PCB-Vision: A Multiscene RGB-Hyperspectral Benchmark Dataset of Printed Circuit Boards
Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing pipelines as a basis for decision-making and process control. Aligning with the broader goals of the circular economy and the United Nations (UN) sus...
Uložené v:
| Vydané v: | IEEE sensors journal Ročník 24; číslo 10; s. 17140 - 17158 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
15.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing pipelines as a basis for decision-making and process control. Aligning with the broader goals of the circular economy and the United Nations (UN) sustainable development goals (SDG), our work leverages noninvasive analysis methods utilizing RGB and hyperspectral (HS) imaging data to provide both quantitative and qualitative insights into the E-waste stream composition for optimizing recycling efficiency. In this article, we introduce "PCB-Vision," a pioneering RGB-HS printed circuit board (PCB) benchmark dataset, comprising 53 RGB images of high spatial resolution paired with their corresponding high spectral resolution HS data cubes in the visible and near-infrared (VNIR) range. Grounded in open science principles, our dataset provides a comprehensive resource for researchers through high-quality ground truths, focusing on three primary PCB components: integrated circuits (ICs), capacitors, and connectors. We provide extensive statistical investigations on the proposed dataset together with the performance of several state-of-the-art (SOTA) models, including U-Net, Attention U-Net, Residual U-Net, LinkNet, and DeepLabv3+. By openly sharing this multiscene benchmark dataset along with the baseline codes, we hope to foster transparent, traceable, and comparable developments of advanced data processing across various scientific communities, including, but not limited to, computer vision and remote sensing. Emphasizing our commitment to supporting a collaborative and inclusive scientific community, all materials, including code, data, ground truth, and masks, will be accessible at https://github.com/hifexplo/PCBVision . |
|---|---|
| AbstractList | Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing pipelines as a basis for decision-making and process control. Aligning with the broader goals of the circular economy and the United Nations (UN) sustainable development goals (SDG), our work leverages noninvasive analysis methods utilizing RGB and hyperspectral (HS) imaging data to provide both quantitative and qualitative insights into the E-waste stream composition for optimizing recycling efficiency. In this article, we introduce “PCB-Vision,” a pioneering RGB-HS printed circuit board (PCB) benchmark dataset, comprising 53 RGB images of high spatial resolution paired with their corresponding high spectral resolution HS data cubes in the visible and near-infrared (VNIR) range. Grounded in open science principles, our dataset provides a comprehensive resource for researchers through high-quality ground truths, focusing on three primary PCB components: integrated circuits (ICs), capacitors, and connectors. We provide extensive statistical investigations on the proposed dataset together with the performance of several state-of-the-art (SOTA) models, including U-Net, Attention U-Net, Residual U-Net, LinkNet, and DeepLabv3+. By openly sharing this multiscene benchmark dataset along with the baseline codes, we hope to foster transparent, traceable, and comparable developments of advanced data processing across various scientific communities, including, but not limited to, computer vision and remote sensing. Emphasizing our commitment to supporting a collaborative and inclusive scientific community, all materials, including code, data, ground truth, and masks, will be accessible at https://github.com/hifexplo/PCBVision . |
| Author | Lorenz, Sandra Gloaguen, Richard Ghamisi, Pedram Fuchs, Margret Rasti, Behnood Arbash, Elias |
| Author_xml | – sequence: 1 givenname: Elias orcidid: 0009-0000-2187-9171 surname: Arbash fullname: Arbash, Elias email: arbash.elias2@gmail.com organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany – sequence: 2 givenname: Margret surname: Fuchs fullname: Fuchs, Margret organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany – sequence: 3 givenname: Behnood orcidid: 0000-0002-1091-9841 surname: Rasti fullname: Rasti, Behnood organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany – sequence: 4 givenname: Sandra orcidid: 0000-0001-8464-2331 surname: Lorenz fullname: Lorenz, Sandra organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany – sequence: 5 givenname: Pedram orcidid: 0000-0003-1203-741X surname: Ghamisi fullname: Ghamisi, Pedram organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany – sequence: 6 givenname: Richard orcidid: 0000-0002-4383-473X surname: Gloaguen fullname: Gloaguen, Richard organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg, Germany |
| BookMark | eNp9kD1PwzAQhi1UJNrCD0BisMScYsdx7LA1pbSgAhUfFVvkOhfhUpJgO0P_PYnaATEw3Q333Hv3DFCvrEpA6JySEaUkubp_mT6OQhJGI8YkkWF8hPqUcxlQEcle1zMSREy8n6CBcxtCaCK46KPVcpIGK-NMVV7jMX5ott44DSXg51kazHc1WFeD9lZtcQql_vhS9hPfKK8ceFwVeGlN6SHHE2N1YzxOK2Vzd4qOC7V1cHaoQ_R2O32dzIPF0-xuMl4EmjHhg3VCIy5FkQDnWiVhyGKVcC5iTbWM1xFnhShiCSHXBELBCsXy9vSCaSpoLtdsiC73e2tbfTfgfLapGlu2kRkjnNM4YYK3U3Q_pW3lnIUiq61pH9lllGSdvqzTl3X6soO-lhF_GG288q2n1oXZ_kte7EkDAL-SIslDnrAfTCd9sQ |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_3390_ma17194707 crossref_primary_10_1016_j_optlastec_2025_112522 crossref_primary_10_1016_j_rineng_2025_106437 crossref_primary_10_1016_j_wasman_2025_02_047 |
| Cites_doi | 10.3390/s21165595 10.1016/j.jclepro.2017.02.004 10.1016/j.rser.2015.06.010 10.1109/whispers61460.2023.10431074 10.1016/j.jclepro.2015.12.042 10.1007/s00170-021-07325-7 10.48550/arXiv.1802.02611 10.1038/s41598-019-54045-w 10.1109/IGARSS52108.2023.10282872 10.1109/CVPR.2016.91 10.1109/MVA.2015.7153209 10.1109/VCIP.2017.8305148 10.3390/info11020125 10.1109/ACCESS.2023.3245093 10.1109/MSP.2013.2279507 10.1080/10408398.2011.651542 10.1109/LGRS.2019.2918719 10.1109/LGRS.2018.2802944 10.1109/IECON.2014.7049016 10.1109/CVPR.2016.308 10.1016/j.jhazmat.2009.02.104 10.1186/s40537-019-0197-0 10.3390/min11111292 10.1016/j.rse.2023.113856 10.3390/app11188424 10.1016/j.oregeorev.2021.104252 10.1109/TGRS.2022.3215209 10.1016/j.wasman.2014.06.003 10.1049/trit.2019.0019 10.1080/05704928.2013.838678 10.1016/j.talanta.2014.11.019 10.3390/s21154968 10.1109/INDIN.2013.6622858 10.1109/JSEN.2020.2996757 10.3390/electronics9091547 10.1109/INDIN.2013.6622859 10.1080/15732470801945930 10.1016/j.jclepro.2011.07.005 10.3390/s23052499 10.1016/j.compag.2009.06.007 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2024.3380826 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 17158 |
| ExternalDocumentID | 10_1109_JSEN_2024_3380826 10485259 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Regional Development Fund (EFRE) funderid: 10.13039/501100008530 – fundername: EIT RawMaterials through the project RAMSES-4-CE grantid: KIC RM 19262 – fundername: Land of Saxony through the project CirculAIre |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS ESBDL F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c337t-b914587f9e55ca92236a95576c1c86b453f7f68e25c0e273fa3d001f3c171d8b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001267414900089&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:11:41 EDT 2025 Tue Nov 18 22:43:57 EST 2025 Sat Nov 29 06:39:58 EST 2025 Wed Aug 27 02:05:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-b914587f9e55ca92236a95576c1c86b453f7f68e25c0e273fa3d001f3c171d8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8464-2331 0000-0003-1203-741X 0000-0002-4383-473X 0009-0000-2187-9171 0000-0002-1091-9841 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10485259 |
| PQID | 3055169375 |
| PQPubID | 75733 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2024_3380826 proquest_journals_3055169375 ieee_primary_10485259 crossref_citationtrail_10_1109_JSEN_2024_3380826 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-15 |
| PublicationDateYYYYMMDD | 2024-05-15 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Lu (ref11) 2020 ref15 Nguyen (ref45) 2023 Oktay (ref49) 2018 Jahanshahi (ref18) 2009; 5 ref52 ref10 (ref6) 2023 Ronneberger (ref47) ref17 Perez (ref54) 2017 ref19 Ren (ref41); 28 ref51 ref50 Buslaev (ref53) 2020; 11 ref46 ref48 ref42 ref44 Forti (ref4) 2020 ref8 ref7 ref9 Mehta (ref12) 2022 ref3 Krizhevsky (ref33); 25 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref32 Tang (ref14) 2019 ref2 ref1 ref39 ref38 Huang (ref13) 2019 Mahalingam (ref16) ref24 ref23 ref26 ref25 ref20 (ref43) 2018 ref22 ref21 ref27 ref29 Carvalho (ref28) 2015; 134 |
| References_xml | – ident: ref27 doi: 10.3390/s21165595 – volume-title: Resource Efficiency Waste year: 2018 ident: ref43 – ident: ref1 doi: 10.1016/j.jclepro.2017.02.004 – ident: ref3 doi: 10.1016/j.rser.2015.06.010 – volume-title: Anylabeling: Effortless AI-Assisted Data Labeling With AI Support From YOLO, Segment Anything, Mobilesam!! year: 2023 ident: ref45 – ident: ref46 doi: 10.1109/whispers61460.2023.10431074 – ident: ref5 doi: 10.1016/j.jclepro.2015.12.042 – ident: ref10 doi: 10.1007/s00170-021-07325-7 – ident: ref48 doi: 10.48550/arXiv.1802.02611 – year: 2019 ident: ref13 article-title: A PCB dataset for defects detection and classification publication-title: arXiv:1901.08204 – ident: ref7 doi: 10.1038/s41598-019-54045-w – ident: ref42 doi: 10.1109/IGARSS52108.2023.10282872 – ident: ref25 doi: 10.1109/CVPR.2016.91 – ident: ref15 doi: 10.1109/MVA.2015.7153209 – ident: ref51 doi: 10.1109/VCIP.2017.8305148 – volume: 28 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref41 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – volume-title: The global e-waste monitor 2020: Quantities, flows and the circular economy potential year: 2020 ident: ref4 – volume-title: Sustainable Development Goals (SDGS) year: 2023 ident: ref6 – volume: 11 start-page: 125 issue: 2 year: 2020 ident: ref53 article-title: Albumentations: Fast and flexible image augmentations publication-title: Information doi: 10.3390/info11020125 – ident: ref9 doi: 10.1109/ACCESS.2023.3245093 – ident: ref26 doi: 10.1109/MSP.2013.2279507 – ident: ref35 doi: 10.1080/10408398.2011.651542 – ident: ref37 doi: 10.1109/LGRS.2019.2918719 – ident: ref50 doi: 10.1109/LGRS.2018.2802944 – ident: ref21 doi: 10.1109/IECON.2014.7049016 – ident: ref34 doi: 10.1109/CVPR.2016.308 – ident: ref8 doi: 10.1016/j.jhazmat.2009.02.104 – ident: ref52 doi: 10.1186/s40537-019-0197-0 – ident: ref30 doi: 10.3390/min11111292 – ident: ref40 doi: 10.1016/j.rse.2023.113856 – year: 2017 ident: ref54 article-title: The effectiveness of data augmentation in image classification using deep learning publication-title: arXiv:1712.04621 – ident: ref32 doi: 10.3390/app11188424 – ident: ref44 doi: 10.1016/j.oregeorev.2021.104252 – ident: ref39 doi: 10.1109/TGRS.2022.3215209 – ident: ref29 doi: 10.1016/j.wasman.2014.06.003 – ident: ref23 doi: 10.1049/trit.2019.0019 – ident: ref36 doi: 10.1080/05704928.2013.838678 – volume: 134 start-page: 278 year: 2015 ident: ref28 article-title: Laser-induced breakdown spectroscopy (LIBS) combined with hyperspectral imaging for the evaluation of printed circuit board composition publication-title: Talanta doi: 10.1016/j.talanta.2014.11.019 – ident: ref22 doi: 10.3390/s21154968 – year: 2019 ident: ref14 article-title: Online PCB defect detector on a new PCB defect dataset publication-title: arXiv:1902.06197 – start-page: 234 volume-title: Proc. 18th Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. (MICCAI) ident: ref47 article-title: U-net: Convolutional networks for biomedical image segmentation – ident: ref19 doi: 10.1109/INDIN.2013.6622858 – ident: ref31 doi: 10.1109/JSEN.2020.2996757 – ident: ref24 doi: 10.3390/electronics9091547 – ident: ref20 doi: 10.1109/INDIN.2013.6622859 – volume: 5 start-page: 455 issue: 6 year: 2009 ident: ref18 article-title: A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732470801945930 – ident: ref2 doi: 10.1016/j.jclepro.2011.07.005 – year: 2018 ident: ref49 article-title: Attention U-net: Learning where to look for the pancreas publication-title: arXiv:1804.03999 – start-page: 1 volume-title: Proc. 16th Int. Conf. Mach. Vis. Appl. (MVA) ident: ref16 article-title: PCB-METAL: A PCB image dataset for advanced computer vision machine learning component analysis – volume: 25 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref33 article-title: ImageNet classification with deep convolutional neural networks – ident: ref38 doi: 10.3390/s23052499 – start-page: 924 year: 2022 ident: ref12 article-title: FICS PCB X-ray: A dataset for automated printed circuit board inter-layers inspection – ident: ref17 doi: 10.1016/j.compag.2009.06.007 – year: 2020 ident: ref11 article-title: FICS-PCB: A multi-modal image dataset for automated printed circuit board visual inspection |
| SSID | ssj0019757 |
| Score | 2.433343 |
| Snippet | Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17140 |
| SubjectTerms | Automated data processing Benchmarks Circuit boards circular economy Color imagery Computer vision Connectors conveyor belt Cubes Data processing dataset Datasets deep learning (DL) digitalization Electronic waste electronic waste (E-waste) hyperspectral (HS) Hyperspectral imaging Inspection Integrated circuits machine learning (ML) open-source data Optical sensors PCBVision printed circuit board (PCB) Printed circuits Process controls Qualitative analysis Recycling Remote sensing RGB Sensors Spatial resolution Spectral resolution Sustainable development Waste management |
| Title | PCB-Vision: A Multiscene RGB-Hyperspectral Benchmark Dataset of Printed Circuit Boards |
| URI | https://ieeexplore.ieee.org/document/10485259 https://www.proquest.com/docview/3055169375 |
| Volume | 24 |
| WOSCitedRecordID | wos001267414900089&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB01qBJwoC0fIhAqH3qq5HQ3Xq9tbiSFoqqKogJRbqtdfygRkKBlg8S_Z-xdIhCiUm97sEcrP9szY_u9AfimnRIqVZwKm_ujG-lojn6DaqFtT5rcsSBfPP4jhkM5mahRQ1YPXBhrbXh8Zrv-M9zlm4Ve-qMyXOGJ5Bivt6AlhKjJWqsrAyWCrCeu4IgmTEyaK8w4Uj9-X5wOMRXsJV1MyNDnpa-cUKiq8mYrDv7l7NN__tln2GoCSXJSI_8FPtj5Nmy-kBfchvWmwvn0cQfGo0GfjgOR_JickMC79UJOlvz91afnmI3WpMsSbfZx5k5v8_Ka_Mwr9HIVWTgyKr2yhCGDWamXs4r0F56utQtXZ6eXg3Pa1FSgmjFR0ULFCZfCKcu5zhUGB2muOCYdOtYyLRLOnHCptD2uI4uhjcuZwcF1TMciNrJge7A2X8ztPpDIWcOEtExxTLJdUSQ2NcyYVKH51MRtiJ4HOdON4Live3GThcQjUpnHJfO4ZA0ubfi-6nJXq238q_GuB-JFwxqDNnSeocyaBXmfeWEzrzsj-ME73Q5hw1v3LwNi3oG1qlzaI_ioHxCO8muYa0_i4M9A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6CgsR2GAM6UQabD5yQDEkdx_ZubQd0W6mqjVW9RYl_CLTRTlk6if9-z05AoGlI3HKwncifnfeen7_vARxqp4RKFafC5v7oRjqao92gWmjblSZ3LMgXT0diPJazmZo0ZPXAhbHWhstn9tg_hly-WeilPyrDHZ5Ijv76KqzxJOnGNV3rPmmgRBD2xD0c0YSJWZPEjCN18vnb6RiDwW5yjCEZWr30kRkKdVX--RkHC3O2-cxvew2vGleS9Grst2DFzrfh5QOBwW3YaGqcX93uwHQy6NNpoJJ_ID0SmLdeysmSr-d9OsR4tKZdljhmH9fu1U1e_iAf8wrtXEUWjkxKry1hyOC61MvrivQXnrDVhu9np5eDIW2qKlDNmKhooeKES-GU5VznCt2DNFccww4da5kWCWdOuFTaLteRRefG5czg5DqmYxEbWbA30Jov5nYXSOSsYUJapjiG2a4oEpsaZkyqcPjUxB2I7iY5043kuK988TMLoUekMo9L5nHJGlw6cHTf5Vett_FU47YH4kHDGoMO7N9BmTVb8nfmpc288ozge__p9h42hpcXo2z0afzlLbzwb_L3BGK-D62qXNoDWNd_EJryXVh3fwHWVdKH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PCB-Vision%3A+A+Multiscene+RGB-Hyperspectral+Benchmark+Dataset+of+Printed+Circuit+Boards&rft.jtitle=IEEE+sensors+journal&rft.au=Arbash%2C+Elias&rft.au=Fuchs%2C+Margret&rft.au=Rasti%2C+Behnood&rft.au=Lorenz%2C+Sandra&rft.date=2024-05-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=10&rft.spage=17140&rft_id=info:doi/10.1109%2FJSEN.2024.3380826&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |