PCB-Vision: A Multiscene RGB-Hyperspectral Benchmark Dataset of Printed Circuit Boards

Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing pipelines as a basis for decision-making and process control. Aligning with the broader goals of the circular economy and the United Nations (UN) sus...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE sensors journal Ročník 24; číslo 10; s. 17140 - 17158
Hlavní autori: Arbash, Elias, Fuchs, Margret, Rasti, Behnood, Lorenz, Sandra, Ghamisi, Pedram, Gloaguen, Richard
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 15.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1530-437X, 1558-1748
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing pipelines as a basis for decision-making and process control. Aligning with the broader goals of the circular economy and the United Nations (UN) sustainable development goals (SDG), our work leverages noninvasive analysis methods utilizing RGB and hyperspectral (HS) imaging data to provide both quantitative and qualitative insights into the E-waste stream composition for optimizing recycling efficiency. In this article, we introduce "PCB-Vision," a pioneering RGB-HS printed circuit board (PCB) benchmark dataset, comprising 53 RGB images of high spatial resolution paired with their corresponding high spectral resolution HS data cubes in the visible and near-infrared (VNIR) range. Grounded in open science principles, our dataset provides a comprehensive resource for researchers through high-quality ground truths, focusing on three primary PCB components: integrated circuits (ICs), capacitors, and connectors. We provide extensive statistical investigations on the proposed dataset together with the performance of several state-of-the-art (SOTA) models, including U-Net, Attention U-Net, Residual U-Net, LinkNet, and DeepLabv3+. By openly sharing this multiscene benchmark dataset along with the baseline codes, we hope to foster transparent, traceable, and comparable developments of advanced data processing across various scientific communities, including, but not limited to, computer vision and remote sensing. Emphasizing our commitment to supporting a collaborative and inclusive scientific community, all materials, including code, data, ground truth, and masks, will be accessible at https://github.com/hifexplo/PCBVision .
AbstractList Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing pipelines as a basis for decision-making and process control. Aligning with the broader goals of the circular economy and the United Nations (UN) sustainable development goals (SDG), our work leverages noninvasive analysis methods utilizing RGB and hyperspectral (HS) imaging data to provide both quantitative and qualitative insights into the E-waste stream composition for optimizing recycling efficiency. In this article, we introduce “PCB-Vision,” a pioneering RGB-HS printed circuit board (PCB) benchmark dataset, comprising 53 RGB images of high spatial resolution paired with their corresponding high spectral resolution HS data cubes in the visible and near-infrared (VNIR) range. Grounded in open science principles, our dataset provides a comprehensive resource for researchers through high-quality ground truths, focusing on three primary PCB components: integrated circuits (ICs), capacitors, and connectors. We provide extensive statistical investigations on the proposed dataset together with the performance of several state-of-the-art (SOTA) models, including U-Net, Attention U-Net, Residual U-Net, LinkNet, and DeepLabv3+. By openly sharing this multiscene benchmark dataset along with the baseline codes, we hope to foster transparent, traceable, and comparable developments of advanced data processing across various scientific communities, including, but not limited to, computer vision and remote sensing. Emphasizing our commitment to supporting a collaborative and inclusive scientific community, all materials, including code, data, ground truth, and masks, will be accessible at https://github.com/hifexplo/PCBVision .
Author Lorenz, Sandra
Gloaguen, Richard
Ghamisi, Pedram
Fuchs, Margret
Rasti, Behnood
Arbash, Elias
Author_xml – sequence: 1
  givenname: Elias
  orcidid: 0009-0000-2187-9171
  surname: Arbash
  fullname: Arbash, Elias
  email: arbash.elias2@gmail.com
  organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany
– sequence: 2
  givenname: Margret
  surname: Fuchs
  fullname: Fuchs, Margret
  organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany
– sequence: 3
  givenname: Behnood
  orcidid: 0000-0002-1091-9841
  surname: Rasti
  fullname: Rasti, Behnood
  organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany
– sequence: 4
  givenname: Sandra
  orcidid: 0000-0001-8464-2331
  surname: Lorenz
  fullname: Lorenz, Sandra
  organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany
– sequence: 5
  givenname: Pedram
  orcidid: 0000-0003-1203-741X
  surname: Ghamisi
  fullname: Ghamisi, Pedram
  organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany
– sequence: 6
  givenname: Richard
  orcidid: 0000-0002-4383-473X
  surname: Gloaguen
  fullname: Gloaguen, Richard
  organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany
BookMark eNp9kD1PwzAQhi1UJNrCD0BisMScYsdx7LA1pbSgAhUfFVvkOhfhUpJgO0P_PYnaATEw3Q333Hv3DFCvrEpA6JySEaUkubp_mT6OQhJGI8YkkWF8hPqUcxlQEcle1zMSREy8n6CBcxtCaCK46KPVcpIGK-NMVV7jMX5ott44DSXg51kazHc1WFeD9lZtcQql_vhS9hPfKK8ceFwVeGlN6SHHE2N1YzxOK2Vzd4qOC7V1cHaoQ_R2O32dzIPF0-xuMl4EmjHhg3VCIy5FkQDnWiVhyGKVcC5iTbWM1xFnhShiCSHXBELBCsXy9vSCaSpoLtdsiC73e2tbfTfgfLapGlu2kRkjnNM4YYK3U3Q_pW3lnIUiq61pH9lllGSdvqzTl3X6soO-lhF_GG288q2n1oXZ_kte7EkDAL-SIslDnrAfTCd9sQ
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3390_ma17194707
crossref_primary_10_1016_j_optlastec_2025_112522
crossref_primary_10_1016_j_rineng_2025_106437
crossref_primary_10_1016_j_wasman_2025_02_047
Cites_doi 10.3390/s21165595
10.1016/j.jclepro.2017.02.004
10.1016/j.rser.2015.06.010
10.1109/whispers61460.2023.10431074
10.1016/j.jclepro.2015.12.042
10.1007/s00170-021-07325-7
10.48550/arXiv.1802.02611
10.1038/s41598-019-54045-w
10.1109/IGARSS52108.2023.10282872
10.1109/CVPR.2016.91
10.1109/MVA.2015.7153209
10.1109/VCIP.2017.8305148
10.3390/info11020125
10.1109/ACCESS.2023.3245093
10.1109/MSP.2013.2279507
10.1080/10408398.2011.651542
10.1109/LGRS.2019.2918719
10.1109/LGRS.2018.2802944
10.1109/IECON.2014.7049016
10.1109/CVPR.2016.308
10.1016/j.jhazmat.2009.02.104
10.1186/s40537-019-0197-0
10.3390/min11111292
10.1016/j.rse.2023.113856
10.3390/app11188424
10.1016/j.oregeorev.2021.104252
10.1109/TGRS.2022.3215209
10.1016/j.wasman.2014.06.003
10.1049/trit.2019.0019
10.1080/05704928.2013.838678
10.1016/j.talanta.2014.11.019
10.3390/s21154968
10.1109/INDIN.2013.6622858
10.1109/JSEN.2020.2996757
10.3390/electronics9091547
10.1109/INDIN.2013.6622859
10.1080/15732470801945930
10.1016/j.jclepro.2011.07.005
10.3390/s23052499
10.1016/j.compag.2009.06.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3380826
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 17158
ExternalDocumentID 10_1109_JSEN_2024_3380826
10485259
Genre orig-research
GrantInformation_xml – fundername: European Regional Development Fund (EFRE)
  funderid: 10.13039/501100008530
– fundername: EIT RawMaterials through the project RAMSES-4-CE
  grantid: KIC RM 19262
– fundername: Land of Saxony through the project CirculAIre
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
ESBDL
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c337t-b914587f9e55ca92236a95576c1c86b453f7f68e25c0e273fa3d001f3c171d8b3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001267414900089&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:11:41 EDT 2025
Tue Nov 18 22:43:57 EST 2025
Sat Nov 29 06:39:58 EST 2025
Wed Aug 27 02:05:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-b914587f9e55ca92236a95576c1c86b453f7f68e25c0e273fa3d001f3c171d8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8464-2331
0000-0003-1203-741X
0000-0002-4383-473X
0009-0000-2187-9171
0000-0002-1091-9841
OpenAccessLink https://ieeexplore.ieee.org/document/10485259
PQID 3055169375
PQPubID 75733
PageCount 19
ParticipantIDs crossref_primary_10_1109_JSEN_2024_3380826
proquest_journals_3055169375
ieee_primary_10485259
crossref_citationtrail_10_1109_JSEN_2024_3380826
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Lu (ref11) 2020
ref15
Nguyen (ref45) 2023
Oktay (ref49) 2018
Jahanshahi (ref18) 2009; 5
ref52
ref10
(ref6) 2023
Ronneberger (ref47)
ref17
Perez (ref54) 2017
ref19
Ren (ref41); 28
ref51
ref50
Buslaev (ref53) 2020; 11
ref46
ref48
ref42
ref44
Forti (ref4) 2020
ref8
ref7
ref9
Mehta (ref12) 2022
ref3
Krizhevsky (ref33); 25
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref32
Tang (ref14) 2019
ref2
ref1
ref39
ref38
Huang (ref13) 2019
Mahalingam (ref16)
ref24
ref23
ref26
ref25
ref20
(ref43) 2018
ref22
ref21
ref27
ref29
Carvalho (ref28) 2015; 134
References_xml – ident: ref27
  doi: 10.3390/s21165595
– volume-title: Resource Efficiency Waste
  year: 2018
  ident: ref43
– ident: ref1
  doi: 10.1016/j.jclepro.2017.02.004
– ident: ref3
  doi: 10.1016/j.rser.2015.06.010
– volume-title: Anylabeling: Effortless AI-Assisted Data Labeling With AI Support From YOLO, Segment Anything, Mobilesam!!
  year: 2023
  ident: ref45
– ident: ref46
  doi: 10.1109/whispers61460.2023.10431074
– ident: ref5
  doi: 10.1016/j.jclepro.2015.12.042
– ident: ref10
  doi: 10.1007/s00170-021-07325-7
– ident: ref48
  doi: 10.48550/arXiv.1802.02611
– year: 2019
  ident: ref13
  article-title: A PCB dataset for defects detection and classification
  publication-title: arXiv:1901.08204
– ident: ref7
  doi: 10.1038/s41598-019-54045-w
– ident: ref42
  doi: 10.1109/IGARSS52108.2023.10282872
– ident: ref25
  doi: 10.1109/CVPR.2016.91
– ident: ref15
  doi: 10.1109/MVA.2015.7153209
– ident: ref51
  doi: 10.1109/VCIP.2017.8305148
– volume: 28
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref41
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– volume-title: The global e-waste monitor 2020: Quantities, flows and the circular economy potential
  year: 2020
  ident: ref4
– volume-title: Sustainable Development Goals (SDGS)
  year: 2023
  ident: ref6
– volume: 11
  start-page: 125
  issue: 2
  year: 2020
  ident: ref53
  article-title: Albumentations: Fast and flexible image augmentations
  publication-title: Information
  doi: 10.3390/info11020125
– ident: ref9
  doi: 10.1109/ACCESS.2023.3245093
– ident: ref26
  doi: 10.1109/MSP.2013.2279507
– ident: ref35
  doi: 10.1080/10408398.2011.651542
– ident: ref37
  doi: 10.1109/LGRS.2019.2918719
– ident: ref50
  doi: 10.1109/LGRS.2018.2802944
– ident: ref21
  doi: 10.1109/IECON.2014.7049016
– ident: ref34
  doi: 10.1109/CVPR.2016.308
– ident: ref8
  doi: 10.1016/j.jhazmat.2009.02.104
– ident: ref52
  doi: 10.1186/s40537-019-0197-0
– ident: ref30
  doi: 10.3390/min11111292
– ident: ref40
  doi: 10.1016/j.rse.2023.113856
– year: 2017
  ident: ref54
  article-title: The effectiveness of data augmentation in image classification using deep learning
  publication-title: arXiv:1712.04621
– ident: ref32
  doi: 10.3390/app11188424
– ident: ref44
  doi: 10.1016/j.oregeorev.2021.104252
– ident: ref39
  doi: 10.1109/TGRS.2022.3215209
– ident: ref29
  doi: 10.1016/j.wasman.2014.06.003
– ident: ref23
  doi: 10.1049/trit.2019.0019
– ident: ref36
  doi: 10.1080/05704928.2013.838678
– volume: 134
  start-page: 278
  year: 2015
  ident: ref28
  article-title: Laser-induced breakdown spectroscopy (LIBS) combined with hyperspectral imaging for the evaluation of printed circuit board composition
  publication-title: Talanta
  doi: 10.1016/j.talanta.2014.11.019
– ident: ref22
  doi: 10.3390/s21154968
– year: 2019
  ident: ref14
  article-title: Online PCB defect detector on a new PCB defect dataset
  publication-title: arXiv:1902.06197
– start-page: 234
  volume-title: Proc. 18th Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. (MICCAI)
  ident: ref47
  article-title: U-net: Convolutional networks for biomedical image segmentation
– ident: ref19
  doi: 10.1109/INDIN.2013.6622858
– ident: ref31
  doi: 10.1109/JSEN.2020.2996757
– ident: ref24
  doi: 10.3390/electronics9091547
– ident: ref20
  doi: 10.1109/INDIN.2013.6622859
– volume: 5
  start-page: 455
  issue: 6
  year: 2009
  ident: ref18
  article-title: A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732470801945930
– ident: ref2
  doi: 10.1016/j.jclepro.2011.07.005
– year: 2018
  ident: ref49
  article-title: Attention U-net: Learning where to look for the pancreas
  publication-title: arXiv:1804.03999
– start-page: 1
  volume-title: Proc. 16th Int. Conf. Mach. Vis. Appl. (MVA)
  ident: ref16
  article-title: PCB-METAL: A PCB image dataset for advanced computer vision machine learning component analysis
– volume: 25
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref33
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref38
  doi: 10.3390/s23052499
– start-page: 924
  year: 2022
  ident: ref12
  article-title: FICS PCB X-ray: A dataset for automated printed circuit board inter-layers inspection
– ident: ref17
  doi: 10.1016/j.compag.2009.06.007
– year: 2020
  ident: ref11
  article-title: FICS-PCB: A multi-modal image dataset for automated printed circuit board visual inspection
SSID ssj0019757
Score 2.433343
Snippet Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17140
SubjectTerms Automated data processing
Benchmarks
Circuit boards
circular economy
Color imagery
Computer vision
Connectors
conveyor belt
Cubes
Data processing
dataset
Datasets
deep learning (DL)
digitalization
Electronic waste
electronic waste (E-waste)
hyperspectral (HS)
Hyperspectral imaging
Inspection
Integrated circuits
machine learning (ML)
open-source data
Optical sensors
PCBVision
printed circuit board (PCB)
Printed circuits
Process controls
Qualitative analysis
Recycling
Remote sensing
RGB
Sensors
Spatial resolution
Spectral resolution
Sustainable development
Waste management
Title PCB-Vision: A Multiscene RGB-Hyperspectral Benchmark Dataset of Printed Circuit Boards
URI https://ieeexplore.ieee.org/document/10485259
https://www.proquest.com/docview/3055169375
Volume 24
WOSCitedRecordID wos001267414900089&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB01qBJwoC0fIhAqH3qq5HQ3Xq9tbiSFoqqKogJRbqtdfygRkKBlg8S_Z-xdIhCiUm97sEcrP9szY_u9AfimnRIqVZwKm_ujG-lojn6DaqFtT5rcsSBfPP4jhkM5mahRQ1YPXBhrbXh8Zrv-M9zlm4Ve-qMyXOGJ5Bivt6AlhKjJWqsrAyWCrCeu4IgmTEyaK8w4Uj9-X5wOMRXsJV1MyNDnpa-cUKiq8mYrDv7l7NN__tln2GoCSXJSI_8FPtj5Nmy-kBfchvWmwvn0cQfGo0GfjgOR_JickMC79UJOlvz91afnmI3WpMsSbfZx5k5v8_Ka_Mwr9HIVWTgyKr2yhCGDWamXs4r0F56utQtXZ6eXg3Pa1FSgmjFR0ULFCZfCKcu5zhUGB2muOCYdOtYyLRLOnHCptD2uI4uhjcuZwcF1TMciNrJge7A2X8ztPpDIWcOEtExxTLJdUSQ2NcyYVKH51MRtiJ4HOdON4Live3GThcQjUpnHJfO4ZA0ubfi-6nJXq238q_GuB-JFwxqDNnSeocyaBXmfeWEzrzsj-ME73Q5hw1v3LwNi3oG1qlzaI_ioHxCO8muYa0_i4M9A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6CgsR2GAM6UQabD5yQDEkdx_ZubQd0W6mqjVW9RYl_CLTRTlk6if9-z05AoGlI3HKwncifnfeen7_vARxqp4RKFafC5v7oRjqao92gWmjblSZ3LMgXT0diPJazmZo0ZPXAhbHWhstn9tg_hly-WeilPyrDHZ5Ijv76KqzxJOnGNV3rPmmgRBD2xD0c0YSJWZPEjCN18vnb6RiDwW5yjCEZWr30kRkKdVX--RkHC3O2-cxvew2vGleS9Grst2DFzrfh5QOBwW3YaGqcX93uwHQy6NNpoJJ_ID0SmLdeysmSr-d9OsR4tKZdljhmH9fu1U1e_iAf8wrtXEUWjkxKry1hyOC61MvrivQXnrDVhu9np5eDIW2qKlDNmKhooeKES-GU5VznCt2DNFccww4da5kWCWdOuFTaLteRRefG5czg5DqmYxEbWbA30Jov5nYXSOSsYUJapjiG2a4oEpsaZkyqcPjUxB2I7iY5043kuK988TMLoUekMo9L5nHJGlw6cHTf5Vett_FU47YH4kHDGoMO7N9BmTVb8nfmpc288ozge__p9h42hpcXo2z0afzlLbzwb_L3BGK-D62qXNoDWNd_EJryXVh3fwHWVdKH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PCB-Vision%3A+A+Multiscene+RGB-Hyperspectral+Benchmark+Dataset+of+Printed+Circuit+Boards&rft.jtitle=IEEE+sensors+journal&rft.au=Arbash%2C+Elias&rft.au=Fuchs%2C+Margret&rft.au=Rasti%2C+Behnood&rft.au=Lorenz%2C+Sandra&rft.date=2024-05-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=10&rft.spage=17140&rft_id=info:doi/10.1109%2FJSEN.2024.3380826&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon