Swarm-intelligence-based extraction and manifold crawling along the Large-Scale Structure

ABSTRACT The distribution of galaxies and clusters of galaxies on the mega-parsec scale of the Universe follows an intricate pattern now famously known as the Large-Scale Structure or the Cosmic Web. To study the environments of this network, several techniques have been developed that are able to d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Monthly notices of the Royal Astronomical Society Ročník 520; číslo 3; s. 4517 - 4539
Hlavní autoři: Awad, Petra, Peletier, Reynier, Canducci, Marco, Smith, Rory, Taghribi, Abolfazl, Mohammadi, Mohammad, Shin, Jihye, Tiňo, Peter, Bunte, Kerstin
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Oxford University Press 01.04.2023
Témata:
ISSN:0035-8711, 1365-2966, 1365-2966
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT The distribution of galaxies and clusters of galaxies on the mega-parsec scale of the Universe follows an intricate pattern now famously known as the Large-Scale Structure or the Cosmic Web. To study the environments of this network, several techniques have been developed that are able to describe its properties and the properties of groups of galaxies as a function of their environment. In this work, we analyse the previously introduced framework: 1-Dimensional Recovery, Extraction, and Analysis of Manifolds (1-dream) on N-body cosmological simulation data of the Cosmic Web. The 1-DREAM toolbox consists of five Machine Learning methods, whose aim is the extraction and modelling of one-dimensional structures in astronomical big data settings. We show that 1-DREAM can be used to extract structures of different density ranges within the Cosmic Web and to create probabilistic models of them. For demonstration, we construct a probabilistic model of an extracted filament and move through the structure to measure properties such as local density and velocity. We also compare our toolbox with a collection of methodologies which trace the Cosmic Web. We show that 1-DREAM is able to split the network into its various environments with results comparable to the state-of-the-art methodologies. A detailed comparison is then made with the public code disperse, in which we find that 1-DREAM is robust against changes in sample size making it suitable for analysing sparse observational data, and finding faint and diffuse manifolds in low-density regions.
AbstractList The distribution of galaxies and clusters of galaxies on the mega-parsec scale of the Universe follows an intricate pattern now famously known as the Large-Scale Structure or the Cosmic Web. To study the environments of this network, several techniques have been developed that are able to describe its properties and the properties of groups of galaxies as a function of their environment. In this work, we analyse the previously introduced framework: 1-Dimensional Recovery, Extraction, and Analysis of Manifolds (1-dream) on N-body cosmological simulation data of the Cosmic Web. The 1-DREAM toolbox consists of five Machine Learning methods, whose aim is the extraction and modelling of one-dimensional structures in astronomical big data settings. We show that 1-DREAM can be used to extract structures of different density ranges within the Cosmic Web and to create probabilistic models of them. For demonstration, we construct a probabilistic model of an extracted filament and move through the structure to measure properties such as local density and velocity. We also compare our toolbox with a collection of methodologies which trace the Cosmic Web. We show that 1-DREAM is able to split the network into its various environments with results comparable to the state-of-the-art methodologies. A detailed comparison is then made with the public code disperse, in which we find that 1-DREAM is robust against changes in sample size making it suitable for analysing sparse observational data, and finding faint and diffuse manifolds in low-density regions.
ABSTRACT The distribution of galaxies and clusters of galaxies on the mega-parsec scale of the Universe follows an intricate pattern now famously known as the Large-Scale Structure or the Cosmic Web. To study the environments of this network, several techniques have been developed that are able to describe its properties and the properties of groups of galaxies as a function of their environment. In this work, we analyse the previously introduced framework: 1-Dimensional Recovery, Extraction, and Analysis of Manifolds (1-dream) on N-body cosmological simulation data of the Cosmic Web. The 1-DREAM toolbox consists of five Machine Learning methods, whose aim is the extraction and modelling of one-dimensional structures in astronomical big data settings. We show that 1-DREAM can be used to extract structures of different density ranges within the Cosmic Web and to create probabilistic models of them. For demonstration, we construct a probabilistic model of an extracted filament and move through the structure to measure properties such as local density and velocity. We also compare our toolbox with a collection of methodologies which trace the Cosmic Web. We show that 1-DREAM is able to split the network into its various environments with results comparable to the state-of-the-art methodologies. A detailed comparison is then made with the public code disperse, in which we find that 1-DREAM is robust against changes in sample size making it suitable for analysing sparse observational data, and finding faint and diffuse manifolds in low-density regions.
ABSTRACT The distribution of galaxies and clusters of galaxies on the mega-parsec scale of the Universe follows an intricate pattern now famously known as the Large-Scale Structure or the Cosmic Web. To study the environments of this network, several techniques have been developed that are able to describe its properties and the properties of groups of galaxies as a function of their environment. In this work, we analyse the previously introduced framework: 1-Dimensional Recovery, Extraction, and Analysis of Manifolds (1-dream) on N-body cosmological simulation data of the Cosmic Web. The 1-DREAM toolbox consists of five Machine Learning methods, whose aim is the extraction and modelling of one-dimensional structures in astronomical big data settings. We show that 1-DREAM can be used to extract structures of different density ranges within the Cosmic Web and to create probabilistic models of them. For demonstration, we construct a probabilistic model of an extracted filament and move through the structure to measure properties such as local density and velocity. We also compare our toolbox with a collection of methodologies which trace the Cosmic Web. We show that 1-DREAM is able to split the network into its various environments with results comparable to the state-of-the-art methodologies. A detailed comparison is then made with the public code disperse, in which we find that 1-DREAM is robust against changes in sample size making it suitable for analysing sparse observational data, and finding faint and diffuse manifolds in low-density regions.
Author Canducci, Marco
Peletier, Reynier
Tiňo, Peter
Smith, Rory
Shin, Jihye
Mohammadi, Mohammad
Awad, Petra
Taghribi, Abolfazl
Bunte, Kerstin
Author_xml – sequence: 1
  givenname: Petra
  orcidid: 0000-0002-0428-849X
  surname: Awad
  fullname: Awad, Petra
  email: p.awad@rug.nl
– sequence: 2
  givenname: Reynier
  orcidid: 0000-0001-7621-947X
  surname: Peletier
  fullname: Peletier, Reynier
– sequence: 3
  givenname: Marco
  surname: Canducci
  fullname: Canducci, Marco
– sequence: 4
  givenname: Rory
  orcidid: 0000-0001-8516-3324
  surname: Smith
  fullname: Smith, Rory
– sequence: 5
  givenname: Abolfazl
  surname: Taghribi
  fullname: Taghribi, Abolfazl
– sequence: 6
  givenname: Mohammad
  surname: Mohammadi
  fullname: Mohammadi, Mohammad
– sequence: 7
  givenname: Jihye
  surname: Shin
  fullname: Shin, Jihye
– sequence: 8
  givenname: Peter
  surname: Tiňo
  fullname: Tiňo, Peter
– sequence: 9
  givenname: Kerstin
  surname: Bunte
  fullname: Bunte, Kerstin
BookMark eNqFkD1PwzAQhi1UJNrCyB6JhcXUH3E-RlTxJVViKAxM0cU5l1SuU2xHhX9PSjshIZa75Xnv9D4TMnKdQ0IuObvhrJSzjfMQZiFCk4rihIy5zBQVZZaNyJgxqWiRc35GJiGsGWOpFNmYvC134De0dRGtbVfoNNIaAjYJfkYPOradS8A1yQZcazrbJNrDzrZulYDthhnfMVmAXyFdarCYLKPvdew9npNTAzbgxXFPyev93cv8kS6eH57mtwuqpcwjhdQwzBAUGMmYNoAcasW0yPKmTEVdNFzlaZHlvFYlN7nImDGpQIMMUKhcTsnV4e7Wdx89hlitu9674WUlRc4FE6ooB0oeKO27EDyaSrcR9u2Glq2tOKv2Dqsfh9XR4ZCiv1Jb327Af_3JXx_4rt_-g34Dcs2IEg
CitedBy_id crossref_primary_10_1051_0004_6361_202347848
crossref_primary_10_1051_0004_6361_202346517
crossref_primary_10_3847_1538_4357_ad4a52
crossref_primary_10_1051_0004_6361_202450815
crossref_primary_10_1051_0004_6361_202347982
crossref_primary_10_3847_1538_4357_ad4ee2
Cites_doi 10.1111/j.1365-2966.2005.08897.x
10.1111/j.1365-2966.2012.21614.x
10.1080/01621459.2012.682527
10.1109/TKDE.2022.3177368
10.1111/j.1365-2966.2012.21754.x
10.1093/mnras/stt2136
10.1093/mnras/275.3.790
10.1111/j.1365-2966.2011.18395.x
10.1093/mnras/staa1946
10.1016/j.ascom.2022.100658
10.1111/j.1365-2966.2010.17015.x
10.3847/1538-4357/abe1b1
10.3847/1538-4357/ac7ab5
10.3847/1538-4357/ac7e45
10.3847/2041-8213/ab700c
10.1038/380603a0
10.1007/978-3-540-44767-2_11
10.1111/j.1365-2966.2012.21553.x
10.1086/310024
10.1111/j.1365-2966.2004.08353.x
10.1088/0004-637X/723/1/364
10.1086/163168
10.1109/TPAMI.2017.2754254
10.1093/mnras/216.1.17
10.1086/305615
10.1093/mnras/stt2454
10.1006/aima.1997.1650
10.3847/1538-4365/ab465a
10.1093/mnras/stx3055
10.1093/mnras/stu2289
10.1093/mnras/274.1.99
10.1093/mnras/stu768
10.1111/j.1365-2966.2010.16823.x
10.1093/mnras/stx1976
10.1007/978-3-030-91608-4_49
10.1111/j.1365-2966.2004.07661.x
10.1111/j.1365-2966.2006.11312.x
10.1093/mnras/sts416
10.3847/1538-3881/ab1b6e
10.1111/j.1365-2966.2011.18820.x
10.1111/j.1365-2966.2012.21636.x
10.3847/1538-4357/ac2cbe
10.1111/j.1365-2966.2009.15338.x
10.1093/mnras/stx2638
10.1111/j.1365-2966.2004.08191.x
10.1016/j.artint.2021.103579
10.1093/mnras/192.2.321
10.1093/mnras/stw3328
10.1093/mnras/sty3216
10.7551/mitpress/1290.001.0001
10.1088/1475-7516/2011/05/015
10.3847/1538-4357/ac990a
10.1086/504513
10.1111/j.1365-2966.2006.10511.x
10.1111/j.1365-2966.2006.11318.x
10.1162/neco_a_01478
10.3847/1538-3881/ac8053
10.1093/mnras/stv1389
10.1086/301513
10.1088/0004-637X/754/2/126
10.1016/j.neucom.2021.05.108
10.1007/s00454-002-2885-2
10.1111/j.1365-2966.2011.18394.x
10.1016/j.ascom.2016.03.004
10.1093/mnras/stu2166
10.1093/mnras/204.3.891
10.1051/0004-6361:20077880
10.1051/0004-6361/201936859
10.1111/j.1365-2966.2005.09655.x
ContentType Journal Article
Copyright 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society 2023
2023 © 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society 2023
– notice: 2023 © 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1093/mnras/stad428
DatabaseName Oxford Journals Open Access Collection
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Technology Research Database
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 4539
ExternalDocumentID 10_1093_mnras_stad428
10.1093/mnras/stad428
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMMB
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABVLG
ABXVV
ABZBJ
ACBNA
ACBWZ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEFGJ
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGMDO
AGQPQ
AGSYK
AGXDD
AHGBF
AHXPO
AIDQK
AIDYY
AJAOE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
CITATION
ROX
8FD
H8D
L7M
ID FETCH-LOGICAL-c337t-a4f0e6ea5af300cfae1ab50c267d942b8d15748671b591f7260ff42efe0ae2573
IEDL.DBID TOX
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001043810000053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-8711
1365-2966
IngestDate Thu Nov 13 04:41:11 EST 2025
Sat Nov 29 05:37:28 EST 2025
Tue Nov 18 21:24:03 EST 2025
Mon Nov 17 07:40:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords techniques: miscellaneous
methods: data analysis
large-scale structure of Universe
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-a4f0e6ea5af300cfae1ab50c267d942b8d15748671b591f7260ff42efe0ae2573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8516-3324
0000-0002-0428-849X
0000-0001-7621-947X
OpenAccessLink https://dx.doi.org/10.1093/mnras/stad428
PQID 3271202589
PQPubID 42411
PageCount 23
ParticipantIDs proquest_journals_3271202589
crossref_citationtrail_10_1093_mnras_stad428
crossref_primary_10_1093_mnras_stad428
oup_primary_10_1093_mnras_stad428
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Canducci (2023022121094478700_) 2022; 41
Cautun (2023022121094478700_) 2011
Chun (2023022121094478700_) 2022; 925
Bonnaire (2023022121094478700_) 2020; 637
Cautun (2023022121094478700_) 2013; 429
Dolag (2023022121094478700_) 2006; 370
Pauls (2023022121094478700_) 1995; 274
Hahn (2023022121094478700_) 2007; 375
Alpaslan (2023022121094478700_) 2014; 438
Hahn (2023022121094478700_) 2011; 415
Metuki (2023022121094478700_) 2015; 446
Van de Weygaert (2023022121094478700_) 2009
Laigle (2023022121094478700_) 2018; 474
Lewis (2023022121094478700_) 2011
Tempel (2023022121094478700_) 2016; 16
Genovese (2023022121094478700_) 2012
Canducci (2023022121094478700_) 2022; 302
Jones (2023022121094478700_) 2004; 355
Schaap (2023022121094478700_) 2000; 363
Sheth (2023022121094478700_) 2004; 354
Aragón-Calvo (2023022121094478700_) 2010; 723
Smith (2023022121094478700_) 2022; 164
Sheth (2023022121094478700_) 2004; 350
Codis (2023022121094478700_) 2012; 427
Tempel (2023022121094478700_) 2014; 438
(2023022121094478700_) 2002; 28
Falck (2023022121094478700_) 2012; 754
Peebles (2023022121094478700_) 1980
Falck (2023022121094478700_) 2013
Abel (2023022121094478700_) 2012; 427
Jhee (2023022121094478700_) 2022
Shen (2023022121094478700_) 2006; 645
Macri (2023022121094478700_) 2019; 245
Aragón-Calvo (2023022121094478700_) 2007; 474
Dorigo (2023022121094478700_) 2004
Bond (2023022121094478700_) 1996; 380
Forman (2023022121094478700_) 1998; 134
York (2023022121094478700_) 2000; 120
Sathyaprakash (2023022121094478700_) 1996; 462
Little (2023022121094478700_) 2020; 21
Luber (2023022121094478700_) 2019; 157
Ramachandra (2023022121094478700_) 2015; 452
Kraljic (2023022121094478700_) 2019; 483
González (2023022121094478700_) 2010; 407
Jones (2023022121094478700_) 2009; 399
Shandarin (2023022121094478700_) 2011; 2011
Taghribi (2023022121094478700_) 2022
Kraljic (2023022121094478700_) 2018; 474
Gyulassy (2023022121094478700_) 2008
Davis (2023022121094478700_) 1985; 292
Kitaura (2023022121094478700_) 2012; 425
Colberg (2023022121094478700_) 2005; 359
Klypin (2023022121094478700_) 1983; 204
Barrow (2023022121094478700_) 1985; 216
Kim (2023022121094478700_) 2022; 935
Mohammadi (2023022121094478700_) 2022; 34
Smith (2023022121094478700_) 2021; 912
Burchett (2023022121094478700_) 2020; 891
Graham (2023022121094478700_) 1995; 275
Jenkins (2023022121094478700_) 1998; 499
Kleiner (2023022121094478700_) 2017; 466
Doroshkevich (2023022121094478700_) 1980; 192
Wang (2023022121094478700_) 2014
Laigle (2023022121094478700_) 2015; 446
Hoffman (2023022121094478700_) 2012; 425
Wang (2023022121094478700_) 2010
Wu (2023022121094478700_) 2018; 40
Canducci (2023022121094478700_) 2021
Lambert (2023022121094478700_) 2020; 497
Cautun (2023022121094478700_) 2014; 441
Libeskind (2023022121094478700_) 2018; 473
Springel (2023022121094478700_) 2005; 364
Smith (2023022121094478700_) 2022; 934
Taghribi (2023022121094478700_) 2022; 470
Colberg (2023022121094478700_) 2007; 375
Bishop (2023022121094478700_) 2006
Bond (2023022121094478700_) 2010; 406
Sousbie (2023022121094478700_) 2011; 414
References_xml – volume: 359
  start-page: 272
  year: 2005
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.08897.x
– volume: 425
  start-page: 2443
  year: 2012
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21614.x
– start-page: 788
  volume-title: J. American Stat. Asso.
  year: 2012
  ident: 2023022121094478700_
  doi: 10.1080/01621459.2012.682527
– start-page: 1
  year: 2022
  ident: 2023022121094478700_
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2022.3177368
– volume: 427
  start-page: 61
  year: 2012
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21754.x
– volume: 438
  start-page: 177
  year: 2014
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/stt2136
– volume-title: The Large-Scale Structure of the Universe
  year: 1980
  ident: 2023022121094478700_
– volume: 275
  start-page: 790
  year: 1995
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/275.3.790
– volume: 414
  start-page: 384
  year: 2011
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18395.x
– volume-title: Astrophysics Source Code Library, record ascl: 1304.012
  year: 2013
  ident: 2023022121094478700_
– year: 2008
  ident: 2023022121094478700_
– volume: 497
  start-page: 2954
  year: 2020
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1946
– volume: 41
  start-page: 100658
  year: 2022
  ident: 2023022121094478700_
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2022.100658
– start-page: 457.16
  volume-title: American Astronomical Society Meeting Abstracts #223
  year: 2014
  ident: 2023022121094478700_
– volume: 407
  start-page: 1449
  year: 2010
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17015.x
– volume: 912
  start-page: 149
  year: 2021
  ident: 2023022121094478700_
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe1b1
– volume: 934
  start-page: 86
  year: 2022
  ident: 2023022121094478700_
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac7ab5
– volume: 935
  start-page: 71
  year: 2022
  ident: 2023022121094478700_
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac7e45
– volume: 891
  start-page: L35
  year: 2020
  ident: 2023022121094478700_
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab700c
– volume: 21
  start-page: 1
  year: 2020
  ident: 2023022121094478700_
  publication-title: J. Mach. Learn. Res.
– volume: 380
  start-page: 603
  year: 1996
  ident: 2023022121094478700_
  publication-title: Nature
  doi: 10.1038/380603a0
– start-page: 291
  volume-title: Data Analysis in Cosmology
  year: 2009
  ident: 2023022121094478700_
  doi: 10.1007/978-3-540-44767-2_11
– volume: 425
  start-page: 2049
  year: 2012
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21553.x
– volume: 462
  start-page: L5
  year: 1996
  ident: 2023022121094478700_
  publication-title: ApJ
  doi: 10.1086/310024
– volume: 355
  start-page: 747
  year: 2004
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08353.x
– volume: 723
  start-page: 364
  year: 2010
  ident: 2023022121094478700_
  publication-title: ApJ
  doi: 10.1088/0004-637X/723/1/364
– volume: 292
  start-page: 371
  year: 1985
  ident: 2023022121094478700_
  publication-title: ApJ
  doi: 10.1086/163168
– volume: 40
  start-page: 2529
  year: 2018
  ident: 2023022121094478700_
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2754254
– volume: 216
  start-page: 17
  year: 1985
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/216.1.17
– volume: 499
  start-page: 20
  year: 1998
  ident: 2023022121094478700_
  publication-title: ApJ
  doi: 10.1086/305615
– volume: 438
  start-page: 3465
  year: 2014
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/stt2454
– volume: 134
  start-page: 90
  year: 1998
  ident: 2023022121094478700_
  publication-title: Adv. Math.
  doi: 10.1006/aima.1997.1650
– volume: 245
  start-page: 6
  year: 2019
  ident: 2023022121094478700_
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab465a
– volume: 474
  start-page: 5437
  year: 2018
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3055
– volume: 446
  start-page: 2744
  year: 2015
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2289
– volume: 274
  start-page: 99
  year: 1995
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/274.1.99
– volume: 441
  start-page: 2923
  year: 2014
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/stu768
– volume: 406
  start-page: 1609
  year: 2010
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16823.x
– volume: 473
  start-page: 1195
  year: 2018
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1976
– start-page: 493
  volume-title: Intelligent Data Engineering and Automated Learning–IDEAL 2021
  year: 2021
  ident: 2023022121094478700_
  doi: 10.1007/978-3-030-91608-4_49
– volume-title: Astrophysics Source Code Library
  year: 2011
  ident: 2023022121094478700_
– volume: 350
  start-page: 517
  year: 2004
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07661.x
– volume: 375
  start-page: 337
  year: 2007
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11312.x
– volume: 429
  start-page: 1286
  year: 2013
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/sts416
– volume: 157
  start-page: 254
  year: 2019
  ident: 2023022121094478700_
  publication-title: AJ
  doi: 10.3847/1538-3881/ab1b6e
– volume: 415
  start-page: 2101
  year: 2011
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18820.x
– volume: 427
  start-page: 3320
  year: 2012
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21636.x
– volume: 925
  start-page: 103
  year: 2022
  ident: 2023022121094478700_
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac2cbe
– volume: 399
  start-page: 683
  year: 2009
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15338.x
– volume: 474
  start-page: 547
  year: 2018
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2638
– start-page: 1759
  year: 2010
  ident: 2023022121094478700_
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2010)
– volume: 354
  start-page: 332
  year: 2004
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08191.x
– volume: 302
  start-page: 103579
  year: 2022
  ident: 2023022121094478700_
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2021.103579
– volume: 192
  start-page: 321
  year: 1980
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/192.2.321
– volume: 466
  start-page: 4692
  year: 2017
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/stw3328
– volume: 483
  start-page: 3227
  year: 2019
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3216
– volume-title: Ant Colony Optimization
  year: 2004
  ident: 2023022121094478700_
  doi: 10.7551/mitpress/1290.001.0001
– volume: 2011
  start-page: 015
  year: 2011
  ident: 2023022121094478700_
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2011/05/015
– start-page: 2
  volume-title: ApJ
  year: 2022
  ident: 2023022121094478700_
  doi: 10.3847/1538-4357/ac990a
– volume: 645
  start-page: 783
  year: 2006
  ident: 2023022121094478700_
  publication-title: ApJ
  doi: 10.1086/504513
– volume: 370
  start-page: 656
  year: 2006
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10511.x
– volume: 375
  start-page: 489
  year: 2007
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11318.x
– volume: 34
  start-page: 595
  year: 2022
  ident: 2023022121094478700_
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01478
– volume: 164
  start-page: 95
  year: 2022
  ident: 2023022121094478700_
  publication-title: AJ
  doi: 10.3847/1538-3881/ac8053
– volume-title: Astrophysics Source Code Library, record ascl: 1102.026
  year: 2011
  ident: 2023022121094478700_
– volume: 452
  start-page: 1643
  year: 2015
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1389
– volume: 120
  start-page: 1579
  year: 2000
  ident: 2023022121094478700_
  publication-title: AJ
  doi: 10.1086/301513
– volume: 754
  start-page: 126
  year: 2012
  ident: 2023022121094478700_
  publication-title: ApJ
  doi: 10.1088/0004-637X/754/2/126
– volume-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
  year: 2006
  ident: 2023022121094478700_
– volume: 470
  start-page: 376
  year: 2022
  ident: 2023022121094478700_
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.05.108
– volume: 363
  start-page: L29
  year: 2000
  ident: 2023022121094478700_
  publication-title: A&A
– volume: 28
  start-page: 511
  year: 2002
  ident: 2023022121094478700_
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-002-2885-2
– volume: 414
  start-page: 350
  year: 2011
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18394.x
– volume: 16
  start-page: 17
  year: 2016
  ident: 2023022121094478700_
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2016.03.004
– volume: 446
  start-page: 1458
  year: 2015
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2166
– volume: 204
  start-page: 891
  year: 1983
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1093/mnras/204.3.891
– volume: 474
  start-page: 315
  year: 2007
  ident: 2023022121094478700_
  publication-title: A&A
  doi: 10.1051/0004-6361:20077880
– volume: 637
  start-page: A18
  year: 2020
  ident: 2023022121094478700_
  publication-title: A&A
  doi: 10.1051/0004-6361/201936859
– volume: 364
  start-page: 1105
  year: 2005
  ident: 2023022121094478700_
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09655.x
SSID ssj0004326
Score 2.5010712
Snippet ABSTRACT The distribution of galaxies and clusters of galaxies on the mega-parsec scale of the Universe follows an intricate pattern now famously known as the...
The distribution of galaxies and clusters of galaxies on the mega-parsec scale of the Universe follows an intricate pattern now famously known as the...
ABSTRACT The distribution of galaxies and clusters of galaxies on the mega-parsec scale of the Universe follows an intricate pattern now famously known as the...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4517
SubjectTerms Big Data
Celestial bodies
Density
Dimensional analysis
Galactic clusters
Galaxy distribution
Large scale structure of the universe
Machine learning
Probabilistic models
Stars & galaxies
Swarm intelligence
Title Swarm-intelligence-based extraction and manifold crawling along the Large-Scale Structure
URI https://www.proquest.com/docview/3271202589
Volume 520
WOSCitedRecordID wos001043810000053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8iHrz4MZVNp0SQnSxrmmZpj2M4PMwpbMo8laRNYLC10k6H_70vaacOFXcJLU1LeS95eZ-_h9CVYkwrajJqhE4c3yTlCA3CUPqBIr4Cc9tWyD0N-HAYTCbhQ-XvKH4J4Ye0PU9zUbRBV0pAVQZhS1hgWhWM7ydfBZDU9lWz-ItgAZAKTPPH22uHz1pB20oC22Olv7_5Dx2gvUp1xN2S14doS6U1VO8Wxpmdzd9xC9vr0ldR1FDjDhTiLLd-c3jYm01BO7V3R-h5tBT53Jl-A-R0zIGWYBDWeVnsgEWaYAOPobNZguNcLE3pOhazDEbQG_HAZJE7I-CywiOLQ_uaq2P02L8Z926dqsuCE1PKF47wtas6SjChqevGWigiJHNjr8OT0PdkkBDGDS4fkSwkmoMBpLXvKa1coWDD0xO0nWapqiMMthyXtCOZD6QhgQpFLGH0TOwxlIw30PWK_FFcQZCbThizqAyF08iSNqpI20Ctz-kvJfbGXxMvgZf_zWmuOB1V27SIqMcJLEcWhKcbfOIM7Zpm82XeThNtA2HVOdqJ3xbTIr-wK_IDiFTjEg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swarm-intelligence-based+extraction+and+manifold+crawling+along+the+Large-Scale+Structure&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Awad%2C+Petra&rft.au=Peletier%2C+Reynier&rft.au=Canducci%2C+Marco&rft.au=Smith%2C+Rory&rft.date=2023-04-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=520&rft.issue=3&rft.spage=4517&rft.epage=4539&rft_id=info:doi/10.1093%2Fmnras%2Fstad428&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon