Calculus of sequential normal compactness in variational analysis

In this paper we study some properties of sets, set-valued mappings, and extended-real-valued functions unified under the name of “sequential normal compactness.” These properties automatically hold in finite-dimensional spaces, while they play a major role in infinite-dimensional variational analys...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 282; číslo 1; s. 63 - 84
Hlavní autoři: Mordukhovich, Boris S., Wang, Bingwu
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 01.06.2003
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we study some properties of sets, set-valued mappings, and extended-real-valued functions unified under the name of “sequential normal compactness.” These properties automatically hold in finite-dimensional spaces, while they play a major role in infinite-dimensional variational analysis. In particular, they are essential for calculus rules involving generalized differential constructions, for stability and metric regularity results and their broad applications, for necessary optimality conditions in constrained optimization and optimal control, etc. This paper contains principal results ensuring the preservation of sequential normal compactness properties under various operations over sets, set-valued mappings, and functions.
ISSN:0022-247X
1096-0813
DOI:10.1016/S0022-247X(02)00385-2