Extensions of generalized differential calculus in Asplund spaces
We develop an extended generalized differential calculus for normal cones to nonconvex sets, coderivatives of set-valued mappings, and subdifferential of extended-real-valued functions in infinite dimensions. This is a major area of modern variational analysis important for many applications, partic...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 272; číslo 1; s. 164 - 186 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA
Elsevier Inc
01.08.2002
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We develop an extended generalized differential calculus for normal cones to nonconvex sets, coderivatives of set-valued mappings, and subdifferential of extended-real-valued functions in infinite dimensions. This is a major area of modern variational analysis important for many applications, particularly to optimization, sensitivity, and control. We develop a unified geometric approach to the generalized differential calculus and obtain new results in this direction in a broad setting of Asplund spaces. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/S0022-247X(02)00149-X |