Energy-Efficient Scientific Workflow Scheduling Algorithm in Cloud Environment

Scheduling extensive scientific applications that are deadline-aware (usually referred to as workflow) is a difficult task. This research provides a virtual machine (VM) placement and scheduling approach for effectively scheduling process tasks in the cloud environment while maintaining dependency a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wireless communications and mobile computing Ročník 2022; číslo 1
Hlavní autoři: Garg, Neha, Neeraj, Raj, Manish, Gupta, Indrajeet, Kumar, Vinay, Sinha, G. R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Hindawi 2022
John Wiley & Sons, Inc
Témata:
ISSN:1530-8669, 1530-8677
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Scheduling extensive scientific applications that are deadline-aware (usually referred to as workflow) is a difficult task. This research provides a virtual machine (VM) placement and scheduling approach for effectively scheduling process tasks in the cloud environment while maintaining dependency and deadline constraints. The suggested model’s aim is to reduce the application’s energy consumption and total execution time while taking into account dependency and deadline limitations. To select the VM for the tasks and dynamically deploy/undeploy the VM on the hosts based on the jobs’ requirements, an energy-efficient VM placement (EVMP) algorithm is presented. Demonstrate that the proposed approach outperforms the existing PESVMC (power-efficient scheduling and VM consolidation) algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1530-8669
1530-8677
DOI:10.1155/2022/1637614