7iVU9zGqiW3fDCohkPxkMTqUQtjrY2Xz-xZeIxn-Was52Gr7DykFWCeoi_DMuesEWu1y653643urSxZ5qMMko4wcyzOn276jz4ULOgZIVxUkU5-O6FYVeXHUhz9S7_7zy_bgPVEJNFFM_KbsGRHW9BtizSgZLNbsLaQcXAb8P0IecqHWj3yFI0dikWZpzJMRXQXL1dalPKuvuzAc__q6fI6S0UTMu1_bpZpJZSnGFw7rJkhjvNcWMMKVekiJ5ZrbHOhucHSMFdoJnNXUseoUYXEzBqyC53ReGT3AHFpCsWwtNQI6rQ3bZebwBkMxTKvWA9wi2KtU0bxUNjirY6RBRZ1AL4OwNcJ-B6cfnV5b9Jp_NV4JyC90LABuQeH7VjVyeKmNQkq5MoH3GL_l24HsBre3uyfHEJnNpnbI1jRH7PX6eQ4TqZPfunFzA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLa7PHDwJ1bRJk-Yo4qK4roIreCt5iiC74q7-fpM0VUEUvPWQ0PZLJvN9SWYG4JA4QZXQLpNSVRktVZlJRkhGc-MVbuUUt7FqSY_3-9XDg7hNweoxFsZaGy-f2ePwGM_yzUi_ha2yk5BWgHmKPg2zJfXCpwnXahde79ibyLeyZJnXGSQdYuZYnAwuu3deDBb0mBAuqkgov9xQrKvyYzGOHqa7_M9vW4GlRCXRaTP2qzBlh2uw3JZpQMlq12DxW87BdcA3Q-RJH2ojksdo5FAsyzyWYTKi63i90qKUefVxA-6754OziyyVTci0_7lJppVQnmRw7bBmhjjOc2ENK1Sli5xYrrHNheYGS8NcoZnMXUkdo0YVEjNryCbMDEdDuwWIS1MohqWlRlCnvXG73ATWYCiWecU6gFsUa51yiofSFs911BZY1AH4OgBfJ-A7cPTZ5aVJqPFX442A9LeGDcgd2G3Hqk42N65JiEOuvOQW2790O4D5i8F1r-5d9q92YCG8qdlN2YWZyeub3YM5_T55Gr_ux4n1AfZkyRM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Economics+of+Adversarial+Machine+Learning&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Merkle%2C+Florian&rft.au=Samsinger%2C+Maximilian&rft.au=Schottle%2C+Pascal&rft.au=Pevny%2C+Tomas&rft.date=2024&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=19&rft.spage=4670&rft.epage=4685&rft_id=info:doi/10.1109%2FTIFS.2024.3379829&rft.externalDocID=10476499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon