Big Data Analytics Model for Distributed Document Using Hybrid Optimization with K-Means Clustering

Clustering, also known as unsupervised learning, is one of the most significant topics of machine learning because it divides data into groups based on similarity with the aim of extracting or summarizing new information. It is one of the most often used machine learning techniques. The most signifi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wireless communications and mobile computing Ročník 2022; číslo 1
Hlavní autoři: Sharma, Kapil, Saini, Satish, Sharma, Shailja, Kang, Hardeep Singh, Bouye, Mohamed, Krah, Daniel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Hindawi 2022
John Wiley & Sons, Inc
Témata:
ISSN:1530-8669, 1530-8677
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Clustering, also known as unsupervised learning, is one of the most significant topics of machine learning because it divides data into groups based on similarity with the aim of extracting or summarizing new information. It is one of the most often used machine learning techniques. The most significant problem encountered in this subject is the sheer volume of electronic text documents accessible, which is increasing at an exponential rate, necessitating the development of efficient ways for dealing with these papers. Furthermore, it is not practicable to consolidate all of the papers from numerous locations into a single area for processing. In this study, the primary goal is to enhance the performance of the distributed document clustering approach for clustering big, high-dimensional distributed document datasets. For distributed storage and analysis, one of the most prominent open-source implementations of the big data analytic-based MapReduce model, such as the Hadoop framework, is used in conjunction with a distributed file system and is known as the Hadoop Distributed File System, to achieve the desired results. This necessitates an improvement in the approach of the clustering operation with Elephant Herding Optimization, which will be accomplished by applying a hybridized clustering procedure. In conjunction with the MapReduce framework, this hybridized strategy is able to solve the obstacles associated with the K-means clustering method, including the initial centroids difficulty and the dimensionality problem. In this paper, we analyze the performance of the whole distributed document clustering technique for big document datasets by using a distributed document clustering framework such as Hadoop and the associated MapReduce methodology. In the end, this decides how quickly computations may be completed.
AbstractList Clustering, also known as unsupervised learning, is one of the most significant topics of machine learning because it divides data into groups based on similarity with the aim of extracting or summarizing new information. It is one of the most often used machine learning techniques. The most significant problem encountered in this subject is the sheer volume of electronic text documents accessible, which is increasing at an exponential rate, necessitating the development of efficient ways for dealing with these papers. Furthermore, it is not practicable to consolidate all of the papers from numerous locations into a single area for processing. In this study, the primary goal is to enhance the performance of the distributed document clustering approach for clustering big, high‐dimensional distributed document datasets. For distributed storage and analysis, one of the most prominent open‐source implementations of the big data analytic‐based MapReduce model, such as the Hadoop framework, is used in conjunction with a distributed file system and is known as the Hadoop Distributed File System, to achieve the desired results. This necessitates an improvement in the approach of the clustering operation with Elephant Herding Optimization, which will be accomplished by applying a hybridized clustering procedure. In conjunction with the MapReduce framework, this hybridized strategy is able to solve the obstacles associated with the K ‐means clustering method, including the initial centroids difficulty and the dimensionality problem. In this paper, we analyze the performance of the whole distributed document clustering technique for big document datasets by using a distributed document clustering framework such as Hadoop and the associated MapReduce methodology. In the end, this decides how quickly computations may be completed.
Author Saini, Satish
Sharma, Shailja
Krah, Daniel
Bouye, Mohamed
Sharma, Kapil
Kang, Hardeep Singh
Author_xml – sequence: 1
  givenname: Kapil
  orcidid: 0000-0002-6825-271X
  surname: Sharma
  fullname: Sharma, Kapil
  organization: Computer Science and Engineering Ph.D. Research Scholar RIMT University Mandi Gobindgarh Punjab India annauniv.edu rimt.ac.in
– sequence: 2
  givenname: Satish
  orcidid: 0000-0002-9194-3068
  surname: Saini
  fullname: Saini, Satish
  organization: Electronics and Communication Engineering Professor RIMT University Mandi Gobindgarh Punjab India annauniv.edu
– sequence: 3
  givenname: Shailja
  surname: Sharma
  fullname: Sharma, Shailja
  organization: Computer Science and Engineering Assistant Professor Guru Nanak Dev Engineering College Ludhiana Punjab India gndec.ac.in
– sequence: 4
  givenname: Hardeep Singh
  orcidid: 0000-0003-2469-8434
  surname: Kang
  fullname: Kang, Hardeep Singh
  organization: Computer Science and Engineering Assistant Professor Guru Nanak Dev Engineering College Ludhiana Punjab India gndec.ac.in
– sequence: 5
  givenname: Mohamed
  surname: Bouye
  fullname: Bouye, Mohamed
  organization: Department of Mathematics College of Science King Khalid University Abha Saudi Arabia kku.edu.sa
– sequence: 6
  givenname: Daniel
  orcidid: 0000-0001-5625-8228
  surname: Krah
  fullname: Krah, Daniel
  organization: Tamale Technical University Ghana tatu.edu.gh
BookMark eNp9kE1PAjEURRuDiYDu_AFNXOpoP6bTmSWCihHCRtaTfg2UDFNsOyH46wUhLkx09d7i3Jv3Tg90GtcYAK4xuseYsQeCCHlgOeJZgc5AFzOKkjzjvPOzZ8UF6IWwQghRRHAXqEe7gCMRBRw0ot5FqwKcOm1qWDkPRzZEb2UbjYYjp9q1aSKcB9ss4HgnvdVwtol2bT9FtK6BWxuX8C2ZGtEEOKzbEI3fs5fgvBJ1MFen2Qfz56f34TiZzF5eh4NJoijlMVGZljwvUEFSwdKsIikXmMsixVKwguscaaa5IhWWpKAslZiqiuUCFUjllZG0D26OvRvvPloTYrlyrd-_FUqS8ZzgnFG6p8iRUt6F4E1VKhu_749e2LrEqDzILA8yy5PMfejuV2jj7Vr43V_47RFf2kaLrf2f_gJrD4NE
CitedBy_id crossref_primary_10_1007_s12083_024_01875_9
crossref_primary_10_1155_2024_9780759
Cites_doi 10.1155/2021/6876688
10.1016/j.knosys.2019.04.012
10.1109/SCOPES.2016.7955884
10.1109/ICEARS53579.2022.9752026
10.1007/s13042-020-01223-2
10.1007/s11571-011-9159-8
10.5120/17112-7514
10.1016/j.patcog.2019.04.014
10.1007/s12065-020-00464-y
10.1504/IJBIR.2021.116396
10.1109/IDEA49133.2020.9170667
10.1242/dev.02285
10.1007/s00500-019-03796-9
10.4018/978-1-4666-8387-7.ch016
10.1109/ACCESS.2019.2905862
10.1109/TGRS.2022.3155765
10.26599/BDMA.2018.9020037
10.1016/j.jisa.2020.102493
10.1109/ACCESS.2021.3098642
10.1049/cp.2017.0093
10.1007/s12652-019-01321-2
10.1016/j.dss.2019.113112
10.1016/j.knosys.2020.105984
10.1109/ACCESS.2022.3143541
10.1016/j.jbi.2020.103623
10.1109/BMEI.2014.7002862
10.1016/j.knosys.2019.04.001
10.1109/TKDE.2019.2946247
10.1007/s11554-021-01122-x
10.1007/s11042-022-12518-7
10.1016/j.adhoc.2021.102656
10.1007/s11042-019-07844-2
10.1109/IWECAI55315.2022.00038
10.1155/2022/2898061
10.1515/jisys-2015-0099
10.1109/CC.2017.7868161
ContentType Journal Article
Copyright Copyright © 2022 Kapil Sharma et al.
Copyright © 2022 Kapil Sharma et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2022 Kapil Sharma et al.
– notice: Copyright © 2022 Kapil Sharma et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2022/5807690
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database (subscription)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Hashmi, Mohammad Farukh
Editor_xml – sequence: 1
  givenname: Mohammad Farukh
  surname: Hashmi
  fullname: Hashmi, Mohammad Farukh
ExternalDocumentID 10_1155_2022_5807690
GrantInformation_xml – fundername: King Khalid University
  grantid: 2/217/43
GroupedDBID .3N
.DC
.GA
05W
0R~
123
1L6
24P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABIJN
ABPVW
ACCMX
ACGFO
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AIAGR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
F00
F01
F04
F21
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HCIFZ
HZ~
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LITHE
LP6
LP7
MK4
MY~
N04
N05
NF~
O9-
OIG
OK1
P2P
P2X
P4D
PHGZT
PIMPY
Q.N
QB0
QRW
R.K
RHU
RHW
RHX
RX1
RYL
SUPJJ
UB1
W8V
W99
WBKPD
XPP
XV2
~IA
~WT
.Y3
31~
5VS
AAEVG
AAMMB
AANHP
AAYXX
AAZKR
ACBWZ
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AEUCX
AFFHD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
AZFZN
BDRZF
BFHJK
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
LW6
O8X
PHGZM
PQGLB
ROL
WYUIH
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
JQ2
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c337t-c6db7890924a546f247a17b941ba597d80d5d7c2f1b29354b13cf58a090c8feb3
IEDL.DBID RHX
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000813992600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-8669
IngestDate Fri Jul 25 09:28:51 EDT 2025
Tue Nov 18 21:51:55 EST 2025
Sat Nov 29 07:30:28 EST 2025
Wed Apr 16 06:26:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-c6db7890924a546f247a17b941ba597d80d5d7c2f1b29354b13cf58a090c8feb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5625-8228
0000-0002-6825-271X
0000-0002-9194-3068
0000-0003-2469-8434
OpenAccessLink https://dx.doi.org/10.1155/2022/5807690
PQID 2678218533
PQPubID 2034344
ParticipantIDs proquest_journals_2678218533
crossref_citationtrail_10_1155_2022_5807690
crossref_primary_10_1155_2022_5807690
hindawi_primary_10_1155_2022_5807690
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_9_30_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_34_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_32_2
Rani S. (e_1_2_9_28_2) 2021
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_18_2
Yang L. (e_1_2_9_17_2) 2021
e_1_2_9_39_2
e_1_2_9_19_2
e_1_2_9_41_2
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_1_2
Satapathy S. C. (e_1_2_9_29_2) 2019; 2
Agrawal R. (e_1_2_9_22_2) 1996; 12
Mamodiya U. (e_1_2_9_40_2) 2018; 4
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
e_1_2_9_26_2
Koli N. (e_1_2_9_4_2) 2018; 5
References_xml – ident: e_1_2_9_6_2
  doi: 10.1155/2021/6876688
– ident: e_1_2_9_9_2
  doi: 10.1016/j.knosys.2019.04.012
– ident: e_1_2_9_16_2
  doi: 10.1109/SCOPES.2016.7955884
– ident: e_1_2_9_5_2
  doi: 10.1109/ICEARS53579.2022.9752026
– ident: e_1_2_9_20_2
  doi: 10.1007/s13042-020-01223-2
– ident: e_1_2_9_14_2
  doi: 10.1007/s11571-011-9159-8
– ident: e_1_2_9_35_2
  doi: 10.5120/17112-7514
– ident: e_1_2_9_3_2
  doi: 10.1016/j.patcog.2019.04.014
– ident: e_1_2_9_24_2
  doi: 10.1007/s12065-020-00464-y
– ident: e_1_2_9_11_2
  doi: 10.1504/IJBIR.2021.116396
– ident: e_1_2_9_23_2
  doi: 10.1109/IDEA49133.2020.9170667
– ident: e_1_2_9_19_2
  doi: 10.1242/dev.02285
– volume: 5
  start-page: 349
  year: 2018
  ident: e_1_2_9_4_2
  article-title: Review paper on automation of robotics in spatial with life forms
  publication-title: International Journal of Engineering Science Invention Research & Development
– ident: e_1_2_9_33_2
  doi: 10.1007/s00500-019-03796-9
– ident: e_1_2_9_26_2
  doi: 10.4018/978-1-4666-8387-7.ch016
– ident: e_1_2_9_25_2
  doi: 10.1109/ACCESS.2019.2905862
– ident: e_1_2_9_42_2
  doi: 10.1109/TGRS.2022.3155765
– ident: e_1_2_9_37_2
  doi: 10.26599/BDMA.2018.9020037
– ident: e_1_2_9_1_2
  doi: 10.1016/j.jisa.2020.102493
– ident: e_1_2_9_15_2
  doi: 10.1109/ACCESS.2021.3098642
– ident: e_1_2_9_38_2
  doi: 10.1049/cp.2017.0093
– volume: 4
  start-page: 55
  year: 2018
  ident: e_1_2_9_40_2
  article-title: Design & Simulation of tiffin food problem using fuzzy logic
  publication-title: International Journal for Science and Advance Research In Technology
– ident: e_1_2_9_27_2
  doi: 10.1007/s12652-019-01321-2
– ident: e_1_2_9_2_2
  doi: 10.1016/j.dss.2019.113112
– ident: e_1_2_9_18_2
  doi: 10.1016/j.knosys.2020.105984
– ident: e_1_2_9_39_2
  doi: 10.1109/ACCESS.2022.3143541
– ident: e_1_2_9_13_2
  doi: 10.1016/j.jbi.2020.103623
– ident: e_1_2_9_21_2
  doi: 10.1109/BMEI.2014.7002862
– ident: e_1_2_9_12_2
  doi: 10.1016/j.knosys.2019.04.001
– ident: e_1_2_9_10_2
  doi: 10.1109/TKDE.2019.2946247
– ident: e_1_2_9_32_2
  doi: 10.1007/s11554-021-01122-x
– volume: 2
  year: 2019
  ident: e_1_2_9_29_2
  article-title: Smart intelligent computing and applications
  publication-title: Proceedings of the Third International Conference on Smart Computing and Informatics
– ident: e_1_2_9_30_2
  doi: 10.1007/s11042-022-12518-7
– ident: e_1_2_9_41_2
  doi: 10.1016/j.adhoc.2021.102656
– ident: e_1_2_9_8_2
  doi: 10.1007/s11042-019-07844-2
– ident: e_1_2_9_7_2
  doi: 10.1109/IWECAI55315.2022.00038
– start-page: 1
  volume-title: Complex & Intelligent Systems
  year: 2021
  ident: e_1_2_9_17_2
– ident: e_1_2_9_34_2
  doi: 10.1155/2022/2898061
– ident: e_1_2_9_36_2
  doi: 10.1515/jisys-2015-0099
– volume: 12
  start-page: 307
  year: 1996
  ident: e_1_2_9_22_2
  article-title: Fast discovery of association rules
  publication-title: Advances in Knowledge Discovery and Data Mining
– start-page: 1
  volume-title: Soft Computing
  year: 2021
  ident: e_1_2_9_28_2
– ident: e_1_2_9_31_2
  doi: 10.1109/CC.2017.7868161
SSID ssj0003021
Score 2.3139331
Snippet Clustering, also known as unsupervised learning, is one of the most significant topics of machine learning because it divides data into groups based on...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Big Data
Centroids
Cluster analysis
Clustering
Collaboration
Data analysis
Data mining
Datasets
Documents
Knowledge discovery
Machine learning
Optimization
Recommender systems
User profiles
Vector quantization
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60KujBt1hf7KGeZDHZZLPZk2irFIqPg4K3kOxmtVDb2qaK_96ZdFsLoh685JIhhJ3JN_tNdr4hpGaUNIZbw6yAS2h8zVQmIZYtpHcbR9LkYTlsQt7cxI-P6s4V3IbuWOUEE0ugNj2NNfJTDqjKMbkEZ_1XhlOj8O-qG6ExTxZ8zn2M85ZkUyQOPO70Uj0WR5GaHHwXAjk_PxUxsHhE45mUtPSMXPi9_Q2by4RztfbfV10nq26rSc_HsbFB5vLuJlmZESDcIvqi_UQbaZHSUpwEJZspTkfrUNjL0gaK6uI8rNxQSEYjLCTS8owBbX5gpxe9BcB5cZ2cFEu6tMWuc8h-tN4ZoQQD2G6Th6vL-3qTubELTAeBLJiOTIbtscDMUhFGlocy9WWmQj9LgX6Y2DPCSM2tn8FeQYSZH2gr4tRTno4tkPMdUun2uvkuoSKIFKQ_nsJqoBChyrWX2UgHuVUZYGWVnExWPtFOkxxHY3SSkpsIkaCfEuenKjmeWvfHWhw_2NWcE_8wO5i4L3Ef7jD58t3e77f3yTI-bFyNOSCVYjDKD8mifivaw8FRGYefKQ_iQA
  priority: 102
  providerName: ProQuest
Title Big Data Analytics Model for Distributed Document Using Hybrid Optimization with K-Means Clustering
URI https://dx.doi.org/10.1155/2022/5807690
https://www.proquest.com/docview/2678218533
Volume 2022
WOSCitedRecordID wos000813992600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: K7-
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (subscription)
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: PIMPY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uKuiD-BN_jjzMJym2adM0j043JrJZhsL0pbRJo4M5xW2K_713XTbUIfoSaLn2IUnvu--a-46QqpZCa2a0YzgMgfaUIzMBe9kAvJsoFDoPimYTot2Oul0ZW5Gk4fwvfEA7pOfslEdAuCVw81LEcfN2mt2Zw_VdZmVRXScKQzk93_7j2W_Is_yIlPe9N-eCC1xprJM1GxDSs8kKbpCFfLBJVr_IBG4RVes90It0lNJCQgSFlSn2MOtTiDjpBUrfYteqXFOAjDGm-2hxEoA2P7Aei16DW3iy9ZYUE6_0ymnlgFH0vD9GoQSw3Sa3jfrNedOxzREc5fti5KhQZ1jECvwp5UFoWCBST2Qy8LIUSIKOXM21UMx4GSA6DzLPV4ZHqStdFRmg0DukPHge5LuEcj-UAFIsBexGuUCZKzczofJzIzPwaHvkZDpxibLK4djAop8UDILzBKc5sdO8R45n1i8TxYxf7Kp2Df4wO5wuUGI_r2HCAGIZRhr-_v_eckBW8HKSOzkk5dHrOD8iS-pt1Bu-Vshird6OOxVSuhIOjDG_h3vxZSu-qxRb7ROCNsbT
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2FUFQ4QGlBBArdQ3NCVu211-s9VAgSolRp0x6KFPXi2vtBI4W05IOof6q_kRnHLpWqwikHLr54tJJ3387bGe-8Adg1ShrDnfGcwEdkAu2pXCKWHdK7S2JpbFQ0m5D9fjIYqJMa3FS1MHStsvKJhaM2l5py5HscvSoncgk_Xf30qGsU_V2tWmgsYdGz1wsM2ab7B21c3ybnna-nra5XdhXwdBjKmadjk1P1JwYemYhixyOZBTJXUZBneLo2iW-EkZq7IEcqFFEehNqJJPOVrxOHsSeO-wgeRxEGS7h_TsTZrecPfV7qs_peEsequmgvBOUY-J5IfBmT979DgU8uKPZeDO9xQUFwnRf_29RswPPyKM0-L7H_Emp2vAnP7ggsboH-MvzO2tksY4X4CklSM-r-NmJ4VmdtEg2mfl_WMCTbOSVKWXGHgnWvqZKNHaND_VFWqjJKWbOed2SR3VlrNCeJCbR9Bd9W8pWvoT6-HNs3wEQYK6R3nuHsk9CistrPXaxD61SOXNCAj9VKp7rUXKfWH6O0iL2ESAkXaYmLBjRvra-WWiMP2O2WoPmH2XYFl7R0TNP0D1be_v31Dqx3T48O08ODfu8dPKWBl5mnbajPJnP7Htb0r9lwOvlQ7AEG56tG1m88az7V
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RoFU58Gqr0vLYA5yQFXvt9XoPVdWSRqBAyAEkxMXY-2gjpYGSpIi_1l_HjLOmSAg4ceDii0eW7P12vp3xzDcAm0ZJY7gzgRN4SUykA1VKxLJDendZKo1NqmETstPJTk5Udwr-1b0wVFZZ-8TKUZtzTTnyBkevyolc4obzZRHdZuvrxZ-AJkjRn9Z6nMYEIm17fYXh2_DLXhPXeovz1o-jnd3ATxgIdBzLUaBTU1InKAYhhUhSxxNZRLJUSVQWeNI2WWiEkZq7qERaFEkZxdqJrAhVqDOHcSg-9xXMSIwxKfDritNbFohD7rVawyBLU1UX3QtB-QbeEFkoU2KCO3T4-hfF4Ve9e7xQkV1r4SV_pkWY90ds9m2yJ5Zgyg6WYe6O8OI70N97P1mzGBWsEmUhqWpGU-H6DM_wrEliwjQHzBqGJDymBCqraivY7jV1uLFDdLS_fQcro1Q2awcHFlmf7fTHJD2Btu_h-Fne8gNMD84H9iMwEacKaZ8XuBIkwKisDkuX6tg6VSJHrMB2veq59lrsNBKkn1cxmRA5YST3GFmBrVvri4kGyQN2mx5AT5it1tDJvcMa5v9x8-nx2xvwBgGV7-912p_hLT13kpBahenR5diuwaz-O-oNL9er7cDg7LmBdQP9PUep
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%5BRetracted%5D+Big+Data+Analytics+Model+for+Distributed+Document+Using+Hybrid+Optimization+with+K%E2%80%90Means+Clustering&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Sharma%2C+Kapil&rft.au=Saini%2C+Satish&rft.au=Sharma%2C+Shailja&rft.au=Kang%2C+Hardeep+Singh&rft.date=2022&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft.issue=1&rft_id=info:doi/10.1155%2F2022%2F5807690&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_5807690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon