Big Data Analytics Model for Distributed Document Using Hybrid Optimization with K-Means Clustering
Clustering, also known as unsupervised learning, is one of the most significant topics of machine learning because it divides data into groups based on similarity with the aim of extracting or summarizing new information. It is one of the most often used machine learning techniques. The most signifi...
Uloženo v:
| Vydáno v: | Wireless communications and mobile computing Ročník 2022; číslo 1 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Hindawi
2022
John Wiley & Sons, Inc |
| Témata: | |
| ISSN: | 1530-8669, 1530-8677 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Clustering, also known as unsupervised learning, is one of the most significant topics of machine learning because it divides data into groups based on similarity with the aim of extracting or summarizing new information. It is one of the most often used machine learning techniques. The most significant problem encountered in this subject is the sheer volume of electronic text documents accessible, which is increasing at an exponential rate, necessitating the development of efficient ways for dealing with these papers. Furthermore, it is not practicable to consolidate all of the papers from numerous locations into a single area for processing. In this study, the primary goal is to enhance the performance of the distributed document clustering approach for clustering big, high-dimensional distributed document datasets. For distributed storage and analysis, one of the most prominent open-source implementations of the big data analytic-based MapReduce model, such as the Hadoop framework, is used in conjunction with a distributed file system and is known as the Hadoop Distributed File System, to achieve the desired results. This necessitates an improvement in the approach of the clustering operation with Elephant Herding Optimization, which will be accomplished by applying a hybridized clustering procedure. In conjunction with the MapReduce framework, this hybridized strategy is able to solve the obstacles associated with the K-means clustering method, including the initial centroids difficulty and the dimensionality problem. In this paper, we analyze the performance of the whole distributed document clustering technique for big document datasets by using a distributed document clustering framework such as Hadoop and the associated MapReduce methodology. In the end, this decides how quickly computations may be completed. |
|---|---|
| AbstractList | Clustering, also known as unsupervised learning, is one of the most significant topics of machine learning because it divides data into groups based on similarity with the aim of extracting or summarizing new information. It is one of the most often used machine learning techniques. The most significant problem encountered in this subject is the sheer volume of electronic text documents accessible, which is increasing at an exponential rate, necessitating the development of efficient ways for dealing with these papers. Furthermore, it is not practicable to consolidate all of the papers from numerous locations into a single area for processing. In this study, the primary goal is to enhance the performance of the distributed document clustering approach for clustering big, high‐dimensional distributed document datasets. For distributed storage and analysis, one of the most prominent open‐source implementations of the big data analytic‐based MapReduce model, such as the Hadoop framework, is used in conjunction with a distributed file system and is known as the Hadoop Distributed File System, to achieve the desired results. This necessitates an improvement in the approach of the clustering operation with Elephant Herding Optimization, which will be accomplished by applying a hybridized clustering procedure. In conjunction with the MapReduce framework, this hybridized strategy is able to solve the obstacles associated with the K ‐means clustering method, including the initial centroids difficulty and the dimensionality problem. In this paper, we analyze the performance of the whole distributed document clustering technique for big document datasets by using a distributed document clustering framework such as Hadoop and the associated MapReduce methodology. In the end, this decides how quickly computations may be completed. |
| Author | Saini, Satish Sharma, Shailja Krah, Daniel Bouye, Mohamed Sharma, Kapil Kang, Hardeep Singh |
| Author_xml | – sequence: 1 givenname: Kapil orcidid: 0000-0002-6825-271X surname: Sharma fullname: Sharma, Kapil organization: Computer Science and Engineering Ph.D. Research Scholar RIMT University Mandi Gobindgarh Punjab India annauniv.edu rimt.ac.in – sequence: 2 givenname: Satish orcidid: 0000-0002-9194-3068 surname: Saini fullname: Saini, Satish organization: Electronics and Communication Engineering Professor RIMT University Mandi Gobindgarh Punjab India annauniv.edu – sequence: 3 givenname: Shailja surname: Sharma fullname: Sharma, Shailja organization: Computer Science and Engineering Assistant Professor Guru Nanak Dev Engineering College Ludhiana Punjab India gndec.ac.in – sequence: 4 givenname: Hardeep Singh orcidid: 0000-0003-2469-8434 surname: Kang fullname: Kang, Hardeep Singh organization: Computer Science and Engineering Assistant Professor Guru Nanak Dev Engineering College Ludhiana Punjab India gndec.ac.in – sequence: 5 givenname: Mohamed surname: Bouye fullname: Bouye, Mohamed organization: Department of Mathematics College of Science King Khalid University Abha Saudi Arabia kku.edu.sa – sequence: 6 givenname: Daniel orcidid: 0000-0001-5625-8228 surname: Krah fullname: Krah, Daniel organization: Tamale Technical University Ghana tatu.edu.gh |
| BookMark | eNp9kE1PAjEURRuDiYDu_AFNXOpoP6bTmSWCihHCRtaTfg2UDFNsOyH46wUhLkx09d7i3Jv3Tg90GtcYAK4xuseYsQeCCHlgOeJZgc5AFzOKkjzjvPOzZ8UF6IWwQghRRHAXqEe7gCMRBRw0ot5FqwKcOm1qWDkPRzZEb2UbjYYjp9q1aSKcB9ss4HgnvdVwtol2bT9FtK6BWxuX8C2ZGtEEOKzbEI3fs5fgvBJ1MFen2Qfz56f34TiZzF5eh4NJoijlMVGZljwvUEFSwdKsIikXmMsixVKwguscaaa5IhWWpKAslZiqiuUCFUjllZG0D26OvRvvPloTYrlyrd-_FUqS8ZzgnFG6p8iRUt6F4E1VKhu_749e2LrEqDzILA8yy5PMfejuV2jj7Vr43V_47RFf2kaLrf2f_gJrD4NE |
| CitedBy_id | crossref_primary_10_1007_s12083_024_01875_9 crossref_primary_10_1155_2024_9780759 |
| Cites_doi | 10.1155/2021/6876688 10.1016/j.knosys.2019.04.012 10.1109/SCOPES.2016.7955884 10.1109/ICEARS53579.2022.9752026 10.1007/s13042-020-01223-2 10.1007/s11571-011-9159-8 10.5120/17112-7514 10.1016/j.patcog.2019.04.014 10.1007/s12065-020-00464-y 10.1504/IJBIR.2021.116396 10.1109/IDEA49133.2020.9170667 10.1242/dev.02285 10.1007/s00500-019-03796-9 10.4018/978-1-4666-8387-7.ch016 10.1109/ACCESS.2019.2905862 10.1109/TGRS.2022.3155765 10.26599/BDMA.2018.9020037 10.1016/j.jisa.2020.102493 10.1109/ACCESS.2021.3098642 10.1049/cp.2017.0093 10.1007/s12652-019-01321-2 10.1016/j.dss.2019.113112 10.1016/j.knosys.2020.105984 10.1109/ACCESS.2022.3143541 10.1016/j.jbi.2020.103623 10.1109/BMEI.2014.7002862 10.1016/j.knosys.2019.04.001 10.1109/TKDE.2019.2946247 10.1007/s11554-021-01122-x 10.1007/s11042-022-12518-7 10.1016/j.adhoc.2021.102656 10.1007/s11042-019-07844-2 10.1109/IWECAI55315.2022.00038 10.1155/2022/2898061 10.1515/jisys-2015-0099 10.1109/CC.2017.7868161 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Kapil Sharma et al. Copyright © 2022 Kapil Sharma et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright © 2022 Kapil Sharma et al. – notice: Copyright © 2022 Kapil Sharma et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 7XB 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1155/2022/5807690 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database (subscription) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1530-8677 |
| Editor | Hashmi, Mohammad Farukh |
| Editor_xml | – sequence: 1 givenname: Mohammad Farukh surname: Hashmi fullname: Hashmi, Mohammad Farukh |
| ExternalDocumentID | 10_1155_2022_5807690 |
| GrantInformation_xml | – fundername: King Khalid University grantid: 2/217/43 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 123 1L6 24P 3SF 3WU 4.4 4ZD 50Y 50Z 52M 52O 52T 52U 52W 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABIJN ABPVW ACCMX ACGFO ADBBV ADIZJ AENEX AFBPY AFKRA AIAGR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BROTX BRXPI CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBS F00 F01 F04 F21 G-S G.N GNP GNUQQ GODZA H.T H.X H13 HCIFZ HZ~ ITG ITH IX1 JPC K7- KQQ LAW LITHE LP6 LP7 MK4 MY~ N04 N05 NF~ O9- OIG OK1 P2P P2X P4D PHGZT PIMPY Q.N QB0 QRW R.K RHU RHW RHX RX1 RYL SUPJJ UB1 W8V W99 WBKPD XPP XV2 ~IA ~WT .Y3 31~ 5VS AAEVG AAMMB AANHP AAYXX AAZKR ACBWZ ACRPL ACXQS ACYXJ ADNMO AEFGJ AEIMD AEUCX AFFHD AFZJQ AGQPQ AGXDD AIDQK AIDYY ALUQN AZFZN BDRZF BFHJK CITATION EJD FEDTE HF~ HVGLF LH4 LW6 O8X PHGZM PQGLB ROL WYUIH 7SC 7SP 7XB 8FD 8FE 8FG ABUWG JQ2 L7M L~C L~D M0N P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c337t-c6db7890924a546f247a17b941ba597d80d5d7c2f1b29354b13cf58a090c8feb3 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000813992600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-8669 |
| IngestDate | Fri Jul 25 09:28:51 EDT 2025 Tue Nov 18 21:51:55 EST 2025 Sat Nov 29 07:30:28 EST 2025 Wed Apr 16 06:26:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-c6db7890924a546f247a17b941ba597d80d5d7c2f1b29354b13cf58a090c8feb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5625-8228 0000-0002-6825-271X 0000-0002-9194-3068 0000-0003-2469-8434 |
| OpenAccessLink | https://dx.doi.org/10.1155/2022/5807690 |
| PQID | 2678218533 |
| PQPubID | 2034344 |
| ParticipantIDs | proquest_journals_2678218533 crossref_citationtrail_10_1155_2022_5807690 crossref_primary_10_1155_2022_5807690 hindawi_primary_10_1155_2022_5807690 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Wireless communications and mobile computing |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_9_30_2 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_34_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_11_2 e_1_2_9_32_2 Rani S. (e_1_2_9_28_2) 2021 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_13_2 e_1_2_9_38_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_18_2 Yang L. (e_1_2_9_17_2) 2021 e_1_2_9_39_2 e_1_2_9_19_2 e_1_2_9_41_2 e_1_2_9_21_2 e_1_2_9_20_2 e_1_2_9_23_2 e_1_2_9_42_2 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_3_2 e_1_2_9_2_2 e_1_2_9_1_2 Satapathy S. C. (e_1_2_9_29_2) 2019; 2 Agrawal R. (e_1_2_9_22_2) 1996; 12 Mamodiya U. (e_1_2_9_40_2) 2018; 4 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 e_1_2_9_27_2 e_1_2_9_26_2 Koli N. (e_1_2_9_4_2) 2018; 5 |
| References_xml | – ident: e_1_2_9_6_2 doi: 10.1155/2021/6876688 – ident: e_1_2_9_9_2 doi: 10.1016/j.knosys.2019.04.012 – ident: e_1_2_9_16_2 doi: 10.1109/SCOPES.2016.7955884 – ident: e_1_2_9_5_2 doi: 10.1109/ICEARS53579.2022.9752026 – ident: e_1_2_9_20_2 doi: 10.1007/s13042-020-01223-2 – ident: e_1_2_9_14_2 doi: 10.1007/s11571-011-9159-8 – ident: e_1_2_9_35_2 doi: 10.5120/17112-7514 – ident: e_1_2_9_3_2 doi: 10.1016/j.patcog.2019.04.014 – ident: e_1_2_9_24_2 doi: 10.1007/s12065-020-00464-y – ident: e_1_2_9_11_2 doi: 10.1504/IJBIR.2021.116396 – ident: e_1_2_9_23_2 doi: 10.1109/IDEA49133.2020.9170667 – ident: e_1_2_9_19_2 doi: 10.1242/dev.02285 – volume: 5 start-page: 349 year: 2018 ident: e_1_2_9_4_2 article-title: Review paper on automation of robotics in spatial with life forms publication-title: International Journal of Engineering Science Invention Research & Development – ident: e_1_2_9_33_2 doi: 10.1007/s00500-019-03796-9 – ident: e_1_2_9_26_2 doi: 10.4018/978-1-4666-8387-7.ch016 – ident: e_1_2_9_25_2 doi: 10.1109/ACCESS.2019.2905862 – ident: e_1_2_9_42_2 doi: 10.1109/TGRS.2022.3155765 – ident: e_1_2_9_37_2 doi: 10.26599/BDMA.2018.9020037 – ident: e_1_2_9_1_2 doi: 10.1016/j.jisa.2020.102493 – ident: e_1_2_9_15_2 doi: 10.1109/ACCESS.2021.3098642 – ident: e_1_2_9_38_2 doi: 10.1049/cp.2017.0093 – volume: 4 start-page: 55 year: 2018 ident: e_1_2_9_40_2 article-title: Design & Simulation of tiffin food problem using fuzzy logic publication-title: International Journal for Science and Advance Research In Technology – ident: e_1_2_9_27_2 doi: 10.1007/s12652-019-01321-2 – ident: e_1_2_9_2_2 doi: 10.1016/j.dss.2019.113112 – ident: e_1_2_9_18_2 doi: 10.1016/j.knosys.2020.105984 – ident: e_1_2_9_39_2 doi: 10.1109/ACCESS.2022.3143541 – ident: e_1_2_9_13_2 doi: 10.1016/j.jbi.2020.103623 – ident: e_1_2_9_21_2 doi: 10.1109/BMEI.2014.7002862 – ident: e_1_2_9_12_2 doi: 10.1016/j.knosys.2019.04.001 – ident: e_1_2_9_10_2 doi: 10.1109/TKDE.2019.2946247 – ident: e_1_2_9_32_2 doi: 10.1007/s11554-021-01122-x – volume: 2 year: 2019 ident: e_1_2_9_29_2 article-title: Smart intelligent computing and applications publication-title: Proceedings of the Third International Conference on Smart Computing and Informatics – ident: e_1_2_9_30_2 doi: 10.1007/s11042-022-12518-7 – ident: e_1_2_9_41_2 doi: 10.1016/j.adhoc.2021.102656 – ident: e_1_2_9_8_2 doi: 10.1007/s11042-019-07844-2 – ident: e_1_2_9_7_2 doi: 10.1109/IWECAI55315.2022.00038 – start-page: 1 volume-title: Complex & Intelligent Systems year: 2021 ident: e_1_2_9_17_2 – ident: e_1_2_9_34_2 doi: 10.1155/2022/2898061 – ident: e_1_2_9_36_2 doi: 10.1515/jisys-2015-0099 – volume: 12 start-page: 307 year: 1996 ident: e_1_2_9_22_2 article-title: Fast discovery of association rules publication-title: Advances in Knowledge Discovery and Data Mining – start-page: 1 volume-title: Soft Computing year: 2021 ident: e_1_2_9_28_2 – ident: e_1_2_9_31_2 doi: 10.1109/CC.2017.7868161 |
| SSID | ssj0003021 |
| Score | 2.3139331 |
| Snippet | Clustering, also known as unsupervised learning, is one of the most significant topics of machine learning because it divides data into groups based on... |
| SourceID | proquest crossref hindawi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Algorithms Big Data Centroids Cluster analysis Clustering Collaboration Data analysis Data mining Datasets Documents Knowledge discovery Machine learning Optimization Recommender systems User profiles Vector quantization |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60KujBt1hf7KGeZDHZZLPZk2irFIqPg4K3kOxmtVDb2qaK_96ZdFsLoh685JIhhJ3JN_tNdr4hpGaUNIZbw6yAS2h8zVQmIZYtpHcbR9LkYTlsQt7cxI-P6s4V3IbuWOUEE0ugNj2NNfJTDqjKMbkEZ_1XhlOj8O-qG6ExTxZ8zn2M85ZkUyQOPO70Uj0WR5GaHHwXAjk_PxUxsHhE45mUtPSMXPi9_Q2by4RztfbfV10nq26rSc_HsbFB5vLuJlmZESDcIvqi_UQbaZHSUpwEJZspTkfrUNjL0gaK6uI8rNxQSEYjLCTS8owBbX5gpxe9BcB5cZ2cFEu6tMWuc8h-tN4ZoQQD2G6Th6vL-3qTubELTAeBLJiOTIbtscDMUhFGlocy9WWmQj9LgX6Y2DPCSM2tn8FeQYSZH2gr4tRTno4tkPMdUun2uvkuoSKIFKQ_nsJqoBChyrWX2UgHuVUZYGWVnExWPtFOkxxHY3SSkpsIkaCfEuenKjmeWvfHWhw_2NWcE_8wO5i4L3Ef7jD58t3e77f3yTI-bFyNOSCVYjDKD8mifivaw8FRGYefKQ_iQA priority: 102 providerName: ProQuest |
| Title | Big Data Analytics Model for Distributed Document Using Hybrid Optimization with K-Means Clustering |
| URI | https://dx.doi.org/10.1155/2022/5807690 https://www.proquest.com/docview/2678218533 |
| Volume | 2022 |
| WOSCitedRecordID | wos000813992600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: K7- dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: P5Z dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (subscription) customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: PIMPY dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1530-8677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uKuiD-BN_jjzMJym2adM0j043JrJZhsL0pbRJo4M5xW2K_713XTbUIfoSaLn2IUnvu--a-46QqpZCa2a0YzgMgfaUIzMBe9kAvJsoFDoPimYTot2Oul0ZW5Gk4fwvfEA7pOfslEdAuCVw81LEcfN2mt2Zw_VdZmVRXScKQzk93_7j2W_Is_yIlPe9N-eCC1xprJM1GxDSs8kKbpCFfLBJVr_IBG4RVes90It0lNJCQgSFlSn2MOtTiDjpBUrfYteqXFOAjDGm-2hxEoA2P7Aei16DW3iy9ZYUE6_0ymnlgFH0vD9GoQSw3Sa3jfrNedOxzREc5fti5KhQZ1jECvwp5UFoWCBST2Qy8LIUSIKOXM21UMx4GSA6DzLPV4ZHqStdFRmg0DukPHge5LuEcj-UAFIsBexGuUCZKzczofJzIzPwaHvkZDpxibLK4djAop8UDILzBKc5sdO8R45n1i8TxYxf7Kp2Df4wO5wuUGI_r2HCAGIZRhr-_v_eckBW8HKSOzkk5dHrOD8iS-pt1Bu-Vshird6OOxVSuhIOjDG_h3vxZSu-qxRb7ROCNsbT |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2FUFQ4QGlBBArdQ3NCVu211-s9VAgSolRp0x6KFPXi2vtBI4W05IOof6q_kRnHLpWqwikHLr54tJJ3387bGe-8Adg1ShrDnfGcwEdkAu2pXCKWHdK7S2JpbFQ0m5D9fjIYqJMa3FS1MHStsvKJhaM2l5py5HscvSoncgk_Xf30qGsU_V2tWmgsYdGz1wsM2ab7B21c3ybnna-nra5XdhXwdBjKmadjk1P1JwYemYhixyOZBTJXUZBneLo2iW-EkZq7IEcqFFEehNqJJPOVrxOHsSeO-wgeRxEGS7h_TsTZrecPfV7qs_peEsequmgvBOUY-J5IfBmT979DgU8uKPZeDO9xQUFwnRf_29RswPPyKM0-L7H_Emp2vAnP7ggsboH-MvzO2tksY4X4CklSM-r-NmJ4VmdtEg2mfl_WMCTbOSVKWXGHgnWvqZKNHaND_VFWqjJKWbOed2SR3VlrNCeJCbR9Bd9W8pWvoT6-HNs3wEQYK6R3nuHsk9CistrPXaxD61SOXNCAj9VKp7rUXKfWH6O0iL2ESAkXaYmLBjRvra-WWiMP2O2WoPmH2XYFl7R0TNP0D1be_v31Dqx3T48O08ODfu8dPKWBl5mnbajPJnP7Htb0r9lwOvlQ7AEG56tG1m88az7V |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RoFU58Gqr0vLYA5yQFXvt9XoPVdWSRqBAyAEkxMXY-2gjpYGSpIi_1l_HjLOmSAg4ceDii0eW7P12vp3xzDcAm0ZJY7gzgRN4SUykA1VKxLJDendZKo1NqmETstPJTk5Udwr-1b0wVFZZ-8TKUZtzTTnyBkevyolc4obzZRHdZuvrxZ-AJkjRn9Z6nMYEIm17fYXh2_DLXhPXeovz1o-jnd3ATxgIdBzLUaBTU1InKAYhhUhSxxNZRLJUSVQWeNI2WWiEkZq7qERaFEkZxdqJrAhVqDOHcSg-9xXMSIwxKfDritNbFohD7rVawyBLU1UX3QtB-QbeEFkoU2KCO3T4-hfF4Ve9e7xQkV1r4SV_pkWY90ds9m2yJ5Zgyg6WYe6O8OI70N97P1mzGBWsEmUhqWpGU-H6DM_wrEliwjQHzBqGJDymBCqraivY7jV1uLFDdLS_fQcro1Q2awcHFlmf7fTHJD2Btu_h-Fne8gNMD84H9iMwEacKaZ8XuBIkwKisDkuX6tg6VSJHrMB2veq59lrsNBKkn1cxmRA5YST3GFmBrVvri4kGyQN2mx5AT5it1tDJvcMa5v9x8-nx2xvwBgGV7-912p_hLT13kpBahenR5diuwaz-O-oNL9er7cDg7LmBdQP9PUep |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%5BRetracted%5D+Big+Data+Analytics+Model+for+Distributed+Document+Using+Hybrid+Optimization+with+K%E2%80%90Means+Clustering&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Sharma%2C+Kapil&rft.au=Saini%2C+Satish&rft.au=Sharma%2C+Shailja&rft.au=Kang%2C+Hardeep+Singh&rft.date=2022&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft.issue=1&rft_id=info:doi/10.1155%2F2022%2F5807690&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_5807690 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon |