Energy-Efficient Scientific Workflow Scheduling Algorithm in Cloud Environment
Scheduling extensive scientific applications that are deadline-aware (usually referred to as workflow) is a difficult task. This research provides a virtual machine (VM) placement and scheduling approach for effectively scheduling process tasks in the cloud environment while maintaining dependency a...
Uložené v:
| Vydané v: | Wireless communications and mobile computing Ročník 2022; číslo 1 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Hindawi
2022
John Wiley & Sons, Inc |
| Predmet: | |
| ISSN: | 1530-8669, 1530-8677 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Scheduling extensive scientific applications that are deadline-aware (usually referred to as workflow) is a difficult task. This research provides a virtual machine (VM) placement and scheduling approach for effectively scheduling process tasks in the cloud environment while maintaining dependency and deadline constraints. The suggested model’s aim is to reduce the application’s energy consumption and total execution time while taking into account dependency and deadline limitations. To select the VM for the tasks and dynamically deploy/undeploy the VM on the hosts based on the jobs’ requirements, an energy-efficient VM placement (EVMP) algorithm is presented. Demonstrate that the proposed approach outperforms the existing PESVMC (power-efficient scheduling and VM consolidation) algorithm. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1530-8669 1530-8677 |
| DOI: | 10.1155/2022/1637614 |