Increasing the Accuracy of Soil Nutrient Prediction by Improving Genetic Algorithm Backpropagation Neural Networks

Soil nutrient prediction has been eliciting increasing attention in agricultural production. Backpropagation (BP) neural networks have demonstrated remarkable ability in many prediction scenarios. However, directly utilizing BP neural networks in soil nutrient prediction may not yield promising resu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Symmetry (Basel) Ročník 15; číslo 1; s. 151
Hlavní autori: Liu, Yanqing, Jiang, Cuiqing, Lu, Cuiping, Wang, Zhao, Che, Wanliu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.01.2023
Predmet:
ISSN:2073-8994, 2073-8994
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Soil nutrient prediction has been eliciting increasing attention in agricultural production. Backpropagation (BP) neural networks have demonstrated remarkable ability in many prediction scenarios. However, directly utilizing BP neural networks in soil nutrient prediction may not yield promising results due to the random assignment of initial weights and thresholds and the tendency to fall into local extreme points. In this study, a BP neural network model optimized by an improved genetic algorithm (IGA) was proposed to predict soil nutrient time series with high accuracy. First, the crossover and mutation operations of the genetic algorithm (GA) were improved. Next, the IGA was used to optimize the BP model. The symmetric nature of the model lies in its feedforward and feedback connections, i.e., the same weights must be used for the forward and backward passes. An empirical evaluation was performed using annual soil nutrient data from China. Soil pH, total nitrogen, organic matter, fast-acting potassium, and effective phosphorus were selected as evaluation indicators. The prediction results of the IGA–BP, GA–BP, and BP neural network models were compared and analyzed. For the IGA–BP prediction model, the coefficient of determination for soil pH was 0.8, while those for total nitrogen, organic matter, fast-acting potassium, and effective phosphorus were all greater than 0.98, exhibiting a strong generalization ability. The root-mean-square errors of the IGA–BP prediction models were reduced to 50% of the BP models. The results indicated that the IGA–BP method can accurately predict soil nutrient content for future time series.
AbstractList Soil nutrient prediction has been eliciting increasing attention in agricultural production. Backpropagation (BP) neural networks have demonstrated remarkable ability in many prediction scenarios. However, directly utilizing BP neural networks in soil nutrient prediction may not yield promising results due to the random assignment of initial weights and thresholds and the tendency to fall into local extreme points. In this study, a BP neural network model optimized by an improved genetic algorithm (IGA) was proposed to predict soil nutrient time series with high accuracy. First, the crossover and mutation operations of the genetic algorithm (GA) were improved. Next, the IGA was used to optimize the BP model. The symmetric nature of the model lies in its feedforward and feedback connections, i.e., the same weights must be used for the forward and backward passes. An empirical evaluation was performed using annual soil nutrient data from China. Soil pH, total nitrogen, organic matter, fast-acting potassium, and effective phosphorus were selected as evaluation indicators. The prediction results of the IGA-BP, GA-BP, and BP neural network models were compared and analyzed. For the IGA-BP prediction model, the coefficient of determination for soil pH was 0.8, while those for total nitrogen, organic matter, fast-acting potassium, and effective phosphorus were all greater than 0.98, exhibiting a strong generalization ability. The root-mean-square errors of the IGA-BP prediction models were reduced to 50% of the BP models. The results indicated that the IGA-BP method can accurately predict soil nutrient content for future time series.
Audience Academic
Author Jiang, Cuiqing
Wang, Zhao
Che, Wanliu
Liu, Yanqing
Lu, Cuiping
Author_xml – sequence: 1
  givenname: Yanqing
  surname: Liu
  fullname: Liu, Yanqing
– sequence: 2
  givenname: Cuiqing
  surname: Jiang
  fullname: Jiang, Cuiqing
– sequence: 3
  givenname: Cuiping
  surname: Lu
  fullname: Lu, Cuiping
– sequence: 4
  givenname: Zhao
  surname: Wang
  fullname: Wang, Zhao
– sequence: 5
  givenname: Wanliu
  surname: Che
  fullname: Che, Wanliu
BookMark eNptkUtPAyEUhYnRxKpd-QdIXJpRGIZ5LGvjo0lTTdT1hGEuFTsDFRhN_73UumiMsIDA-Q73cE_QobEGEDqn5Iqxilz7TU85oYRyeoBGKSlYUlZVdri3P0Zj799JHJzwLCcj5GZGOhBemyUOb4AnUg5OyA22Cj9b3eHFEJwGE_CTg1bLoK3BzQbP-rWzn1vqHgwELfGkW1qnw1uPb4Rcxdu1WIof-QKiZXSC8GXdyp-hIyU6D-Pf9RS93t2-TB-S-eP9bDqZJ5KxIiRN3hQijUW2jFPWZnnDGLRNyRuVgySkpFQKXkmhlMgYxNxVlVOu2ibPGVOCnaKLnW-s5WMAH-p3OzgTn6zTIi_SsiKERtXVTrUUHdTaKBti_jhb6LWMP6x0PJ8UPKVZWbAiAnQHSGe9d6BqqcNP0Ajqrqak3raj3mtHZC7_MGune-E2_6q_AargjpI
CitedBy_id crossref_primary_10_3390_buildings14030641
crossref_primary_10_1016_j_chemolab_2024_105289
crossref_primary_10_1016_j_jrmge_2025_02_027
crossref_primary_10_1016_j_procs_2025_07_184
crossref_primary_10_1002_jpln_202300310
crossref_primary_10_3390_su16198598
crossref_primary_10_1002_fes3_477
crossref_primary_10_1108_IJSI_07_2024_0104
crossref_primary_10_1109_ACCESS_2025_3547255
crossref_primary_10_3233_IDT_240423
crossref_primary_10_3390_sym15071397
crossref_primary_10_2118_223123_PA
crossref_primary_10_1002_ael2_20134
crossref_primary_10_32604_csse_2023_038912
crossref_primary_10_1109_ACCESS_2024_3452710
crossref_primary_10_3390_math11102274
Cites_doi 10.1016/j.jterra.2013.04.002
10.3390/app11115235
10.3390/s18103408
10.1016/j.compag.2018.05.012
10.3390/rs12020215
10.1007/s00521-016-2707-8
10.1142/S0218126619500038
10.1016/j.energy.2017.03.094
10.1016/j.biosystemseng.2006.05.011
10.1016/j.compag.2020.105860
10.3390/s18082674
10.1007/s10705-017-9870-x
10.1016/j.compag.2008.05.021
10.1016/j.compeleceng.2017.02.016
10.1016/j.chaos.2015.05.032
10.1166/jctn.2015.4188
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym15010151
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID A752148737
10_3390_sym15010151
GeographicLocations China
Anhui China
GeographicLocations_xml – name: China
– name: Anhui China
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c337t-b6b7a2460d3513d46b33edb85bf6ec00811ca59caffa43e10199615fdb6633fa3
IEDL.DBID BENPR
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918899400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Fri Jul 25 11:51:27 EDT 2025
Tue Nov 04 17:47:39 EST 2025
Sat Nov 29 07:09:59 EST 2025
Tue Nov 18 21:51:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-b6b7a2460d3513d46b33edb85bf6ec00811ca59caffa43e10199615fdb6633fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2767289001?pq-origsite=%requestingapplication%
PQID 2767289001
PQPubID 2032326
ParticipantIDs proquest_journals_2767289001
gale_infotracacademiconefile_A752148737
crossref_citationtrail_10_3390_sym15010151
crossref_primary_10_3390_sym15010151
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_4) 2020; 43
Meng (ref_25) 2020; 89
ref_11
Tian (ref_1) 2016; 5
Ning (ref_23) 2018; 54
Hengl (ref_9) 2017; 109
Fang (ref_2) 2018; 11
Zhang (ref_26) 2016; 10
Zheng (ref_22) 2015; 12
ref_16
Shi (ref_7) 2021; 180
Chlingaryan (ref_5) 2018; 151
Beyki (ref_21) 2015; 77
Liu (ref_18) 2011; 5
Li (ref_12) 2017; 28
Dong (ref_24) 2010; 47
Jian (ref_28) 2017; 60
Li (ref_17) 2017; 48
Jahn (ref_3) 2006; 94
Kim (ref_14) 2008; 64
Saeedi (ref_10) 2019; 28
Li (ref_19) 2014; 134
Cross (ref_15) 2013; 50
Shcn (ref_20) 2015; 37
ref_8
Zhang (ref_27) 2021; 32
ref_6
Zeng (ref_13) 2017; 127
References_xml – volume: 50
  start-page: 165
  year: 2013
  ident: ref_15
  article-title: Estimating terrain parameters for a rigid wheeled rover using neural networks
  publication-title: J. Terrach
  doi: 10.1016/j.jterra.2013.04.002
– volume: 32
  start-page: 1423
  year: 2021
  ident: ref_27
  article-title: Binocular camera calibration using improved genetic algorithm to optimize neural network
  publication-title: China Mech. Eng.
– ident: ref_11
  doi: 10.3390/app11115235
– ident: ref_16
  doi: 10.3390/s18103408
– volume: 151
  start-page: 61
  year: 2018
  ident: ref_5
  article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.05.012
– ident: ref_8
  doi: 10.3390/rs12020215
– volume: 28
  start-page: 613
  year: 2017
  ident: ref_12
  article-title: Rule-based back propagation neural networks for various precision rough set presented KANSEI knowledge prediction: A case study on shoe product form features extraction
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2707-8
– volume: 28
  start-page: 1950003
  year: 2019
  ident: ref_10
  article-title: Feed-forward back-propagation neural networks in side-channel information characterization
  publication-title: J. Circuits Syst. Comput.
  doi: 10.1142/S0218126619500038
– volume: 5
  start-page: 12
  year: 2011
  ident: ref_18
  article-title: Fuzzy comprehensive fertility evaluation based on BP artificial network
  publication-title: J. Chin. Soil Fertil.
– volume: 48
  start-page: 292
  year: 2017
  ident: ref_17
  article-title: Research on soil moisture forecast model based on BP neural network-a case study at feidong county
  publication-title: Chin. J. Soil Sci.
– volume: 10
  start-page: 1566
  year: 2016
  ident: ref_26
  article-title: Water quality prediction method based on IGA-BP
  publication-title: Chin. J. Environ. Eng.
– volume: 127
  start-page: 381
  year: 2017
  ident: ref_13
  article-title: Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.094
– volume: 94
  start-page: 505
  year: 2006
  ident: ref_3
  article-title: Mid-infrared spectroscopic determination of soil nitrate content
  publication-title: J. Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2006.05.011
– volume: 89
  start-page: 22
  year: 2020
  ident: ref_25
  article-title: Identification of the shear parameters for lunar regolith based on a GA-BP neural network
  publication-title: J. Terramechanics
– volume: 180
  start-page: 105860
  year: 2021
  ident: ref_7
  article-title: Rice nitrogen nutrition estimation with RGB images and machine learning methods
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105860
– ident: ref_6
  doi: 10.3390/s18082674
– volume: 134
  start-page: 111
  year: 2014
  ident: ref_19
  article-title: An SA–GA–BP neural network-based color correction algorithm for TCM tongue images
  publication-title: Neuro Comput.
– volume: 37
  start-page: 36
  year: 2015
  ident: ref_20
  article-title: Forecast of amount of farmland irrigation based on BP neutral network
  publication-title: J. Agric. Mech. Res.
– volume: 109
  start-page: 77
  year: 2017
  ident: ref_9
  article-title: Soil nutrient maps of sub-saharan africa: Assessment of soil nutrient content at 250 m spatial resolution using machine learning
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-017-9870-x
– volume: 64
  start-page: 268
  year: 2008
  ident: ref_14
  article-title: Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.05.021
– volume: 60
  start-page: 58
  year: 2017
  ident: ref_28
  article-title: An improved back propagation neural network prediction model for subsurface drip irrigation system
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.02.016
– volume: 5
  start-page: 110
  year: 2016
  ident: ref_1
  article-title: Improving soil fertility and building sustainable agriculture
  publication-title: Tu Rang Fei Liao
– volume: 43
  start-page: 4
  year: 2020
  ident: ref_4
  article-title: Design of soil nutrient content prediction model based on big data statistics
  publication-title: Mod. Electron. Tech.
– volume: 54
  start-page: 54
  year: 2018
  ident: ref_23
  article-title: Research of adaptive genetic neural network algorithm in soil moisture prediction
  publication-title: Comput. Eng. Appl.
– volume: 11
  start-page: 28
  year: 2018
  ident: ref_2
  article-title: Precision agriculture: Development benefits, international experience and China’s practice
  publication-title: Agric. Econ.
– volume: 47
  start-page: 42
  year: 2010
  ident: ref_24
  article-title: Study on soil available zinc with GA-RBF neural network based spatial interpolation method
  publication-title: Acta Pedol. Sin.
– volume: 77
  start-page: 247
  year: 2015
  ident: ref_21
  article-title: Chaotic logic gate: A new approach in set and design by genetic algorithm
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2015.05.032
– volume: 12
  start-page: 2846
  year: 2015
  ident: ref_22
  article-title: Fault diagnosis research for servo valve based on GA-BP neural network
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2015.4188
SSID ssj0000505460
Score 2.3479314
Snippet Soil nutrient prediction has been eliciting increasing attention in agricultural production. Backpropagation (BP) neural networks have demonstrated remarkable...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 151
SubjectTerms Accuracy
Agricultural production
Algorithms
Analysis
Back propagation
Back propagation networks
Corn
Crops
Empirical analysis
Genetic algorithms
Irrigation
Machine learning
Moisture content
Neural networks
Nitrogen
Nutrients
Organic matter
Phosphorus
Potassium
Prediction models
Soil acidity
Soil chemistry
Soils
Time series
Water quality
Title Increasing the Accuracy of Soil Nutrient Prediction by Improving Genetic Algorithm Backpropagation Neural Networks
URI https://www.proquest.com/docview/2767289001
Volume 15
WOSCitedRecordID wos000918899400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5B2cNeeC2I8pIPSLBIEU3tJM0JFVQE0m4UwYLgFNmODRWlhaQg9cJvZ6ZxC0hoL1xyiB1n5M-el8czADuxVUbIXHu-jmNPSBN7yudouAplVWCUyMe3XK_-REnSur6OU-dwK11Y5YQnjhl1PtDkIz9oRmFEh2IN__DxyaOqUXS66kpozMIcZSoTNZg76iTp-dTLQnXaRNioLuZxtO8PytED6kC4EAP_kyj6miGPpczJwnfpW4R5p1-ydrUglmDG9Jdhye3gku25NNO_f0GBrIEi0lF2MdQCWVvr50LqERtYdjHo9lhCifpRJrG0oNMcQpCpEZu6IRiNhb9h7d4tUjK8e2BHUt9jKzKpMeCMUn8gNUkVa16uwOVJ59_xqecqMHia82joqVBFsokTmPPA57kIFecmV61A2dBoUid8LYNYS2ul4AZnFc0nP7C5QkWGW8lXodYf9M0aMOFLofCjPOBokgZCxk3NUVezTRW3TIPXYX8CRqZdenKqktHL0Ewh5LIPyNVhZ9r5scrK8XW3XUI1o72KY2nprhwgRZT1KmtHqLygxcajOmxOUM3cJi6zd0jX_9-8AT-pCn3lmdmE2rB4NlvwQ78Mu2Wx7dbkNoWVXtDztYPv0rO_6c0bIDDx8Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9swED-xMmm8sMGGKLDND6B9SBFN7CT1A5q6D0RFiSqNTewpsx0bEKWFpAz1n-Jv5K5Juk1CvPHAs52LHf9yn747gE3ptBUqM55vpPSEstLTPkfDVWinQ6tFNs1y_dmLk6R9dCT7c3BT58LQtcqaJ04ZdTYy5CPfDuIopqBYy_90celR1yiKrtYtNEpY7NvJNZpsxU73K57vVhDsfjv8sudVXQU8w3k89nSkYxWIqJXx0OeZiDTnNtPtULvIGhKRvlGhNMo5JbhFyKJJ4Icu0yicuVMc6T6BeYFgbzdgvt896P-aeXWoLxySLhMBOZet7WJyjjoXUgn9_0Tf3QJgKtV2nz-27_ECFiv9mXVKwC_BnB0uw1LFoQr2viqj_eEl5Mj66MY9ymaGWi7rGHOVKzNhI8e-j04HLKFGBChzWT-naBUhlOkJm7lZGNHC17DO4Bh3Pj45Z5-VOcNRZMJTQDMqbYKrScq79MUr-PEge1-BxnA0tKvAhK-ExoeykKPJHQolA8NRF3WBlm3b4k34WB9-aqry69QFZJCiGUZISf9BShM2Z5Mvyqojd097RyhKiRchLaOqlApcEVX1SjsxKmdokfK4CRs1itKKSRXpXwit3T_8Fp7tHR700l432V-HhQD1vNILtQGNcX5lX8NT82d8WuRvqv-Bwe-HhtwtnIVL2A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH8CNqFdYDAmurHhA2gbUtQmdpL6ME3doBoCRZXYJm6Z7disWmkhKUP91_jreC8f3ZAQNw4723mxk5_fl98HwI502gqVGc83UnpCWelpn6PhKrTTodUiK7NcfxzHSdI9PZWDBbhpcmEorLLhiSWjziaGfOTtII5iuhTr-G1Xh0UM9vufLi496iBFN61NO40KIkd2do3mW_HxcB__9W4Q9A--ffnq1R0GPMN5PPV0pGMViKiT8dDnmYg05zbT3VC7yBoSl75RoTTKOSW4RfiieeCHLtMoqLlTHOkuwpNYoJ5Qhg2ezP071CEOCVcpgZzLTruYnaP2hTRC_44QvF8UlPKtv_o_f5nnsFJr1axXHYM1WLDjdVir-VbB3tfFtT-8gBwZIsXho8RmqPuynjFXuTIzNnHsZDIcsYTaE6AkZoOc7rAIt0zP2Nz5wogWvob1Rme48-mvc_ZZmd84iqy5hDmjgie4mqSKsC824Puj7P0lLI0nY7sJTPhKaHwoCzka4qFQMjAcNVQXaNm1Hd6CvQYIqamLslNvkFGKxhmhJv0HNS3YmU--qGqR3D_tHSEqJQ6FtIyqEy1wRVTrK-3FqLKhncrjFmw1iEpr1lWkf-H06uHhbVhGnKXHh8nRa3gWoPJXuaa2YGmaX9k38NT8mQ6L_G15MBj8fGy83QLG2VMf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+the+Accuracy+of+Soil+Nutrient+Prediction+by+Improving+Genetic+Algorithm+Backpropagation+Neural+Networks&rft.jtitle=Symmetry+%28Basel%29&rft.au=Liu%2C+Yanqing&rft.au=Jiang%2C+Cuiqing&rft.au=Lu%2C+Cuiping&rft.au=Wang%2C+Zhao&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=15&rft.issue=1&rft_id=info:doi/10.3390%2Fsym15010151&rft.externalDocID=A752148737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon