Applying quantum autoencoders for time series anomaly detection

Anomaly detection is an important problem with applications in various domains such as fraud detection, pattern recognition, or medical diagnosis. Several algorithms have been introduced using classical computing approaches. However, using quantum computing for solving anomaly detection problems in...

Full description

Saved in:
Bibliographic Details
Published in:Quantum machine intelligence Vol. 7; no. 1
Main Authors: Frehner, Robin, Stockinger, Kurt
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.06.2025
Subjects:
ISSN:2524-4906, 2524-4914
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Anomaly detection is an important problem with applications in various domains such as fraud detection, pattern recognition, or medical diagnosis. Several algorithms have been introduced using classical computing approaches. However, using quantum computing for solving anomaly detection problems in time series data is a widely unexplored research field. This paper explores the application of quantum autoencoders to time series anomaly detection. We investigate two primary techniques for classifying anomalies: (1) Analyzing the reconstruction error generated by the quantum autoencoder and (2) latent representation analysis. Our simulated experimental results, conducted across various ansaetze, demonstrate that quantum autoencoders consistently outperform classical deep learning-based autoencoders across multiple datasets. Specifically, quantum autoencoders achieve superior anomaly detection performance while utilizing 60–230 times fewer parameters and requiring five times fewer training iterations. In addition, we implement our quantum encoder on real quantum hardware. Our experimental results demonstrate that quantum autoencoders achieve anomaly detection performance on par with their simulated counterparts.
AbstractList Anomaly detection is an important problem with applications in various domains such as fraud detection, pattern recognition, or medical diagnosis. Several algorithms have been introduced using classical computing approaches. However, using quantum computing for solving anomaly detection problems in time series data is a widely unexplored research field. This paper explores the application of quantum autoencoders to time series anomaly detection. We investigate two primary techniques for classifying anomalies: (1) Analyzing the reconstruction error generated by the quantum autoencoder and (2) latent representation analysis. Our simulated experimental results, conducted across various ansaetze, demonstrate that quantum autoencoders consistently outperform classical deep learning-based autoencoders across multiple datasets. Specifically, quantum autoencoders achieve superior anomaly detection performance while utilizing 60–230 times fewer parameters and requiring five times fewer training iterations. In addition, we implement our quantum encoder on real quantum hardware. Our experimental results demonstrate that quantum autoencoders achieve anomaly detection performance on par with their simulated counterparts.
ArticleNumber 59
Author Frehner, Robin
Stockinger, Kurt
Author_xml – sequence: 1
  givenname: Robin
  surname: Frehner
  fullname: Frehner, Robin
  email: frehner.robin@gmail.com
  organization: Zurich University of Applied Sciences
– sequence: 2
  givenname: Kurt
  surname: Stockinger
  fullname: Stockinger, Kurt
  organization: Zurich University of Applied Sciences
BookMark eNp9kD1PwzAQhi0EEqX0DzD5Dxj8ldqZUFXxJVVigdlynHOVKrGL7Qz996QUMTD0lrvhfU53zw26DDEAQneM3jNK1UOWXGpJKK8IpVxXhF2gGa-4JLJm8vJvpstrtMh5R6eUElLT5Qw9rvb7_tCFLf4abSjjgO1YIgQXW0gZ-5hw6QbAGVIHGdsQB9sfcAsFXOliuEVX3vYZFr99jj6fnz7Wr2Tz_vK2Xm2IE0IV0nBZtVooy2njLYATSgguGk2V9pWQlFtPxbG8ktCIuqpbrmu3bFvPGuvEHOnTXpdizgm8cV2xxwtKsl1vGDVHF-bkwkwuzI8LwyaU_0P3qRtsOpyHxAnKUzhsIZldHFOYXjxHfQPsWnPY
CitedBy_id crossref_primary_10_1007_s11227_025_07714_9
Cites_doi 10.1038/s41598-023-38558-z
10.1063/5.0082975
10.1109/TSMC.2020.2968516
10.1145/3444690
10.1088/2058-9565/abe458
10.1109/ACCESS.2024.3371891
10.1103/PhysRevA.109.032623
10.1109/JIOT.2019.2958185
10.1038/s41467-021-22539-9
10.1145/2689746.2689747
10.1109/ACCESS.2023.3236409
10.1109/ACCESS.2021.3107975
10.1007/s42484-022-00075-z
10.1038/s41467-023-36159-y
10.1038/s41586-023-06096-3
10.21203/rs.3.rs-2310685/v1
10.1140/epjqt/s40507-021-00091-1
10.1088/2632-2153/ac0616
10.1103/physrevresearch.4.023136
10.1088/2058-9565/aa8072
10.1103/PhysRevD.105.095004
10.1038/s41467-018-07090-4
10.1007/s42484-023-00112-5
10.1007/s42484-023-00133-0
10.1145/3665225.3665444
10.3390/e25030427
10.1109/TKDE.2021.3112126
ContentType Journal Article
Copyright The Author(s) 2025
Copyright_xml – notice: The Author(s) 2025
DBID C6C
AAYXX
CITATION
DOI 10.1007/s42484-025-00285-1
DatabaseName SpringerOpen
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2524-4914
ExternalDocumentID 10_1007_s42484_025_00285_1
GrantInformation_xml – fundername: ZHAW Zurich University of Applied Sciences
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIGIU
AILAN
AITGF
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ATHPR
AXYYD
AYFIA
BGNMA
C6C
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABRTQ
CITATION
ID FETCH-LOGICAL-c337t-b245d837a20bfaeec373323b8078f53402af033333f74eb3959d289c6ddf1bac3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001482754500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2524-4906
IngestDate Tue Nov 18 22:32:07 EST 2025
Sat Nov 29 07:48:22 EST 2025
Fri Jun 27 01:51:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Quantum computing
Quantum machine learning
Time series anomaly detection
Quantum autoencoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-b245d837a20bfaeec373323b8078f53402af033333f74eb3959d289c6ddf1bac3
OpenAccessLink https://link.springer.com/10.1007/s42484-025-00285-1
ParticipantIDs crossref_citationtrail_10_1007_s42484_025_00285_1
crossref_primary_10_1007_s42484_025_00285_1
springer_journals_10_1007_s42484_025_00285_1
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Quantum machine intelligence
PublicationTitleAbbrev Quantum Mach. Intell
PublicationYear 2025
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References 285_CR14
285_CR12
285_CR13
285_CR18
X Vasques (285_CR27) 2023; 13
Y Zhu (285_CR32) 2023; 5
285_CR17
RDM Simões (285_CR26) 2023; 11
285_CR5
H-Y Huang (285_CR11) 2021; 12
285_CR1
285_CR2
AA Cook (285_CR7) 2020; 7
285_CR21
K Choi (285_CR6) 2021; 9
JR McClean (285_CR19) 2018; 9
285_CR22
285_CR20
MP Cuéllar (285_CR8) 2023; 5
285_CR25
S Jerbi (285_CR15) 2023; 14
285_CR24
C Bravo-Prieto (285_CR4) 2021; 2
285_CR28
C Yin (285_CR31) 2022; 52
F Bova (285_CR3) 2021; 8
J Romero (285_CR23) 2017; 2
J Wu (285_CR29) 2024; 109
S Foulds (285_CR9) 2021; 6
285_CR10
Y Kim (285_CR16) 2023; 618
285_CR30
References_xml – volume: 13
  start-page: 11541
  issue: 1
  year: 2023
  ident: 285_CR27
  publication-title: Sci Reports
  doi: 10.1038/s41598-023-38558-z
– ident: 285_CR5
  doi: 10.1063/5.0082975
– volume: 52
  start-page: 112
  issue: 1
  year: 2022
  ident: 285_CR31
  publication-title: IEEE Trans Syst, Man, Cybernet: Syst
  doi: 10.1109/TSMC.2020.2968516
– ident: 285_CR2
  doi: 10.1145/3444690
– volume: 6
  issue: 3
  year: 2021
  ident: 285_CR9
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/abe458
– ident: 285_CR10
  doi: 10.1109/ACCESS.2024.3371891
– volume: 109
  year: 2024
  ident: 285_CR29
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.109.032623
– volume: 7
  start-page: 6481
  issue: 7
  year: 2020
  ident: 285_CR7
  publication-title: IEEE Int Things J
  doi: 10.1109/JIOT.2019.2958185
– volume: 12
  start-page: 2631
  issue: 1
  year: 2021
  ident: 285_CR11
  publication-title: Nature Commun
  doi: 10.1038/s41467-021-22539-9
– ident: 285_CR25
  doi: 10.1145/2689746.2689747
– volume: 11
  start-page: 6197
  year: 2023
  ident: 285_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3236409
– volume: 9
  start-page: 120043
  year: 2021
  ident: 285_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3107975
– ident: 285_CR13
– ident: 285_CR24
  doi: 10.1007/s42484-022-00075-z
– volume: 14
  start-page: 517
  issue: 1
  year: 2023
  ident: 285_CR15
  publication-title: Nature Commun
  doi: 10.1038/s41467-023-36159-y
– volume: 618
  start-page: 500
  issue: 7965
  year: 2023
  ident: 285_CR16
  publication-title: Nature
  doi: 10.1038/s41586-023-06096-3
– ident: 285_CR1
  doi: 10.21203/rs.3.rs-2310685/v1
– volume: 8
  start-page: 2
  issue: 1
  year: 2021
  ident: 285_CR3
  publication-title: EPJ Quantum Technol
  doi: 10.1140/epjqt/s40507-021-00091-1
– volume: 2
  issue: 3
  year: 2021
  ident: 285_CR4
  publication-title: Mach Learning: Sci Technol
  doi: 10.1088/2632-2153/ac0616
– ident: 285_CR20
  doi: 10.1103/physrevresearch.4.023136
– volume: 2
  issue: 4
  year: 2017
  ident: 285_CR23
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/aa8072
– ident: 285_CR21
  doi: 10.1103/PhysRevD.105.095004
– volume: 9
  start-page: 4812
  issue: 1
  year: 2018
  ident: 285_CR19
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07090-4
– volume: 5
  start-page: 27
  issue: 2
  year: 2023
  ident: 285_CR32
  publication-title: Q Mach Intell
  doi: 10.1007/s42484-023-00112-5
– ident: 285_CR14
– ident: 285_CR12
– volume: 5
  start-page: 45
  issue: 2
  year: 2023
  ident: 285_CR8
  publication-title: Q Mach Intell
  doi: 10.1007/s42484-023-00133-0
– ident: 285_CR22
  doi: 10.1103/PhysRevD.105.095004
– ident: 285_CR17
  doi: 10.1145/3665225.3665444
– ident: 285_CR18
– ident: 285_CR28
  doi: 10.3390/e25030427
– ident: 285_CR30
  doi: 10.1109/TKDE.2021.3112126
SSID ssj0002734806
Score 2.3072138
Snippet Anomaly detection is an important problem with applications in various domains such as fraud detection, pattern recognition, or medical diagnosis. Several...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Artificial Intelligence
Computational Intelligence
Engineering
Quantum Information Technology
Research Article
Spintronics
Title Applying quantum autoencoders for time series anomaly detection
URI https://link.springer.com/article/10.1007/s42484-025-00285-1
Volume 7
WOSCitedRecordID wos001482754500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2524-4914
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734806
  issn: 2524-4906
  databaseCode: RSV
  dateStart: 20190501
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EPejBt1hf7MGbLjT7aDYnEbF4KuKL3sI-QWhTbRPBf-_sNgkWpKA5T0IyO5OZb3fmG4QulEi1sFaS1ICTc0jBiYIoRSDSS2m4ZF76OGwiHQzkcJg91E1hs6bavTmSjH_qttmNUy45CeNXA1AQBDDPGoQ7Gdzx8em13VmJhC1xqCYVlBOedXt1t8zvj1mMSIvHoTHK9Lf_9347aKvOKvHN3Ax20Yor9tDmD67BfXQd8s3Q04Q_KtBmNcaqKieBxjKUMmPIXXGYM4-DSboZVsVkrEZf2LoyFmsVB-ilf_d8e0_q6QnEMJaWRFMuLMBPRbvaK-cMSxmjTAeCeS8Y4EbluyxcPuUAqTORWUBfpmetT7Qy7BCtFpPCHSHsmXE6y7S0WnEHi8h9zyVCGmngQ2naQUmjwdzU1OJhwsUob0mRo3JyUE4elZMnHXTZ3vM-J9ZYKn3VKD2vnWy2RPz4b-InaIPGdQubK6dotZxW7gytm8_ybTY9j9b1DZCGx3o
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yBfXBuzivefBNA2sua_okIo6Jc4hO2VtJ0gSErdO1Ffz3JllbHMhA-5yW9stJz_mSc74DwLlgoWRJwlGo7CKnNgRHwnopZD0954pyYrjxzSbCfp8Ph9FjWRSWVdnu1ZGk_1PXxW4UU06Ra7_qiAJDlvMsU-uxXCLf0_NrvbPiBVt8U03MMEU0arXLapnfHzPvkeaPQ72X6Wz-7_22wEYZVcLrmRlsgyWd7oD1H1qDu-DKxZuupgl-FBbNYgxFkU-cjKVLZYY2doWuzzx0JqkzKNLJWIy-YKJzn6yV7oGXzu3gpovK7glIERLmSGLKEks_BW5JI7RWJCQEE-kE5g0jljcK0yLuMiG1lDpiUWLZl2oniQmkUGQfNNJJqg8ANERpGUWSJ1JQbSeRmrYOGFdc2Q_FYRMEFYKxKqXFXYeLUVyLIntwYgtO7MGJgya4qO95nwlrLBx9WYEel4ssWzD88G_Dz8Bqd_DQi3t3_fsjsIb9HLqNlmPQyKeFPgEr6jN_y6an3tK-AfRGyl4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRfTBuzivefBNw9Zc1vRJRB2KMgZe2FvJFYStm1sr-O9Nsq5sIILY59PQniSc8yXnfB8A54LFkmnNUazcJqcuBUfCRSnkIj3ninJiuQ1iE3Gnw3u9pDvXxR-q3WdXktOeBs_SlOWNkbaNqvGNYsop8lKsHjQw5PDPMvWiQR6vP79VpyyBvCUIbGKGKaJJs1V2zvw8zGJ0WrwaDRGnvfn_b90CG2W2Ca-ny2MbLJlsB6zPcRDugiufh_peJ_hROC8XAyiKfOjpLX2JM3Q5LfT689AvVTOBIhsORP8LapOHIq5sD7y2715u7lGpqoAUIXGOJKZMO1gqcFNaYYwiMSGYSE88bxlxeFLYJvGPjamD2glLtENlqqW1jaRQZB_UsmFmDgC0RBmZJJJrKahxk0tty0SMK67cj-K4DqKZN1NVUo575Yt-WpElB-ekzjlpcE4a1cFF9c5oSrjxq_XlbALScvNNfjE__Jv5GVjt3rbTp4fO4xFYw2EK_fnLMajl48KcgBX1mb9Pxqdh0X0DNXTTQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+quantum+autoencoders+for+time+series+anomaly+detection&rft.jtitle=Quantum+machine+intelligence&rft.au=Frehner%2C+Robin&rft.au=Stockinger%2C+Kurt&rft.date=2025-06-01&rft.pub=Springer+International+Publishing&rft.issn=2524-4906&rft.eissn=2524-4914&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1007%2Fs42484-025-00285-1&rft.externalDocID=10_1007_s42484_025_00285_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-4906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-4906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-4906&client=summon