In-situ sensor calibration in an operational air-handling unit coupling autoencoder and Bayesian inference

•This paper figures out limitations of the existing in-situ sensor calibration in an operational air-handling unit (AHU).•An advanced in-situ sensor calibration method is proposed by coupling autoencoder and Bayesian inference.•A three-step strategy to construct autoencoder input variables is sugges...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy and buildings Ročník 221; s. 110026
Hlavný autor: Yoon, Sungmin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Lausanne Elsevier B.V 15.08.2020
Elsevier BV
Predmet:
ISSN:0378-7788, 1872-6178
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •This paper figures out limitations of the existing in-situ sensor calibration in an operational air-handling unit (AHU).•An advanced in-situ sensor calibration method is proposed by coupling autoencoder and Bayesian inference.•A three-step strategy to construct autoencoder input variables is suggested with a new distance function to reach good calibration performance in various faulty conditions.•The faulty AHU operation is returned by the in-situ calibration to the normal operation, which results in the system energy savings. Sensor errors have a considerable influence on the system operation and energy usage in an air handling unit. Sensor fault detection and diagnosis (SFDD) has been widely studied to handle the impacts of sensor errors on an air-handling unit (AHU). Beyond the SFDD, in-situ calibration can correct the faulty sensor (especially for systematic errors) automatically in field, thereby reducing the energy waste. In this study, we propose an advanced in-situ sensor calibration named virtual in-situ calibration in an operational AHU. The suggested method is intended to overcome the challenges of previous in-situ calibration methods by coupling the Bayesian inference and autoencoder. In a given sensor calibration domain of an AHU, based on the unsupervised learning neural network feature trained to duplicate their input variables, the autoencoder-coupled calibration can produce system and sensor models effectively without additional sensors and assumptions, which are the main limitations of the earlier methods. It improves the calibration performance and applicability in the AHU. In addition, a three-step strategy to construct autoencoder input variables and a new distance function to achieve successful calibration under various faulty conditions is proposed. In a case study, where the error in the cooling coil supply temperature (+2 °C) caused a total energy increase of 38%, the present method is shown to eliminate the sensor error and the energy waste completely. These results show the capabilities and potentials of the suggested method in the self-repair, diagnostics, and automation of a building energy sector.
AbstractList •This paper figures out limitations of the existing in-situ sensor calibration in an operational air-handling unit (AHU).•An advanced in-situ sensor calibration method is proposed by coupling autoencoder and Bayesian inference.•A three-step strategy to construct autoencoder input variables is suggested with a new distance function to reach good calibration performance in various faulty conditions.•The faulty AHU operation is returned by the in-situ calibration to the normal operation, which results in the system energy savings. Sensor errors have a considerable influence on the system operation and energy usage in an air handling unit. Sensor fault detection and diagnosis (SFDD) has been widely studied to handle the impacts of sensor errors on an air-handling unit (AHU). Beyond the SFDD, in-situ calibration can correct the faulty sensor (especially for systematic errors) automatically in field, thereby reducing the energy waste. In this study, we propose an advanced in-situ sensor calibration named virtual in-situ calibration in an operational AHU. The suggested method is intended to overcome the challenges of previous in-situ calibration methods by coupling the Bayesian inference and autoencoder. In a given sensor calibration domain of an AHU, based on the unsupervised learning neural network feature trained to duplicate their input variables, the autoencoder-coupled calibration can produce system and sensor models effectively without additional sensors and assumptions, which are the main limitations of the earlier methods. It improves the calibration performance and applicability in the AHU. In addition, a three-step strategy to construct autoencoder input variables and a new distance function to achieve successful calibration under various faulty conditions is proposed. In a case study, where the error in the cooling coil supply temperature (+2 °C) caused a total energy increase of 38%, the present method is shown to eliminate the sensor error and the energy waste completely. These results show the capabilities and potentials of the suggested method in the self-repair, diagnostics, and automation of a building energy sector.
Sensor errors have a considerable influence on the system operation and energy usage in an air handling unit. Sensor fault detection and diagnosis (SFDD) has been widely studied to handle the impacts of sensor errors on an air-handling unit (AHU). Beyond the SFDD, in-situ calibration can correct the faulty sensor (especially for systematic errors) automatically in field, thereby reducing the energy waste. In this study, we propose an advanced in-situ sensor calibration named virtual in-situ calibration in an operational AHU. The suggested method is intended to overcome the challenges of previous in-situ calibration methods by coupling the Bayesian inference and autoencoder. In a given sensor calibration domain of an AHU, based on the unsupervised learning neural network feature trained to duplicate their input variables, the autoencoder-coupled calibration can produce system and sensor models effectively without additional sensors and assumptions, which are the main limitations of the earlier methods. It improves the calibration performance and applicability in the AHU. In addition, a three-step strategy to construct autoencoder input variables and a new distance function to achieve successful calibration under various faulty conditions is proposed. In a case study, where the error in the cooling coil supply temperature (+2 °C) caused a total energy increase of 38%, the present method is shown to eliminate the sensor error and the energy waste completely. These results show the capabilities and potentials of the suggested method in the self-repair, diagnostics, and automation of a building energy sector.
ArticleNumber 110026
Author Yoon, Sungmin
Author_xml – sequence: 1
  givenname: Sungmin
  surname: Yoon
  fullname: Yoon, Sungmin
  email: syoon@inu.ac.kr
  organization: Division of Architecture and Urban Design, Incheon National University, Incheon 22012, Korea
BookMark eNqFkE1LxDAQhoMouH78BCHguWvSpkmKB9HFLxC86DmkyVRTarImqbD_3tZ68uJpmMk8L5PnCO374AGhM0rWlFB-0a_Bt6Mb7Lok5TSjhJR8D62oFGXBqZD7aEUqIQshpDxERyn1hBBeC7pC_aMvkssjTuBTiNjowbVRZxc8dh5rj8MWll4PWLtYvGtvB-ff8OhdxiaM259OjzmAN8FCnCiLb_QOktNzSgdxeoETdNDpIcHpbz1Gr3e3L5uH4un5_nFz_VSYqhK50IbYBpjpOlE3DCSVlhjOuWiatm6FFdzIjjNNqSyhY0LYtpJCEMtqDrXtqmN0vuRuY_gcIWXVhzFO5ydVMkZYUxEup63LZcvEkFKEThmXf_6Zo3aDokTNclWvfuWqWa5a5E50_YfeRveh4-5f7mrhYBLw5SCqZNwsx7oIJisb3D8J37tMmnw
CitedBy_id crossref_primary_10_1016_j_buildenv_2025_113040
crossref_primary_10_1016_j_enbuild_2023_112949
crossref_primary_10_1016_j_ijrefrig_2025_03_010
crossref_primary_10_1016_j_enbuild_2021_111735
crossref_primary_10_1016_j_jobe_2023_107021
crossref_primary_10_1016_j_jobe_2023_108230
crossref_primary_10_1016_j_enbuild_2021_111673
crossref_primary_10_1016_j_enbuild_2022_112766
crossref_primary_10_1016_j_autcon_2023_105261
crossref_primary_10_1016_j_enbuild_2021_111059
crossref_primary_10_1016_j_aei_2023_102239
crossref_primary_10_1016_j_autcon_2022_104578
crossref_primary_10_3390_app14010052
crossref_primary_10_1016_j_rineng_2024_102170
crossref_primary_10_1016_j_autcon_2022_104648
crossref_primary_10_1016_j_buildenv_2023_110652
crossref_primary_10_1016_j_enbuild_2023_113274
crossref_primary_10_1080_23744731_2023_2170683
crossref_primary_10_1109_TIM_2025_3556179
crossref_primary_10_1007_s12273_022_0935_7
crossref_primary_10_1016_j_apenergy_2022_119864
crossref_primary_10_1016_j_jobe_2023_107237
crossref_primary_10_1016_j_enbuild_2024_115197
crossref_primary_10_1016_j_enbuild_2025_115452
crossref_primary_10_3390_s22145348
crossref_primary_10_1016_j_jobe_2022_105559
crossref_primary_10_1016_j_apenergy_2021_117458
crossref_primary_10_1016_j_enbuild_2021_110733
crossref_primary_10_1016_j_enbuild_2022_112317
crossref_primary_10_1016_j_buildenv_2025_113595
crossref_primary_10_3390_s20236950
crossref_primary_10_1016_j_enbuild_2021_111709
crossref_primary_10_1016_j_energy_2024_131314
crossref_primary_10_1016_j_applthermaleng_2024_124000
crossref_primary_10_1016_j_buildenv_2023_110960
crossref_primary_10_1016_j_buildenv_2021_108066
crossref_primary_10_1016_j_jobe_2021_103500
crossref_primary_10_3390_s24041150
crossref_primary_10_3390_en15041394
crossref_primary_10_1016_j_jobe_2025_113761
crossref_primary_10_1016_j_buildenv_2023_110161
crossref_primary_10_1016_j_energy_2022_124915
crossref_primary_10_3390_en15124366
crossref_primary_10_3390_s24041157
crossref_primary_10_1016_j_enbuild_2025_115760
crossref_primary_10_1016_j_scs_2021_103514
crossref_primary_10_1007_s12273_025_1327_6
crossref_primary_10_1016_j_energy_2021_120515
Cites_doi 10.1016/j.enconman.2003.12.008
10.1109/31.192419
10.1016/j.enbuild.2018.04.017
10.1016/j.autcon.2016.06.005
10.1016/j.enbuild.2013.12.038
10.1016/j.enbuild.2019.06.014
10.1016/j.ijrefrig.2019.07.018
10.1016/j.apenergy.2017.05.153
10.1080/10789669.2005.10391123
10.1016/S0042-6989(97)00169-7
10.1016/j.sna.2008.10.003
10.1016/j.neucom.2018.05.040
10.1007/s12273-018-0475-3
10.1016/j.measurement.2009.09.008
10.1080/10789669.2005.10391133
10.1016/j.buildenv.2017.01.013
10.1016/j.snb.2013.06.037
10.1016/j.enbuild.2014.06.042
10.1016/j.autcon.2016.10.008
10.1016/j.snb.2015.03.071
10.1016/j.buildenv.2014.12.004
10.1016/j.autcon.2015.08.003
10.1016/j.buildenv.2018.11.026
10.1016/j.enbuild.2018.04.043
10.1016/j.neucom.2016.12.038
10.1016/j.measurement.2014.10.037
10.1016/j.applthermaleng.2015.09.121
10.1016/j.apenergy.2017.12.077
10.1007/3-540-36978-3_20
10.1016/j.rser.2016.10.072
10.1080/10789669.2011.543250
10.1016/j.enbuild.2017.09.009
10.3390/s19112528
10.1016/j.snb.2011.08.079
10.1016/j.apenergy.2017.12.005
10.1016/j.buildenv.2013.11.016
10.1016/j.optlaseng.2014.11.009
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Aug 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 15, 2020
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2020.110026
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
ExternalDocumentID 10_1016_j_enbuild_2020_110026
S0378778819339878
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
~HD
7ST
8FD
AGCQF
C1K
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c337t-ac0d9e4cff7594e818d0c666799b5b7d76c8f64a1182ef477db38770d456e5df3
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542372900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7788
IngestDate Wed Aug 13 05:06:36 EDT 2025
Sat Nov 29 07:14:16 EST 2025
Tue Nov 18 22:12:18 EST 2025
Fri Feb 23 02:47:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sensors
Fault detection and diagnosis (FDD)
Bayesian inference
AutoEncoder
Virtual in-situ calibration (VIC)
Air-handling unit
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-ac0d9e4cff7594e818d0c666799b5b7d76c8f64a1182ef477db38770d456e5df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2440493068
PQPubID 2045483
ParticipantIDs proquest_journals_2440493068
crossref_citationtrail_10_1016_j_enbuild_2020_110026
crossref_primary_10_1016_j_enbuild_2020_110026
elsevier_sciencedirect_doi_10_1016_j_enbuild_2020_110026
PublicationCentury 2000
PublicationDate 2020-08-15
PublicationDateYYYYMMDD 2020-08-15
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Yoon, Yu (bib0028) 2017; 73
Zhao, Wen, Xiao, Yang, Wang (bib0017) 2017; 111
Geng, Yang, Chen, Wu (bib0022) 2015; 216
Wang, Wua, Zhen, Yang, Xi, Chen (bib0026) 2015; 62
Wang, Yoon, Wang, Yu (bib0032) 2019; 198
Katipamula, Brambley (bib0014) 2005; 11
Olshausenand, Field (bib0043) 1997; 37
Zhang, Hong (bib0011) 2017; 202
Afram, Janabi-Sharifi (bib0002) 2014; 72
Aste, Manfren, Marenzi (bib0001) 2017; 75
Wang, Xiao (bib0015) 2004; 45
Yoon, Yu (bib0033) 2018; 172
Geng, Yang, Li, Wu (bib0021) 2013; 188
Kollias, Anastassiou (bib0042) 1989; 36
Hu, Chang, Hsu (bib0024) 2009; 149
Yang, Zheng, Wu, Yang (bib0037) 2019; 19
Fisher, Moses, Willsky (bib0020) 2004
Fan, Xiao, Zhao, Wang (bib0035) 2018; 211
Wang, Zhang, Yoon, Yu (bib0009) 2019; 148
Bychkovskiy, Megerian, Estrin, Potkonjak (bib0019) 2003; 263
Yu, Li, Yu, Xiong (bib0007) 2011; 17
Xu, Cao, Song, Zhang, Liu, Alsaadi (bib0036) 2018; 311
Du, Fan, Chi, Jin (bib0016) 2014; 72
Pereira, Silveira (bib0034) 2018
Cheung, Braun (bib0012) 2015
Yoon, Seo, Cho, Song (bib0039) 2015; 85
Yu, Li (bib0006) 2015; 59
Liu, Xu, Guo, Chen (bib0004) 2019; 107
Lim, Zhai (bib0038) 2017; 115
Liu, Wang, Liu, Zeng, Liu, Alsaadi (bib0040) 2016; 234
Katipamula, Brambley (bib0013) 2005; 11
Zexiao, Weitong, Zhiwei, Ming (bib0025) 2010; 43
Yu, Woradechjumroen, Yu (bib0003) 2014; 82
Basarkar, Pang, Wang, Haves, Hong (bib0010) 2011
Zhou, Ye, Chai, Wang, Chen (bib0027) 2015; 67
Yoon, Yu (bib0031) 2018; 170
Yoon, Yu, Wang, Wang (bib0008) 2019; 12
Yan, Ma, Kokogiannakis, Zhao (bib0018) 2016; 70
Yoon (bib0005) 2018
Zhang, Tian, Kadri, Xiao, Li, Pan, Zhou (bib0023) 2011; 160
Xu, Cao, Song, Zhang, Liu, Alsaadi (bib0044) 2018; 311
Yoon, Yu (bib0029) 2017; 115
Yoon, Yu (bib0030) 2018; 212
(bib0041) 2019
Olshausenand (10.1016/j.enbuild.2020.110026_bib0043) 1997; 37
Yoon (10.1016/j.enbuild.2020.110026_bib0029) 2017; 115
Fisher (10.1016/j.enbuild.2020.110026_bib0020) 2004
Yoon (10.1016/j.enbuild.2020.110026_bib0008) 2019; 12
Zhang (10.1016/j.enbuild.2020.110026_bib0011) 2017; 202
Hu (10.1016/j.enbuild.2020.110026_bib0024) 2009; 149
Wang (10.1016/j.enbuild.2020.110026_bib0015) 2004; 45
Cheung (10.1016/j.enbuild.2020.110026_bib0012) 2015
Wang (10.1016/j.enbuild.2020.110026_bib0032) 2019; 198
Yoon (10.1016/j.enbuild.2020.110026_bib0033) 2018; 172
Bychkovskiy (10.1016/j.enbuild.2020.110026_bib0019) 2003; 263
Yoon (10.1016/j.enbuild.2020.110026_bib0039) 2015; 85
Kollias (10.1016/j.enbuild.2020.110026_bib0042) 1989; 36
Afram (10.1016/j.enbuild.2020.110026_bib0002) 2014; 72
Katipamula (10.1016/j.enbuild.2020.110026_bib0014) 2005; 11
Geng (10.1016/j.enbuild.2020.110026_bib0022) 2015; 216
Xu (10.1016/j.enbuild.2020.110026_bib0044) 2018; 311
Pereira (10.1016/j.enbuild.2020.110026_bib0034) 2018
Liu (10.1016/j.enbuild.2020.110026_bib0040) 2016; 234
Zexiao (10.1016/j.enbuild.2020.110026_bib0025) 2010; 43
Yan (10.1016/j.enbuild.2020.110026_bib0018) 2016; 70
Wang (10.1016/j.enbuild.2020.110026_bib0026) 2015; 62
Basarkar (10.1016/j.enbuild.2020.110026_bib0010) 2011
Fan (10.1016/j.enbuild.2020.110026_bib0035) 2018; 211
Lim (10.1016/j.enbuild.2020.110026_bib0038) 2017; 115
Yu (10.1016/j.enbuild.2020.110026_bib0003) 2014; 82
Zhang (10.1016/j.enbuild.2020.110026_bib0023) 2011; 160
Yoon (10.1016/j.enbuild.2020.110026_bib0005) 2018
Zhou (10.1016/j.enbuild.2020.110026_bib0027) 2015; 67
Yu (10.1016/j.enbuild.2020.110026_bib0007) 2011; 17
Yang (10.1016/j.enbuild.2020.110026_bib0037) 2019; 19
Zhao (10.1016/j.enbuild.2020.110026_bib0017) 2017; 111
Yoon (10.1016/j.enbuild.2020.110026_bib0028) 2017; 73
(10.1016/j.enbuild.2020.110026_bib0041) 2019
Yoon (10.1016/j.enbuild.2020.110026_bib0030) 2018; 212
Katipamula (10.1016/j.enbuild.2020.110026_bib0013) 2005; 11
Xu (10.1016/j.enbuild.2020.110026_bib0036) 2018; 311
Geng (10.1016/j.enbuild.2020.110026_bib0021) 2013; 188
Yu (10.1016/j.enbuild.2020.110026_bib0006) 2015; 59
Yoon (10.1016/j.enbuild.2020.110026_bib0031) 2018; 170
Liu (10.1016/j.enbuild.2020.110026_bib0004) 2019; 107
Wang (10.1016/j.enbuild.2020.110026_bib0009) 2019; 148
Aste (10.1016/j.enbuild.2020.110026_bib0001) 2017; 75
Du (10.1016/j.enbuild.2020.110026_bib0016) 2014; 72
References_xml – volume: 45
  start-page: 2667
  year: 2004
  end-page: 2686
  ident: bib0015
  article-title: Detection and diagnosis of AHU sensor faults using principal component analysis method
  publication-title: Energy Conserv. Manag.
– volume: 107
  start-page: 39
  year: 2019
  end-page: 51
  ident: bib0004
  article-title: A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction
  publication-title: Int. J. Refrig.
– year: 2019
  ident: bib0041
  article-title: EnergyPlus Documentation Engineering Reference Version 9.1
– volume: 202
  start-page: 178
  year: 2017
  end-page: 188
  ident: bib0011
  article-title: Modeling of HVAC operational faults in building performance simulation
  publication-title: Appl. Energy
– volume: 75
  start-page: 313
  year: 2017
  end-page: 330
  ident: bib0001
  article-title: Building automation and control systems and performance optimization: a framework for analysis
  publication-title: Renew. Sustain. Energy Rev.
– volume: 72
  start-page: 157
  year: 2014
  end-page: 166
  ident: bib0016
  article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks
  publication-title: Energy Build.
– volume: 160
  start-page: 899
  year: 2011
  end-page: 909
  ident: bib0023
  article-title: On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality
  publication-title: Sens. Actuators B
– volume: 43
  start-page: 190
  year: 2010
  end-page: 196
  ident: bib0025
  article-title: A novel approach for the field calibration of line structured-light sensors
  publication-title: Measurement
– volume: 11
  start-page: 3
  year: 2005
  end-page: 25
  ident: bib0013
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 1
  publication-title: HVAC&R Res.
– volume: 234
  start-page: 11
  year: 2016
  end-page: 26
  ident: bib0040
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 170
  start-page: 217
  year: 2018
  end-page: 228
  ident: bib0031
  article-title: Hidden factors and handling strategy for accuracy of virtual in-situ sensor calibration in building energy systems: sensitivity effect and reviving calibration
  publication-title: Energy Build.
– volume: 311
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0044
  article-title: Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network
  publication-title: Neurocomputing
– volume: 70
  start-page: 77
  year: 2016
  end-page: 88
  ident: bib0018
  article-title: A sensor fault detection strategy for air handling units using cluster analysis
  publication-title: Autom. Constr.
– volume: 85
  start-page: 253
  year: 2015
  end-page: 262
  ident: bib0039
  article-title: A calibration method for whole-building airflow simulation in high-rise residential buildings
  publication-title: Build. Environ.
– volume: 149
  start-page: 74
  year: 2009
  end-page: 80
  ident: bib0024
  article-title: Calibration and on-line data selection of multiple optical flow sensors for odometry applications
  publication-title: Sens. Actuators A
– volume: 211
  start-page: 1123
  year: 2018
  end-page: 1135
  ident: bib0035
  article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data
  publication-title: Appl. Energy
– volume: 19
  start-page: 2528
  year: 2019
  ident: bib0037
  article-title: Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network
  publication-title: Sensors
– volume: 36
  start-page: 1092
  year: 1989
  end-page: 1101
  ident: bib0042
  article-title: An adaptive least squares algorithm for the efficient training of artificial neural networks
  publication-title: IEEE Trans. Circ. Syst.
– year: 2015
  ident: bib0012
  article-title: Development of fault models for hybrid fault detection and diagnostics algorithm
  publication-title: National Renewable Energy Laboratory
– volume: 62
  start-page: 15
  year: 2015
  end-page: 24
  ident: bib0026
  article-title: A two-step calibration method of a large FOV binocular stereovision sensor for onsite measurement
  publication-title: Measurement
– volume: 82
  start-page: 550
  year: 2014
  end-page: 562
  ident: bib0003
  article-title: A review of fault detection and diagnosis methodologies on air-handling units
  publication-title: Energy Build.
– volume: 12
  start-page: 259
  year: 2019
  end-page: 271
  ident: bib0008
  article-title: Impacts of HVACR temperature sensor offsets on building energy performance and occupant thermal comfort
  publication-title: Build. Simul.
– volume: 11
  start-page: 169
  year: 2005
  end-page: 187
  ident: bib0014
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 2
  publication-title: HVAC&R Res.
– volume: 148
  start-page: 361
  year: 2019
  end-page: 371
  ident: bib0009
  article-title: Impact of uncertainties on the supervisory control performance of a hybrid cooling system in data center
  publication-title: Build. Environ.
– year: 2011
  ident: bib0010
  article-title: Modeling and simulation of HVAC faults in EnergyPlus
  publication-title: Proceedings of IBPSA Building Simulation International Conference
– volume: 216
  start-page: 321
  year: 2015
  end-page: 331
  ident: bib0022
  article-title: Gaussian process based modeling and experimental design for sensor calibration in drifting environments
  publication-title: Sens. Actuators B
– year: 2018
  ident: bib0034
  article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention
  publication-title: 7th IEEE International Conference on Machine Learning and Applications (ICMLA) At: Orlando
– volume: 17
  start-page: 31
  year: 2011
  end-page: 50
  ident: bib0007
  article-title: Virtual calibration of a supply air temperature sensor in rooftop air conditioning units
  publication-title: HVAC R Res.
– volume: 115
  start-page: 66
  year: 2017
  end-page: 75
  ident: bib0038
  article-title: Comprehensive evaluation of the influence of meta-models on Bayesian calibration
  publication-title: Energy Build.
– volume: 111
  start-page: 1272
  year: 2017
  end-page: 1286
  ident: bib0017
  article-title: Diagnostic Bayesian networks for diagnosing air handling units faults–part I: faults in dampers, fans, filters and sensors
  publication-title: Appl. Therm. Eng.
– volume: 73
  start-page: 20
  year: 2017
  end-page: 30
  ident: bib0028
  article-title: Extended virtual in-situ calibration method in building systems using Bayesian inference
  publication-title: Autom. Constr.
– volume: 72
  start-page: 343
  year: 2014
  end-page: 355
  ident: bib0002
  article-title: Theory and applications of HVAC control systems – a review of model predictive control (MPC)
  publication-title: Build. Envrion.
– volume: 59
  start-page: 59
  year: 2015
  end-page: 67
  ident: bib0006
  article-title: Virtual in-situ calibration method in building systems
  publication-title: Autom. Constr.
– volume: 115
  start-page: 54
  year: 2017
  end-page: 66
  ident: bib0029
  article-title: A quantitative comparison of statistical and deterministic methods on virtual in-situ calibration in building systems
  publication-title: Build. Environ.
– start-page: 26
  year: 2004
  end-page: 27
  ident: bib0020
  article-title: Nonparametric belief propagation for self-calibration in sensor networks
  publication-title: International Conference on Information Processing in Sensor Networks (IPSN) 04
– volume: 67
  start-page: 135
  year: 2015
  end-page: 144
  ident: bib0027
  article-title: Novel autonomous on-orbit calibration method for star sensors
  publication-title: Opt. Lasers Eng.
– volume: 212
  start-page: 1069
  year: 2018
  end-page: 1082
  ident: bib0030
  article-title: Hidden factors and handling strategies on virtual in-situ sensor calibration in building energy systems: prior information and cancellation effect
  publication-title: Appl. Energy
– volume: 311
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0036
  article-title: Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network
  publication-title: Neurocomputing
– volume: 188
  start-page: 440
  year: 2013
  end-page: 453
  ident: bib0021
  article-title: A bootstrapping-based statistical procedure for multivariate calibration of sensor arrays
  publication-title: Sens. Actuators B
– year: 2018
  ident: bib0005
  article-title: Virtual in-situ calibration for reliable and resilient sensing in building energy systems
  publication-title: The University of Nebraska - Lincoln
– volume: 263
  start-page: 301
  year: 2003
  end-page: 316
  ident: bib0019
  article-title: A collaborative approach to in-place sensor calibration
  publication-title: Lect. Notes Comput. Sci.
– volume: 172
  start-page: 22
  year: 2018
  end-page: 34
  ident: bib0033
  article-title: Strategies for virtual in-situ sensor calibration in building energy systems
  publication-title: Energy Build.
– volume: 37
  start-page: 3311
  year: 1997
  end-page: 3325
  ident: bib0043
  article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1
  publication-title: Vision Res.
– volume: 198
  start-page: 291
  year: 2019
  end-page: 304
  ident: bib0032
  article-title: Automated reviving calibration strategy for virtual in-situ sensor calibration in building energy systems: Sensitivity coefficient optimization
  publication-title: Energy Build.
– volume: 45
  start-page: 2667
  year: 2004
  ident: 10.1016/j.enbuild.2020.110026_bib0015
  article-title: Detection and diagnosis of AHU sensor faults using principal component analysis method
  publication-title: Energy Conserv. Manag.
  doi: 10.1016/j.enconman.2003.12.008
– volume: 36
  start-page: 1092
  issue: 8
  year: 1989
  ident: 10.1016/j.enbuild.2020.110026_bib0042
  article-title: An adaptive least squares algorithm for the efficient training of artificial neural networks
  publication-title: IEEE Trans. Circ. Syst.
  doi: 10.1109/31.192419
– volume: 170
  start-page: 217
  year: 2018
  ident: 10.1016/j.enbuild.2020.110026_bib0031
  article-title: Hidden factors and handling strategy for accuracy of virtual in-situ sensor calibration in building energy systems: sensitivity effect and reviving calibration
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.04.017
– volume: 70
  start-page: 77
  year: 2016
  ident: 10.1016/j.enbuild.2020.110026_bib0018
  article-title: A sensor fault detection strategy for air handling units using cluster analysis
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.06.005
– volume: 72
  start-page: 157
  year: 2014
  ident: 10.1016/j.enbuild.2020.110026_bib0016
  article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.12.038
– volume: 198
  start-page: 291
  year: 2019
  ident: 10.1016/j.enbuild.2020.110026_bib0032
  article-title: Automated reviving calibration strategy for virtual in-situ sensor calibration in building energy systems: Sensitivity coefficient optimization
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.06.014
– volume: 107
  start-page: 39
  year: 2019
  ident: 10.1016/j.enbuild.2020.110026_bib0004
  article-title: A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2019.07.018
– volume: 202
  start-page: 178
  year: 2017
  ident: 10.1016/j.enbuild.2020.110026_bib0011
  article-title: Modeling of HVAC operational faults in building performance simulation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.153
– volume: 11
  start-page: 3
  year: 2005
  ident: 10.1016/j.enbuild.2020.110026_bib0013
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 1
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2005.10391123
– volume: 37
  start-page: 3311
  year: 1997
  ident: 10.1016/j.enbuild.2020.110026_bib0043
  article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1
  publication-title: Vision Res.
  doi: 10.1016/S0042-6989(97)00169-7
– year: 2018
  ident: 10.1016/j.enbuild.2020.110026_bib0034
  article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention
– volume: 149
  start-page: 74
  year: 2009
  ident: 10.1016/j.enbuild.2020.110026_bib0024
  article-title: Calibration and on-line data selection of multiple optical flow sensors for odometry applications
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2008.10.003
– volume: 311
  start-page: 1
  year: 2018
  ident: 10.1016/j.enbuild.2020.110026_bib0036
  article-title: Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.040
– volume: 12
  start-page: 259
  issue: 2
  year: 2019
  ident: 10.1016/j.enbuild.2020.110026_bib0008
  article-title: Impacts of HVACR temperature sensor offsets on building energy performance and occupant thermal comfort
  publication-title: Build. Simul.
  doi: 10.1007/s12273-018-0475-3
– volume: 43
  start-page: 190
  year: 2010
  ident: 10.1016/j.enbuild.2020.110026_bib0025
  article-title: A novel approach for the field calibration of line structured-light sensors
  publication-title: Measurement
  doi: 10.1016/j.measurement.2009.09.008
– volume: 11
  start-page: 169
  year: 2005
  ident: 10.1016/j.enbuild.2020.110026_bib0014
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 2
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2005.10391133
– volume: 115
  start-page: 54
  year: 2017
  ident: 10.1016/j.enbuild.2020.110026_bib0029
  article-title: A quantitative comparison of statistical and deterministic methods on virtual in-situ calibration in building systems
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.01.013
– volume: 188
  start-page: 440
  year: 2013
  ident: 10.1016/j.enbuild.2020.110026_bib0021
  article-title: A bootstrapping-based statistical procedure for multivariate calibration of sensor arrays
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2013.06.037
– volume: 82
  start-page: 550
  year: 2014
  ident: 10.1016/j.enbuild.2020.110026_bib0003
  article-title: A review of fault detection and diagnosis methodologies on air-handling units
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.06.042
– volume: 73
  start-page: 20
  year: 2017
  ident: 10.1016/j.enbuild.2020.110026_bib0028
  article-title: Extended virtual in-situ calibration method in building systems using Bayesian inference
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.10.008
– volume: 216
  start-page: 321
  year: 2015
  ident: 10.1016/j.enbuild.2020.110026_bib0022
  article-title: Gaussian process based modeling and experimental design for sensor calibration in drifting environments
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2015.03.071
– volume: 85
  start-page: 253
  year: 2015
  ident: 10.1016/j.enbuild.2020.110026_bib0039
  article-title: A calibration method for whole-building airflow simulation in high-rise residential buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.12.004
– volume: 59
  start-page: 59
  year: 2015
  ident: 10.1016/j.enbuild.2020.110026_bib0006
  article-title: Virtual in-situ calibration method in building systems
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.08.003
– volume: 148
  start-page: 361
  year: 2019
  ident: 10.1016/j.enbuild.2020.110026_bib0009
  article-title: Impact of uncertainties on the supervisory control performance of a hybrid cooling system in data center
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.11.026
– year: 2011
  ident: 10.1016/j.enbuild.2020.110026_bib0010
  article-title: Modeling and simulation of HVAC faults in EnergyPlus
– volume: 172
  start-page: 22
  year: 2018
  ident: 10.1016/j.enbuild.2020.110026_bib0033
  article-title: Strategies for virtual in-situ sensor calibration in building energy systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.04.043
– volume: 234
  start-page: 11
  year: 2016
  ident: 10.1016/j.enbuild.2020.110026_bib0040
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– start-page: 26
  year: 2004
  ident: 10.1016/j.enbuild.2020.110026_bib0020
  article-title: Nonparametric belief propagation for self-calibration in sensor networks
– volume: 62
  start-page: 15
  year: 2015
  ident: 10.1016/j.enbuild.2020.110026_bib0026
  article-title: A two-step calibration method of a large FOV binocular stereovision sensor for onsite measurement
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.10.037
– volume: 111
  start-page: 1272
  year: 2017
  ident: 10.1016/j.enbuild.2020.110026_bib0017
  article-title: Diagnostic Bayesian networks for diagnosing air handling units faults–part I: faults in dampers, fans, filters and sensors
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.09.121
– volume: 212
  start-page: 1069
  year: 2018
  ident: 10.1016/j.enbuild.2020.110026_bib0030
  article-title: Hidden factors and handling strategies on virtual in-situ sensor calibration in building energy systems: prior information and cancellation effect
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.077
– volume: 263
  start-page: 301
  year: 2003
  ident: 10.1016/j.enbuild.2020.110026_bib0019
  article-title: A collaborative approach to in-place sensor calibration
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/3-540-36978-3_20
– volume: 75
  start-page: 313
  year: 2017
  ident: 10.1016/j.enbuild.2020.110026_bib0001
  article-title: Building automation and control systems and performance optimization: a framework for analysis
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.10.072
– year: 2018
  ident: 10.1016/j.enbuild.2020.110026_bib0005
  article-title: Virtual in-situ calibration for reliable and resilient sensing in building energy systems
– volume: 17
  start-page: 31
  issue: 1
  year: 2011
  ident: 10.1016/j.enbuild.2020.110026_bib0007
  article-title: Virtual calibration of a supply air temperature sensor in rooftop air conditioning units
  publication-title: HVAC R Res.
  doi: 10.1080/10789669.2011.543250
– volume: 115
  start-page: 66
  year: 2017
  ident: 10.1016/j.enbuild.2020.110026_bib0038
  article-title: Comprehensive evaluation of the influence of meta-models on Bayesian calibration
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.09.009
– volume: 19
  start-page: 2528
  issue: 11
  year: 2019
  ident: 10.1016/j.enbuild.2020.110026_bib0037
  article-title: Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network
  publication-title: Sensors
  doi: 10.3390/s19112528
– year: 2019
  ident: 10.1016/j.enbuild.2020.110026_bib0041
– volume: 311
  start-page: 1
  year: 2018
  ident: 10.1016/j.enbuild.2020.110026_bib0044
  article-title: Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.040
– volume: 160
  start-page: 899
  year: 2011
  ident: 10.1016/j.enbuild.2020.110026_bib0023
  article-title: On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2011.08.079
– volume: 211
  start-page: 1123
  year: 2018
  ident: 10.1016/j.enbuild.2020.110026_bib0035
  article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.005
– volume: 72
  start-page: 343
  year: 2014
  ident: 10.1016/j.enbuild.2020.110026_bib0002
  article-title: Theory and applications of HVAC control systems – a review of model predictive control (MPC)
  publication-title: Build. Envrion.
  doi: 10.1016/j.buildenv.2013.11.016
– volume: 67
  start-page: 135
  year: 2015
  ident: 10.1016/j.enbuild.2020.110026_bib0027
  article-title: Novel autonomous on-orbit calibration method for star sensors
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2014.11.009
– year: 2015
  ident: 10.1016/j.enbuild.2020.110026_bib0012
  article-title: Development of fault models for hybrid fault detection and diagnostics algorithm
SSID ssj0006571
Score 2.5232186
Snippet •This paper figures out limitations of the existing in-situ sensor calibration in an operational air-handling unit (AHU).•An advanced in-situ sensor...
Sensor errors have a considerable influence on the system operation and energy usage in an air handling unit. Sensor fault detection and diagnosis (SFDD) has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110026
SubjectTerms Air-handling unit
AutoEncoder
Automation
Bayesian analysis
Bayesian inference
Calibration
Cooling coils
Coupling
Energy
Energy consumption
Energy industry
Energy usage
Fault detection
Fault detection and diagnosis (FDD)
Fault diagnosis
Handling
Mathematical models
Neural networks
Sensors
Statistical inference
Systematic errors
Virtual in-situ calibration (VIC)
Title In-situ sensor calibration in an operational air-handling unit coupling autoencoder and Bayesian inference
URI https://dx.doi.org/10.1016/j.enbuild.2020.110026
https://www.proquest.com/docview/2440493068
Volume 221
WOSCitedRecordID wos000542372900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6178
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006571
  issn: 0378-7788
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEIAt2HKAA-KpvkA-cFt5CYmzjo8FFVEOFRJF2pvlV6SsILvKA5V_zzi2s2l5lB64REkUe6188Xhm1jOD0CvJYY3TKiGSl5rQMqWEM5mTzLDSgPpPudFDsQl2fl6sVvxTqNLZDuUEWF0Xl5d8-19Rwz2A7UJnb4F77BRuwDlAhyNgh-M_gT-rSVt1_bwFA3XTzIGBs4jjnkZXiWJrm-gClFVDhkQLzmPQw_Se602_Ha5k321clkuXbMJ519_KH3aIuKxijOAVr76PIXQPqlBpu91JFP_X_mcQLN9Cpu_gaEiHbW4-1DIGWIHByZivwheFZ-rjm4P4c_nnfAD8L5LZOwnWC5fRAUaxcL-w2D1_NRP2tRVq3DcYt6StRehGuG6E7-Yu2ktZzosZ2js5O119HBfkZT7Y3eP4d4Fcr387nj-pKNcW60EDuXiEHgbTAZ945I_RHVs_QQ8mCSWfonWAjz18PIGPqxrLGk_g4yl87ODjCB9P4EMrgyN8PMJ_hr68P71494GEahpEZxnriNSJ4ZbqsoSXRC0oaibRYLwyzlWumIEpW5RLKp3FaUvKmFFZwVhiQMW2uSmz52hWb2q7j7BcKqYKmyWFyWlpqEyVMkmWvjHK8kyqA0TjCxQ6pJp3FU--ir8CPECLsdnW51q5qUER6YigMHpFUMBXd1PT40hThMnbitQly-RgRBeHtx3KEbq_mzPHaNY1vX2B7unvXdU2L8MX-RPuVpz8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+sensor+calibration+in+an+operational+air-handling+unit+coupling+autoencoder+and+Bayesian+inference&rft.jtitle=Energy+and+buildings&rft.au=Yoon%2C+Sungmin&rft.date=2020-08-15&rft.issn=0378-7788&rft.volume=221&rft.spage=110026&rft_id=info:doi/10.1016%2Fj.enbuild.2020.110026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2020_110026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon