In-situ sensor calibration in an operational air-handling unit coupling autoencoder and Bayesian inference
•This paper figures out limitations of the existing in-situ sensor calibration in an operational air-handling unit (AHU).•An advanced in-situ sensor calibration method is proposed by coupling autoencoder and Bayesian inference.•A three-step strategy to construct autoencoder input variables is sugges...
Uložené v:
| Vydané v: | Energy and buildings Ročník 221; s. 110026 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Lausanne
Elsevier B.V
15.08.2020
Elsevier BV |
| Predmet: | |
| ISSN: | 0378-7788, 1872-6178 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •This paper figures out limitations of the existing in-situ sensor calibration in an operational air-handling unit (AHU).•An advanced in-situ sensor calibration method is proposed by coupling autoencoder and Bayesian inference.•A three-step strategy to construct autoencoder input variables is suggested with a new distance function to reach good calibration performance in various faulty conditions.•The faulty AHU operation is returned by the in-situ calibration to the normal operation, which results in the system energy savings.
Sensor errors have a considerable influence on the system operation and energy usage in an air handling unit. Sensor fault detection and diagnosis (SFDD) has been widely studied to handle the impacts of sensor errors on an air-handling unit (AHU). Beyond the SFDD, in-situ calibration can correct the faulty sensor (especially for systematic errors) automatically in field, thereby reducing the energy waste. In this study, we propose an advanced in-situ sensor calibration named virtual in-situ calibration in an operational AHU. The suggested method is intended to overcome the challenges of previous in-situ calibration methods by coupling the Bayesian inference and autoencoder. In a given sensor calibration domain of an AHU, based on the unsupervised learning neural network feature trained to duplicate their input variables, the autoencoder-coupled calibration can produce system and sensor models effectively without additional sensors and assumptions, which are the main limitations of the earlier methods. It improves the calibration performance and applicability in the AHU. In addition, a three-step strategy to construct autoencoder input variables and a new distance function to achieve successful calibration under various faulty conditions is proposed. In a case study, where the error in the cooling coil supply temperature (+2 °C) caused a total energy increase of 38%, the present method is shown to eliminate the sensor error and the energy waste completely. These results show the capabilities and potentials of the suggested method in the self-repair, diagnostics, and automation of a building energy sector. |
|---|---|
| AbstractList | •This paper figures out limitations of the existing in-situ sensor calibration in an operational air-handling unit (AHU).•An advanced in-situ sensor calibration method is proposed by coupling autoencoder and Bayesian inference.•A three-step strategy to construct autoencoder input variables is suggested with a new distance function to reach good calibration performance in various faulty conditions.•The faulty AHU operation is returned by the in-situ calibration to the normal operation, which results in the system energy savings.
Sensor errors have a considerable influence on the system operation and energy usage in an air handling unit. Sensor fault detection and diagnosis (SFDD) has been widely studied to handle the impacts of sensor errors on an air-handling unit (AHU). Beyond the SFDD, in-situ calibration can correct the faulty sensor (especially for systematic errors) automatically in field, thereby reducing the energy waste. In this study, we propose an advanced in-situ sensor calibration named virtual in-situ calibration in an operational AHU. The suggested method is intended to overcome the challenges of previous in-situ calibration methods by coupling the Bayesian inference and autoencoder. In a given sensor calibration domain of an AHU, based on the unsupervised learning neural network feature trained to duplicate their input variables, the autoencoder-coupled calibration can produce system and sensor models effectively without additional sensors and assumptions, which are the main limitations of the earlier methods. It improves the calibration performance and applicability in the AHU. In addition, a three-step strategy to construct autoencoder input variables and a new distance function to achieve successful calibration under various faulty conditions is proposed. In a case study, where the error in the cooling coil supply temperature (+2 °C) caused a total energy increase of 38%, the present method is shown to eliminate the sensor error and the energy waste completely. These results show the capabilities and potentials of the suggested method in the self-repair, diagnostics, and automation of a building energy sector. Sensor errors have a considerable influence on the system operation and energy usage in an air handling unit. Sensor fault detection and diagnosis (SFDD) has been widely studied to handle the impacts of sensor errors on an air-handling unit (AHU). Beyond the SFDD, in-situ calibration can correct the faulty sensor (especially for systematic errors) automatically in field, thereby reducing the energy waste. In this study, we propose an advanced in-situ sensor calibration named virtual in-situ calibration in an operational AHU. The suggested method is intended to overcome the challenges of previous in-situ calibration methods by coupling the Bayesian inference and autoencoder. In a given sensor calibration domain of an AHU, based on the unsupervised learning neural network feature trained to duplicate their input variables, the autoencoder-coupled calibration can produce system and sensor models effectively without additional sensors and assumptions, which are the main limitations of the earlier methods. It improves the calibration performance and applicability in the AHU. In addition, a three-step strategy to construct autoencoder input variables and a new distance function to achieve successful calibration under various faulty conditions is proposed. In a case study, where the error in the cooling coil supply temperature (+2 °C) caused a total energy increase of 38%, the present method is shown to eliminate the sensor error and the energy waste completely. These results show the capabilities and potentials of the suggested method in the self-repair, diagnostics, and automation of a building energy sector. |
| ArticleNumber | 110026 |
| Author | Yoon, Sungmin |
| Author_xml | – sequence: 1 givenname: Sungmin surname: Yoon fullname: Yoon, Sungmin email: syoon@inu.ac.kr organization: Division of Architecture and Urban Design, Incheon National University, Incheon 22012, Korea |
| BookMark | eNqFkE1LxDAQhoMouH78BCHguWvSpkmKB9HFLxC86DmkyVRTarImqbD_3tZ68uJpmMk8L5PnCO374AGhM0rWlFB-0a_Bt6Mb7Lok5TSjhJR8D62oFGXBqZD7aEUqIQshpDxERyn1hBBeC7pC_aMvkssjTuBTiNjowbVRZxc8dh5rj8MWll4PWLtYvGtvB-ff8OhdxiaM259OjzmAN8FCnCiLb_QOktNzSgdxeoETdNDpIcHpbz1Gr3e3L5uH4un5_nFz_VSYqhK50IbYBpjpOlE3DCSVlhjOuWiatm6FFdzIjjNNqSyhY0LYtpJCEMtqDrXtqmN0vuRuY_gcIWXVhzFO5ydVMkZYUxEup63LZcvEkFKEThmXf_6Zo3aDokTNclWvfuWqWa5a5E50_YfeRveh4-5f7mrhYBLw5SCqZNwsx7oIJisb3D8J37tMmnw |
| CitedBy_id | crossref_primary_10_1016_j_buildenv_2025_113040 crossref_primary_10_1016_j_enbuild_2023_112949 crossref_primary_10_1016_j_ijrefrig_2025_03_010 crossref_primary_10_1016_j_enbuild_2021_111735 crossref_primary_10_1016_j_jobe_2023_107021 crossref_primary_10_1016_j_jobe_2023_108230 crossref_primary_10_1016_j_enbuild_2021_111673 crossref_primary_10_1016_j_enbuild_2022_112766 crossref_primary_10_1016_j_autcon_2023_105261 crossref_primary_10_1016_j_enbuild_2021_111059 crossref_primary_10_1016_j_aei_2023_102239 crossref_primary_10_1016_j_autcon_2022_104578 crossref_primary_10_3390_app14010052 crossref_primary_10_1016_j_rineng_2024_102170 crossref_primary_10_1016_j_autcon_2022_104648 crossref_primary_10_1016_j_buildenv_2023_110652 crossref_primary_10_1016_j_enbuild_2023_113274 crossref_primary_10_1080_23744731_2023_2170683 crossref_primary_10_1109_TIM_2025_3556179 crossref_primary_10_1007_s12273_022_0935_7 crossref_primary_10_1016_j_apenergy_2022_119864 crossref_primary_10_1016_j_jobe_2023_107237 crossref_primary_10_1016_j_enbuild_2024_115197 crossref_primary_10_1016_j_enbuild_2025_115452 crossref_primary_10_3390_s22145348 crossref_primary_10_1016_j_jobe_2022_105559 crossref_primary_10_1016_j_apenergy_2021_117458 crossref_primary_10_1016_j_enbuild_2021_110733 crossref_primary_10_1016_j_enbuild_2022_112317 crossref_primary_10_1016_j_buildenv_2025_113595 crossref_primary_10_3390_s20236950 crossref_primary_10_1016_j_enbuild_2021_111709 crossref_primary_10_1016_j_energy_2024_131314 crossref_primary_10_1016_j_applthermaleng_2024_124000 crossref_primary_10_1016_j_buildenv_2023_110960 crossref_primary_10_1016_j_buildenv_2021_108066 crossref_primary_10_1016_j_jobe_2021_103500 crossref_primary_10_3390_s24041150 crossref_primary_10_3390_en15041394 crossref_primary_10_1016_j_jobe_2025_113761 crossref_primary_10_1016_j_buildenv_2023_110161 crossref_primary_10_1016_j_energy_2022_124915 crossref_primary_10_3390_en15124366 crossref_primary_10_3390_s24041157 crossref_primary_10_1016_j_enbuild_2025_115760 crossref_primary_10_1016_j_scs_2021_103514 crossref_primary_10_1007_s12273_025_1327_6 crossref_primary_10_1016_j_energy_2021_120515 |
| Cites_doi | 10.1016/j.enconman.2003.12.008 10.1109/31.192419 10.1016/j.enbuild.2018.04.017 10.1016/j.autcon.2016.06.005 10.1016/j.enbuild.2013.12.038 10.1016/j.enbuild.2019.06.014 10.1016/j.ijrefrig.2019.07.018 10.1016/j.apenergy.2017.05.153 10.1080/10789669.2005.10391123 10.1016/S0042-6989(97)00169-7 10.1016/j.sna.2008.10.003 10.1016/j.neucom.2018.05.040 10.1007/s12273-018-0475-3 10.1016/j.measurement.2009.09.008 10.1080/10789669.2005.10391133 10.1016/j.buildenv.2017.01.013 10.1016/j.snb.2013.06.037 10.1016/j.enbuild.2014.06.042 10.1016/j.autcon.2016.10.008 10.1016/j.snb.2015.03.071 10.1016/j.buildenv.2014.12.004 10.1016/j.autcon.2015.08.003 10.1016/j.buildenv.2018.11.026 10.1016/j.enbuild.2018.04.043 10.1016/j.neucom.2016.12.038 10.1016/j.measurement.2014.10.037 10.1016/j.applthermaleng.2015.09.121 10.1016/j.apenergy.2017.12.077 10.1007/3-540-36978-3_20 10.1016/j.rser.2016.10.072 10.1080/10789669.2011.543250 10.1016/j.enbuild.2017.09.009 10.3390/s19112528 10.1016/j.snb.2011.08.079 10.1016/j.apenergy.2017.12.005 10.1016/j.buildenv.2013.11.016 10.1016/j.optlaseng.2014.11.009 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Aug 15, 2020 |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Aug 15, 2020 |
| DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
| DOI | 10.1016/j.enbuild.2020.110026 |
| DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-6178 |
| ExternalDocumentID | 10_1016_j_enbuild_2020_110026 S0378778819339878 |
| GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RPZ SAC SET SEW WUQ ZMT ZY4 ~HD 7ST 8FD AGCQF C1K F28 FR3 KR7 SOI |
| ID | FETCH-LOGICAL-c337t-ac0d9e4cff7594e818d0c666799b5b7d76c8f64a1182ef477db38770d456e5df3 |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542372900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7788 |
| IngestDate | Wed Aug 13 05:06:36 EDT 2025 Sat Nov 29 07:14:16 EST 2025 Tue Nov 18 22:12:18 EST 2025 Fri Feb 23 02:47:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sensors Fault detection and diagnosis (FDD) Bayesian inference AutoEncoder Virtual in-situ calibration (VIC) Air-handling unit |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c337t-ac0d9e4cff7594e818d0c666799b5b7d76c8f64a1182ef477db38770d456e5df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2440493068 |
| PQPubID | 2045483 |
| ParticipantIDs | proquest_journals_2440493068 crossref_citationtrail_10_1016_j_enbuild_2020_110026 crossref_primary_10_1016_j_enbuild_2020_110026 elsevier_sciencedirect_doi_10_1016_j_enbuild_2020_110026 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-15 |
| PublicationDateYYYYMMDD | 2020-08-15 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Energy and buildings |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Yoon, Yu (bib0028) 2017; 73 Zhao, Wen, Xiao, Yang, Wang (bib0017) 2017; 111 Geng, Yang, Chen, Wu (bib0022) 2015; 216 Wang, Wua, Zhen, Yang, Xi, Chen (bib0026) 2015; 62 Wang, Yoon, Wang, Yu (bib0032) 2019; 198 Katipamula, Brambley (bib0014) 2005; 11 Olshausenand, Field (bib0043) 1997; 37 Zhang, Hong (bib0011) 2017; 202 Afram, Janabi-Sharifi (bib0002) 2014; 72 Aste, Manfren, Marenzi (bib0001) 2017; 75 Wang, Xiao (bib0015) 2004; 45 Yoon, Yu (bib0033) 2018; 172 Geng, Yang, Li, Wu (bib0021) 2013; 188 Kollias, Anastassiou (bib0042) 1989; 36 Hu, Chang, Hsu (bib0024) 2009; 149 Yang, Zheng, Wu, Yang (bib0037) 2019; 19 Fisher, Moses, Willsky (bib0020) 2004 Fan, Xiao, Zhao, Wang (bib0035) 2018; 211 Wang, Zhang, Yoon, Yu (bib0009) 2019; 148 Bychkovskiy, Megerian, Estrin, Potkonjak (bib0019) 2003; 263 Yu, Li, Yu, Xiong (bib0007) 2011; 17 Xu, Cao, Song, Zhang, Liu, Alsaadi (bib0036) 2018; 311 Du, Fan, Chi, Jin (bib0016) 2014; 72 Pereira, Silveira (bib0034) 2018 Cheung, Braun (bib0012) 2015 Yoon, Seo, Cho, Song (bib0039) 2015; 85 Yu, Li (bib0006) 2015; 59 Liu, Xu, Guo, Chen (bib0004) 2019; 107 Lim, Zhai (bib0038) 2017; 115 Liu, Wang, Liu, Zeng, Liu, Alsaadi (bib0040) 2016; 234 Katipamula, Brambley (bib0013) 2005; 11 Zexiao, Weitong, Zhiwei, Ming (bib0025) 2010; 43 Yu, Woradechjumroen, Yu (bib0003) 2014; 82 Basarkar, Pang, Wang, Haves, Hong (bib0010) 2011 Zhou, Ye, Chai, Wang, Chen (bib0027) 2015; 67 Yoon, Yu (bib0031) 2018; 170 Yoon, Yu, Wang, Wang (bib0008) 2019; 12 Yan, Ma, Kokogiannakis, Zhao (bib0018) 2016; 70 Yoon (bib0005) 2018 Zhang, Tian, Kadri, Xiao, Li, Pan, Zhou (bib0023) 2011; 160 Xu, Cao, Song, Zhang, Liu, Alsaadi (bib0044) 2018; 311 Yoon, Yu (bib0029) 2017; 115 Yoon, Yu (bib0030) 2018; 212 (bib0041) 2019 Olshausenand (10.1016/j.enbuild.2020.110026_bib0043) 1997; 37 Yoon (10.1016/j.enbuild.2020.110026_bib0029) 2017; 115 Fisher (10.1016/j.enbuild.2020.110026_bib0020) 2004 Yoon (10.1016/j.enbuild.2020.110026_bib0008) 2019; 12 Zhang (10.1016/j.enbuild.2020.110026_bib0011) 2017; 202 Hu (10.1016/j.enbuild.2020.110026_bib0024) 2009; 149 Wang (10.1016/j.enbuild.2020.110026_bib0015) 2004; 45 Cheung (10.1016/j.enbuild.2020.110026_bib0012) 2015 Wang (10.1016/j.enbuild.2020.110026_bib0032) 2019; 198 Yoon (10.1016/j.enbuild.2020.110026_bib0033) 2018; 172 Bychkovskiy (10.1016/j.enbuild.2020.110026_bib0019) 2003; 263 Yoon (10.1016/j.enbuild.2020.110026_bib0039) 2015; 85 Kollias (10.1016/j.enbuild.2020.110026_bib0042) 1989; 36 Afram (10.1016/j.enbuild.2020.110026_bib0002) 2014; 72 Katipamula (10.1016/j.enbuild.2020.110026_bib0014) 2005; 11 Geng (10.1016/j.enbuild.2020.110026_bib0022) 2015; 216 Xu (10.1016/j.enbuild.2020.110026_bib0044) 2018; 311 Pereira (10.1016/j.enbuild.2020.110026_bib0034) 2018 Liu (10.1016/j.enbuild.2020.110026_bib0040) 2016; 234 Zexiao (10.1016/j.enbuild.2020.110026_bib0025) 2010; 43 Yan (10.1016/j.enbuild.2020.110026_bib0018) 2016; 70 Wang (10.1016/j.enbuild.2020.110026_bib0026) 2015; 62 Basarkar (10.1016/j.enbuild.2020.110026_bib0010) 2011 Fan (10.1016/j.enbuild.2020.110026_bib0035) 2018; 211 Lim (10.1016/j.enbuild.2020.110026_bib0038) 2017; 115 Yu (10.1016/j.enbuild.2020.110026_bib0003) 2014; 82 Zhang (10.1016/j.enbuild.2020.110026_bib0023) 2011; 160 Yoon (10.1016/j.enbuild.2020.110026_bib0005) 2018 Zhou (10.1016/j.enbuild.2020.110026_bib0027) 2015; 67 Yu (10.1016/j.enbuild.2020.110026_bib0007) 2011; 17 Yang (10.1016/j.enbuild.2020.110026_bib0037) 2019; 19 Zhao (10.1016/j.enbuild.2020.110026_bib0017) 2017; 111 Yoon (10.1016/j.enbuild.2020.110026_bib0028) 2017; 73 (10.1016/j.enbuild.2020.110026_bib0041) 2019 Yoon (10.1016/j.enbuild.2020.110026_bib0030) 2018; 212 Katipamula (10.1016/j.enbuild.2020.110026_bib0013) 2005; 11 Xu (10.1016/j.enbuild.2020.110026_bib0036) 2018; 311 Geng (10.1016/j.enbuild.2020.110026_bib0021) 2013; 188 Yu (10.1016/j.enbuild.2020.110026_bib0006) 2015; 59 Yoon (10.1016/j.enbuild.2020.110026_bib0031) 2018; 170 Liu (10.1016/j.enbuild.2020.110026_bib0004) 2019; 107 Wang (10.1016/j.enbuild.2020.110026_bib0009) 2019; 148 Aste (10.1016/j.enbuild.2020.110026_bib0001) 2017; 75 Du (10.1016/j.enbuild.2020.110026_bib0016) 2014; 72 |
| References_xml | – volume: 45 start-page: 2667 year: 2004 end-page: 2686 ident: bib0015 article-title: Detection and diagnosis of AHU sensor faults using principal component analysis method publication-title: Energy Conserv. Manag. – volume: 107 start-page: 39 year: 2019 end-page: 51 ident: bib0004 article-title: A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction publication-title: Int. J. Refrig. – year: 2019 ident: bib0041 article-title: EnergyPlus Documentation Engineering Reference Version 9.1 – volume: 202 start-page: 178 year: 2017 end-page: 188 ident: bib0011 article-title: Modeling of HVAC operational faults in building performance simulation publication-title: Appl. Energy – volume: 75 start-page: 313 year: 2017 end-page: 330 ident: bib0001 article-title: Building automation and control systems and performance optimization: a framework for analysis publication-title: Renew. Sustain. Energy Rev. – volume: 72 start-page: 157 year: 2014 end-page: 166 ident: bib0016 article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks publication-title: Energy Build. – volume: 160 start-page: 899 year: 2011 end-page: 909 ident: bib0023 article-title: On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality publication-title: Sens. Actuators B – volume: 43 start-page: 190 year: 2010 end-page: 196 ident: bib0025 article-title: A novel approach for the field calibration of line structured-light sensors publication-title: Measurement – volume: 11 start-page: 3 year: 2005 end-page: 25 ident: bib0013 article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 1 publication-title: HVAC&R Res. – volume: 234 start-page: 11 year: 2016 end-page: 26 ident: bib0040 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing – volume: 170 start-page: 217 year: 2018 end-page: 228 ident: bib0031 article-title: Hidden factors and handling strategy for accuracy of virtual in-situ sensor calibration in building energy systems: sensitivity effect and reviving calibration publication-title: Energy Build. – volume: 311 start-page: 1 year: 2018 end-page: 10 ident: bib0044 article-title: Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network publication-title: Neurocomputing – volume: 70 start-page: 77 year: 2016 end-page: 88 ident: bib0018 article-title: A sensor fault detection strategy for air handling units using cluster analysis publication-title: Autom. Constr. – volume: 85 start-page: 253 year: 2015 end-page: 262 ident: bib0039 article-title: A calibration method for whole-building airflow simulation in high-rise residential buildings publication-title: Build. Environ. – volume: 149 start-page: 74 year: 2009 end-page: 80 ident: bib0024 article-title: Calibration and on-line data selection of multiple optical flow sensors for odometry applications publication-title: Sens. Actuators A – volume: 211 start-page: 1123 year: 2018 end-page: 1135 ident: bib0035 article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data publication-title: Appl. Energy – volume: 19 start-page: 2528 year: 2019 ident: bib0037 article-title: Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network publication-title: Sensors – volume: 36 start-page: 1092 year: 1989 end-page: 1101 ident: bib0042 article-title: An adaptive least squares algorithm for the efficient training of artificial neural networks publication-title: IEEE Trans. Circ. Syst. – year: 2015 ident: bib0012 article-title: Development of fault models for hybrid fault detection and diagnostics algorithm publication-title: National Renewable Energy Laboratory – volume: 62 start-page: 15 year: 2015 end-page: 24 ident: bib0026 article-title: A two-step calibration method of a large FOV binocular stereovision sensor for onsite measurement publication-title: Measurement – volume: 82 start-page: 550 year: 2014 end-page: 562 ident: bib0003 article-title: A review of fault detection and diagnosis methodologies on air-handling units publication-title: Energy Build. – volume: 12 start-page: 259 year: 2019 end-page: 271 ident: bib0008 article-title: Impacts of HVACR temperature sensor offsets on building energy performance and occupant thermal comfort publication-title: Build. Simul. – volume: 11 start-page: 169 year: 2005 end-page: 187 ident: bib0014 article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 2 publication-title: HVAC&R Res. – volume: 148 start-page: 361 year: 2019 end-page: 371 ident: bib0009 article-title: Impact of uncertainties on the supervisory control performance of a hybrid cooling system in data center publication-title: Build. Environ. – year: 2011 ident: bib0010 article-title: Modeling and simulation of HVAC faults in EnergyPlus publication-title: Proceedings of IBPSA Building Simulation International Conference – volume: 216 start-page: 321 year: 2015 end-page: 331 ident: bib0022 article-title: Gaussian process based modeling and experimental design for sensor calibration in drifting environments publication-title: Sens. Actuators B – year: 2018 ident: bib0034 article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention publication-title: 7th IEEE International Conference on Machine Learning and Applications (ICMLA) At: Orlando – volume: 17 start-page: 31 year: 2011 end-page: 50 ident: bib0007 article-title: Virtual calibration of a supply air temperature sensor in rooftop air conditioning units publication-title: HVAC R Res. – volume: 115 start-page: 66 year: 2017 end-page: 75 ident: bib0038 article-title: Comprehensive evaluation of the influence of meta-models on Bayesian calibration publication-title: Energy Build. – volume: 111 start-page: 1272 year: 2017 end-page: 1286 ident: bib0017 article-title: Diagnostic Bayesian networks for diagnosing air handling units faults–part I: faults in dampers, fans, filters and sensors publication-title: Appl. Therm. Eng. – volume: 73 start-page: 20 year: 2017 end-page: 30 ident: bib0028 article-title: Extended virtual in-situ calibration method in building systems using Bayesian inference publication-title: Autom. Constr. – volume: 72 start-page: 343 year: 2014 end-page: 355 ident: bib0002 article-title: Theory and applications of HVAC control systems – a review of model predictive control (MPC) publication-title: Build. Envrion. – volume: 59 start-page: 59 year: 2015 end-page: 67 ident: bib0006 article-title: Virtual in-situ calibration method in building systems publication-title: Autom. Constr. – volume: 115 start-page: 54 year: 2017 end-page: 66 ident: bib0029 article-title: A quantitative comparison of statistical and deterministic methods on virtual in-situ calibration in building systems publication-title: Build. Environ. – start-page: 26 year: 2004 end-page: 27 ident: bib0020 article-title: Nonparametric belief propagation for self-calibration in sensor networks publication-title: International Conference on Information Processing in Sensor Networks (IPSN) 04 – volume: 67 start-page: 135 year: 2015 end-page: 144 ident: bib0027 article-title: Novel autonomous on-orbit calibration method for star sensors publication-title: Opt. Lasers Eng. – volume: 212 start-page: 1069 year: 2018 end-page: 1082 ident: bib0030 article-title: Hidden factors and handling strategies on virtual in-situ sensor calibration in building energy systems: prior information and cancellation effect publication-title: Appl. Energy – volume: 311 start-page: 1 year: 2018 end-page: 10 ident: bib0036 article-title: Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network publication-title: Neurocomputing – volume: 188 start-page: 440 year: 2013 end-page: 453 ident: bib0021 article-title: A bootstrapping-based statistical procedure for multivariate calibration of sensor arrays publication-title: Sens. Actuators B – year: 2018 ident: bib0005 article-title: Virtual in-situ calibration for reliable and resilient sensing in building energy systems publication-title: The University of Nebraska - Lincoln – volume: 263 start-page: 301 year: 2003 end-page: 316 ident: bib0019 article-title: A collaborative approach to in-place sensor calibration publication-title: Lect. Notes Comput. Sci. – volume: 172 start-page: 22 year: 2018 end-page: 34 ident: bib0033 article-title: Strategies for virtual in-situ sensor calibration in building energy systems publication-title: Energy Build. – volume: 37 start-page: 3311 year: 1997 end-page: 3325 ident: bib0043 article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1 publication-title: Vision Res. – volume: 198 start-page: 291 year: 2019 end-page: 304 ident: bib0032 article-title: Automated reviving calibration strategy for virtual in-situ sensor calibration in building energy systems: Sensitivity coefficient optimization publication-title: Energy Build. – volume: 45 start-page: 2667 year: 2004 ident: 10.1016/j.enbuild.2020.110026_bib0015 article-title: Detection and diagnosis of AHU sensor faults using principal component analysis method publication-title: Energy Conserv. Manag. doi: 10.1016/j.enconman.2003.12.008 – volume: 36 start-page: 1092 issue: 8 year: 1989 ident: 10.1016/j.enbuild.2020.110026_bib0042 article-title: An adaptive least squares algorithm for the efficient training of artificial neural networks publication-title: IEEE Trans. Circ. Syst. doi: 10.1109/31.192419 – volume: 170 start-page: 217 year: 2018 ident: 10.1016/j.enbuild.2020.110026_bib0031 article-title: Hidden factors and handling strategy for accuracy of virtual in-situ sensor calibration in building energy systems: sensitivity effect and reviving calibration publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.04.017 – volume: 70 start-page: 77 year: 2016 ident: 10.1016/j.enbuild.2020.110026_bib0018 article-title: A sensor fault detection strategy for air handling units using cluster analysis publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.06.005 – volume: 72 start-page: 157 year: 2014 ident: 10.1016/j.enbuild.2020.110026_bib0016 article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.12.038 – volume: 198 start-page: 291 year: 2019 ident: 10.1016/j.enbuild.2020.110026_bib0032 article-title: Automated reviving calibration strategy for virtual in-situ sensor calibration in building energy systems: Sensitivity coefficient optimization publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.06.014 – volume: 107 start-page: 39 year: 2019 ident: 10.1016/j.enbuild.2020.110026_bib0004 article-title: A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2019.07.018 – volume: 202 start-page: 178 year: 2017 ident: 10.1016/j.enbuild.2020.110026_bib0011 article-title: Modeling of HVAC operational faults in building performance simulation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.153 – volume: 11 start-page: 3 year: 2005 ident: 10.1016/j.enbuild.2020.110026_bib0013 article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 1 publication-title: HVAC&R Res. doi: 10.1080/10789669.2005.10391123 – volume: 37 start-page: 3311 year: 1997 ident: 10.1016/j.enbuild.2020.110026_bib0043 article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1 publication-title: Vision Res. doi: 10.1016/S0042-6989(97)00169-7 – year: 2018 ident: 10.1016/j.enbuild.2020.110026_bib0034 article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention – volume: 149 start-page: 74 year: 2009 ident: 10.1016/j.enbuild.2020.110026_bib0024 article-title: Calibration and on-line data selection of multiple optical flow sensors for odometry applications publication-title: Sens. Actuators A doi: 10.1016/j.sna.2008.10.003 – volume: 311 start-page: 1 year: 2018 ident: 10.1016/j.enbuild.2020.110026_bib0036 article-title: Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.040 – volume: 12 start-page: 259 issue: 2 year: 2019 ident: 10.1016/j.enbuild.2020.110026_bib0008 article-title: Impacts of HVACR temperature sensor offsets on building energy performance and occupant thermal comfort publication-title: Build. Simul. doi: 10.1007/s12273-018-0475-3 – volume: 43 start-page: 190 year: 2010 ident: 10.1016/j.enbuild.2020.110026_bib0025 article-title: A novel approach for the field calibration of line structured-light sensors publication-title: Measurement doi: 10.1016/j.measurement.2009.09.008 – volume: 11 start-page: 169 year: 2005 ident: 10.1016/j.enbuild.2020.110026_bib0014 article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 2 publication-title: HVAC&R Res. doi: 10.1080/10789669.2005.10391133 – volume: 115 start-page: 54 year: 2017 ident: 10.1016/j.enbuild.2020.110026_bib0029 article-title: A quantitative comparison of statistical and deterministic methods on virtual in-situ calibration in building systems publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.01.013 – volume: 188 start-page: 440 year: 2013 ident: 10.1016/j.enbuild.2020.110026_bib0021 article-title: A bootstrapping-based statistical procedure for multivariate calibration of sensor arrays publication-title: Sens. Actuators B doi: 10.1016/j.snb.2013.06.037 – volume: 82 start-page: 550 year: 2014 ident: 10.1016/j.enbuild.2020.110026_bib0003 article-title: A review of fault detection and diagnosis methodologies on air-handling units publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.06.042 – volume: 73 start-page: 20 year: 2017 ident: 10.1016/j.enbuild.2020.110026_bib0028 article-title: Extended virtual in-situ calibration method in building systems using Bayesian inference publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.10.008 – volume: 216 start-page: 321 year: 2015 ident: 10.1016/j.enbuild.2020.110026_bib0022 article-title: Gaussian process based modeling and experimental design for sensor calibration in drifting environments publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.03.071 – volume: 85 start-page: 253 year: 2015 ident: 10.1016/j.enbuild.2020.110026_bib0039 article-title: A calibration method for whole-building airflow simulation in high-rise residential buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.12.004 – volume: 59 start-page: 59 year: 2015 ident: 10.1016/j.enbuild.2020.110026_bib0006 article-title: Virtual in-situ calibration method in building systems publication-title: Autom. Constr. doi: 10.1016/j.autcon.2015.08.003 – volume: 148 start-page: 361 year: 2019 ident: 10.1016/j.enbuild.2020.110026_bib0009 article-title: Impact of uncertainties on the supervisory control performance of a hybrid cooling system in data center publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.11.026 – year: 2011 ident: 10.1016/j.enbuild.2020.110026_bib0010 article-title: Modeling and simulation of HVAC faults in EnergyPlus – volume: 172 start-page: 22 year: 2018 ident: 10.1016/j.enbuild.2020.110026_bib0033 article-title: Strategies for virtual in-situ sensor calibration in building energy systems publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.04.043 – volume: 234 start-page: 11 year: 2016 ident: 10.1016/j.enbuild.2020.110026_bib0040 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – start-page: 26 year: 2004 ident: 10.1016/j.enbuild.2020.110026_bib0020 article-title: Nonparametric belief propagation for self-calibration in sensor networks – volume: 62 start-page: 15 year: 2015 ident: 10.1016/j.enbuild.2020.110026_bib0026 article-title: A two-step calibration method of a large FOV binocular stereovision sensor for onsite measurement publication-title: Measurement doi: 10.1016/j.measurement.2014.10.037 – volume: 111 start-page: 1272 year: 2017 ident: 10.1016/j.enbuild.2020.110026_bib0017 article-title: Diagnostic Bayesian networks for diagnosing air handling units faults–part I: faults in dampers, fans, filters and sensors publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.09.121 – volume: 212 start-page: 1069 year: 2018 ident: 10.1016/j.enbuild.2020.110026_bib0030 article-title: Hidden factors and handling strategies on virtual in-situ sensor calibration in building energy systems: prior information and cancellation effect publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.077 – volume: 263 start-page: 301 year: 2003 ident: 10.1016/j.enbuild.2020.110026_bib0019 article-title: A collaborative approach to in-place sensor calibration publication-title: Lect. Notes Comput. Sci. doi: 10.1007/3-540-36978-3_20 – volume: 75 start-page: 313 year: 2017 ident: 10.1016/j.enbuild.2020.110026_bib0001 article-title: Building automation and control systems and performance optimization: a framework for analysis publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.10.072 – year: 2018 ident: 10.1016/j.enbuild.2020.110026_bib0005 article-title: Virtual in-situ calibration for reliable and resilient sensing in building energy systems – volume: 17 start-page: 31 issue: 1 year: 2011 ident: 10.1016/j.enbuild.2020.110026_bib0007 article-title: Virtual calibration of a supply air temperature sensor in rooftop air conditioning units publication-title: HVAC R Res. doi: 10.1080/10789669.2011.543250 – volume: 115 start-page: 66 year: 2017 ident: 10.1016/j.enbuild.2020.110026_bib0038 article-title: Comprehensive evaluation of the influence of meta-models on Bayesian calibration publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.09.009 – volume: 19 start-page: 2528 issue: 11 year: 2019 ident: 10.1016/j.enbuild.2020.110026_bib0037 article-title: Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network publication-title: Sensors doi: 10.3390/s19112528 – year: 2019 ident: 10.1016/j.enbuild.2020.110026_bib0041 – volume: 311 start-page: 1 year: 2018 ident: 10.1016/j.enbuild.2020.110026_bib0044 article-title: Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.040 – volume: 160 start-page: 899 year: 2011 ident: 10.1016/j.enbuild.2020.110026_bib0023 article-title: On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality publication-title: Sens. Actuators B doi: 10.1016/j.snb.2011.08.079 – volume: 211 start-page: 1123 year: 2018 ident: 10.1016/j.enbuild.2020.110026_bib0035 article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.005 – volume: 72 start-page: 343 year: 2014 ident: 10.1016/j.enbuild.2020.110026_bib0002 article-title: Theory and applications of HVAC control systems – a review of model predictive control (MPC) publication-title: Build. Envrion. doi: 10.1016/j.buildenv.2013.11.016 – volume: 67 start-page: 135 year: 2015 ident: 10.1016/j.enbuild.2020.110026_bib0027 article-title: Novel autonomous on-orbit calibration method for star sensors publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2014.11.009 – year: 2015 ident: 10.1016/j.enbuild.2020.110026_bib0012 article-title: Development of fault models for hybrid fault detection and diagnostics algorithm |
| SSID | ssj0006571 |
| Score | 2.5232186 |
| Snippet | •This paper figures out limitations of the existing in-situ sensor calibration in an operational air-handling unit (AHU).•An advanced in-situ sensor... Sensor errors have a considerable influence on the system operation and energy usage in an air handling unit. Sensor fault detection and diagnosis (SFDD) has... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 110026 |
| SubjectTerms | Air-handling unit AutoEncoder Automation Bayesian analysis Bayesian inference Calibration Cooling coils Coupling Energy Energy consumption Energy industry Energy usage Fault detection Fault detection and diagnosis (FDD) Fault diagnosis Handling Mathematical models Neural networks Sensors Statistical inference Systematic errors Virtual in-situ calibration (VIC) |
| Title | In-situ sensor calibration in an operational air-handling unit coupling autoencoder and Bayesian inference |
| URI | https://dx.doi.org/10.1016/j.enbuild.2020.110026 https://www.proquest.com/docview/2440493068 |
| Volume | 221 |
| WOSCitedRecordID | wos000542372900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6178 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006571 issn: 0378-7788 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEIAt2HKAA-KpvkA-cFt5CYmzjo8FFVEOFRJF2pvlV6SsILvKA5V_zzi2s2l5lB64REkUe6188Xhm1jOD0CvJYY3TKiGSl5rQMqWEM5mTzLDSgPpPudFDsQl2fl6sVvxTqNLZDuUEWF0Xl5d8-19Rwz2A7UJnb4F77BRuwDlAhyNgh-M_gT-rSVt1_bwFA3XTzIGBs4jjnkZXiWJrm-gClFVDhkQLzmPQw_Se602_Ha5k321clkuXbMJ519_KH3aIuKxijOAVr76PIXQPqlBpu91JFP_X_mcQLN9Cpu_gaEiHbW4-1DIGWIHByZivwheFZ-rjm4P4c_nnfAD8L5LZOwnWC5fRAUaxcL-w2D1_NRP2tRVq3DcYt6StRehGuG6E7-Yu2ktZzosZ2js5O119HBfkZT7Y3eP4d4Fcr387nj-pKNcW60EDuXiEHgbTAZ945I_RHVs_QQ8mCSWfonWAjz18PIGPqxrLGk_g4yl87ODjCB9P4EMrgyN8PMJ_hr68P71494GEahpEZxnriNSJ4ZbqsoSXRC0oaibRYLwyzlWumIEpW5RLKp3FaUvKmFFZwVhiQMW2uSmz52hWb2q7j7BcKqYKmyWFyWlpqEyVMkmWvjHK8kyqA0TjCxQ6pJp3FU--ir8CPECLsdnW51q5qUER6YigMHpFUMBXd1PT40hThMnbitQly-RgRBeHtx3KEbq_mzPHaNY1vX2B7unvXdU2L8MX-RPuVpz8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+sensor+calibration+in+an+operational+air-handling+unit+coupling+autoencoder+and+Bayesian+inference&rft.jtitle=Energy+and+buildings&rft.au=Yoon%2C+Sungmin&rft.date=2020-08-15&rft.issn=0378-7788&rft.volume=221&rft.spage=110026&rft_id=info:doi/10.1016%2Fj.enbuild.2020.110026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2020_110026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |