An Improved K-Means Clustering Intrusion Detection Algorithm for Wireless Networks Based on Federated Learning

The existing wireless network intrusion detection algorithms based on supervised learning confront many challenges, such as high false detection rate, difficulty in finding unknown attack behaviors, and high cost in obtaining labeled training data sets. This paper presents an improved k-means cluste...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing Vol. 2021; no. 1
Main Authors: Xie, Bin, Dong, Xinyu, Wang, Changguang
Format: Journal Article
Language:English
Published: Oxford Hindawi 2021
John Wiley & Sons, Inc
Subjects:
ISSN:1530-8669, 1530-8677
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The existing wireless network intrusion detection algorithms based on supervised learning confront many challenges, such as high false detection rate, difficulty in finding unknown attack behaviors, and high cost in obtaining labeled training data sets. This paper presents an improved k-means clustering algorithm for detecting intrusions on wireless networks based on Federated Learning. The proposed algorithm allows multiple participants to train a global model without sharing their private data and can expand the amount of data in the training model and protect the local data of each participant. Furthermore, the cosine distance of multiple perspectives is introduced in the algorithm to measure the similarity between network data objects in the improved k-means clustering process, making the clustering results more reasonable and the judgment of network data behavior more accurate. The AWID, an open wireless network attack data set, is selected as the experimental data set. Its dimensionality reduces by the method of principal component analysis (PCA). Experimental results show that the improved k-means clustering intrusion detection algorithm based on Federated Learning has better performance in detection rate, false detection rate, and detection of unknown attack types.
AbstractList The existing wireless network intrusion detection algorithms based on supervised learning confront many challenges, such as high false detection rate, difficulty in finding unknown attack behaviors, and high cost in obtaining labeled training data sets. This paper presents an improved k ‐means clustering algorithm for detecting intrusions on wireless networks based on Federated Learning. The proposed algorithm allows multiple participants to train a global model without sharing their private data and can expand the amount of data in the training model and protect the local data of each participant. Furthermore, the cosine distance of multiple perspectives is introduced in the algorithm to measure the similarity between network data objects in the improved k ‐means clustering process, making the clustering results more reasonable and the judgment of network data behavior more accurate. The AWID, an open wireless network attack data set, is selected as the experimental data set. Its dimensionality reduces by the method of principal component analysis (PCA). Experimental results show that the improved k ‐means clustering intrusion detection algorithm based on Federated Learning has better performance in detection rate, false detection rate, and detection of unknown attack types.
The existing wireless network intrusion detection algorithms based on supervised learning confront many challenges, such as high false detection rate, difficulty in finding unknown attack behaviors, and high cost in obtaining labeled training data sets. This paper presents an improved k-means clustering algorithm for detecting intrusions on wireless networks based on Federated Learning. The proposed algorithm allows multiple participants to train a global model without sharing their private data and can expand the amount of data in the training model and protect the local data of each participant. Furthermore, the cosine distance of multiple perspectives is introduced in the algorithm to measure the similarity between network data objects in the improved k-means clustering process, making the clustering results more reasonable and the judgment of network data behavior more accurate. The AWID, an open wireless network attack data set, is selected as the experimental data set. Its dimensionality reduces by the method of principal component analysis (PCA). Experimental results show that the improved k-means clustering intrusion detection algorithm based on Federated Learning has better performance in detection rate, false detection rate, and detection of unknown attack types.
Author Xie, Bin
Wang, Changguang
Dong, Xinyu
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0003-4477-6938
  surname: Xie
  fullname: Xie, Bin
  organization: College of Computer and Cyber SecurityHebei Normal UniversityShijiazhuang 050024Chinahebtu.edu.cn
– sequence: 2
  givenname: Xinyu
  orcidid: 0000-0001-8092-5561
  surname: Dong
  fullname: Dong, Xinyu
  organization: College of Computer and Cyber SecurityHebei Normal UniversityShijiazhuang 050024Chinahebtu.edu.cn
– sequence: 3
  givenname: Changguang
  orcidid: 0000-0002-2054-9215
  surname: Wang
  fullname: Wang, Changguang
  organization: College of Computer and Cyber SecurityHebei Normal UniversityShijiazhuang 050024Chinahebtu.edu.cn
BookMark eNp9kE9PAjEQxRuDiYDe_ABNPOpK_9ju7hFRlIh60XjclO4sFJcutl2J394SiAcTPc285DfvZV4PdWxjAaFTSi4pFWLACKODnDPGZXaAulRwkmQyTTs_u8yPUM_7JSGER7iL7NDiyWrtmk8o8UPyCMp6PKpbH8AZO8cTG1zrTWPxDQTQYbsN63njTFiscNU4_GYc1OA9foKwady7x9fKR7MIjqEEp0IUU1DORr9jdFip2sPJfvbR6_j2ZXSfTJ_vJqPhNNGcpyHJKWEkV5WelURXwDTJqCi1jAoqWSrCdS5zUXHKBK-uNEgQOchSpBmfAVO8j852vvGzjxZ8KJZN62yMLJiQnIs8zWSkLnaUdo33Dqpi7cxKua-CkmLbaLFttNg3GnH2C9cmqG0lwSlT_3V0vjtaGFuqjfk_4hsnMohg
CitedBy_id crossref_primary_10_1145_3731596
crossref_primary_10_3390_electronics11193138
crossref_primary_10_3390_electronics12091972
crossref_primary_10_1109_TMLCN_2025_3564587
crossref_primary_10_1038_s41598_025_92509_4
crossref_primary_10_1007_s11704_023_3026_8
crossref_primary_10_1007_s43926_025_00160_2
crossref_primary_10_1049_cmu2_12744
crossref_primary_10_1016_j_eswa_2024_123807
Cites_doi 10.1007/s12652-020-01919-x
10.1016/j.comnet.2020.107391
10.1109/ACCESS.2020.3034015
10.1007/s12652-021-03077-0
10.1016/j.isatra.2020.11.016
10.1002/cpe.5242
10.1016/j.ins.2021.03.058
10.1145/3298981
10.1109/COMST.2015.2402161
10.1016/j.compind.2021.103459
10.1016/j.ins.2021.04.001
10.1016/j.ins.2021.03.039
10.1109/TPDS.2021.3056773
10.1007/s10922-021-09606-8
ContentType Journal Article
Copyright Copyright © 2021 Bin Xie et al.
Copyright © 2021 Bin Xie et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2021 Bin Xie et al.
– notice: Copyright © 2021 Bin Xie et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2021/9322368
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Liu, Ximeng
Editor_xml – sequence: 1
  givenname: Ximeng
  surname: Liu
  fullname: Liu, Ximeng
ExternalDocumentID 10_1155_2021_9322368
GrantInformation_xml – fundername: Hebei Normal University
  grantid: L2020K09
– fundername: Science Foundation of Returned Overseas of Hebei Province of China
  grantid: C2020342
– fundername: National Natural Science Foundation of China
  grantid: 62076088
– fundername: Natural Science Foundation of Hebei Province
  grantid: F2021205004; F2019205163
GroupedDBID .3N
.4S
.DC
.GA
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABIJN
ABPVW
ACGFO
ADBBV
ADIZJ
AENEX
AEUQT
AFBPY
AFKRA
AIAGR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ARCSS
ASPBG
ATUGU
AVWKF
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
EDO
F00
F01
F04
F21
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HZ~
I-F
IAO
ITC
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LITHE
LP6
LP7
M0N
MK4
MY~
N04
N05
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WLBEL
XPP
XV2
~IA
~WT
.Y3
24P
31~
5VS
AAEVG
AAMMB
AANHP
AAYXX
AAZKR
ACBWZ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AEUCX
AFFHD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
AZFZN
BDRZF
BFHJK
CITATION
EJD
FEDTE
H13
HF~
HVGLF
LH4
LW6
O8X
PHGZM
PHGZT
PQGLB
ROL
WYUIH
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c337t-910209afcbd0cfe2c0815dc6d0cef6da03c9695f31253f4ce6e59e6d5783be2a3
IEDL.DBID K7-
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687445100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-8669
IngestDate Fri Jul 25 09:29:54 EDT 2025
Tue Nov 18 22:28:06 EST 2025
Sat Nov 29 01:44:03 EST 2025
Sun Jun 02 18:51:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-910209afcbd0cfe2c0815dc6d0cef6da03c9695f31253f4ce6e59e6d5783be2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2054-9215
0000-0001-8092-5561
0000-0003-4477-6938
OpenAccessLink https://www.proquest.com/docview/2563359786?pq-origsite=%requestingapplication%
PQID 2563359786
PQPubID 2034344
ParticipantIDs proquest_journals_2563359786
crossref_primary_10_1155_2021_9322368
crossref_citationtrail_10_1155_2021_9322368
hindawi_primary_10_1155_2021_9322368
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_10_22_2
e_1_2_10_21_2
Blaise A. (e_1_2_10_25_2) 2020; 180
Chenghua T. (e_1_2_10_2_2) 2015; 52
Liu Q. (e_1_2_10_19_2) 2019; 55
He L. (e_1_2_10_24_2) 2020; 37
Wang R. (e_1_2_10_7_2) 2020; 20
Ting W. (e_1_2_10_11_2) 2020; 57
Wang L. (e_1_2_10_14_2) 2021; 2021
Guan J. (e_1_2_10_12_2) 2004; 9
Chen X. (e_1_2_10_26_2) 2018; 41
e_1_2_10_1_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_18_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_13_2
e_1_2_10_6_2
Wei X. (e_1_2_10_9_2)
Li F. (e_1_2_10_10_2) 2014; 50
Zhuang C. (e_1_2_10_5_2) 2016; 36
Liu R. (e_1_2_10_15_2) 2018; 45
Qian Y. (e_1_2_10_20_2) 2015; 42
Zhao Y. (e_1_2_10_8_2) 2021; 48
Liu J. (e_1_2_10_23_2) 2021; 106
e_1_2_10_28_2
e_1_2_10_29_2
e_1_2_10_27_2
References_xml – ident: e_1_2_10_22_2
  doi: 10.1007/s12652-020-01919-x
– volume: 180
  year: 2020
  ident: e_1_2_10_25_2
  article-title: Detection of zero-day attacks: an unsupervised port-based approach
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2020.107391
– volume: 41
  start-page: 254
  year: 2018
  ident: e_1_2_10_26_2
  article-title: A surey on cross—project software defect predicton methods
  publication-title: Chinese Journal of Computers
– volume: 20
  start-page: 47
  year: 2020
  ident: e_1_2_10_7_2
  article-title: An intrusion detection method based on federated learning and convolutional neural network
  publication-title: Netinfo Security
– ident: e_1_2_10_29_2
  doi: 10.1109/ACCESS.2020.3034015
– volume: 36
  start-page: 379
  year: 2016
  ident: e_1_2_10_5_2
  article-title: Anomaly detection for power consumption patterns based on unsupervised learning
  publication-title: Proceedings of the CSEE
– volume: 42
  start-page: 134
  year: 2015
  ident: e_1_2_10_20_2
  article-title: Intrusion detection method based on multi-label and semi-supervised learning
  publication-title: Computer Science
– ident: e_1_2_10_21_2
  doi: 10.1007/s12652-021-03077-0
– ident: e_1_2_10_1_2
  doi: 10.1016/j.isatra.2020.11.016
– ident: e_1_2_10_27_2
  doi: 10.1002/cpe.5242
– ident: e_1_2_10_18_2
  doi: 10.1016/j.ins.2021.03.058
– volume: 50
  start-page: 505
  year: 2014
  ident: e_1_2_10_10_2
  article-title: Whole-granulation cluster algorithm
  publication-title: Journal of Nanjing University(Natural Science)
– volume: 55
  start-page: 140
  year: 2019
  ident: e_1_2_10_19_2
  article-title: Three-way clustering analysis based onεneighborhood
  publication-title: Computer Engineering and Applications
– ident: e_1_2_10_6_2
  doi: 10.1145/3298981
– volume: 9
  start-page: 1474
  year: 2004
  ident: e_1_2_10_12_2
  article-title: Unsupervised anomaly detection based on principal components analysis
  publication-title: Journal of Computer Research and Development
– ident: e_1_2_10_28_2
  doi: 10.1109/COMST.2015.2402161
– volume: 106
  year: 2021
  ident: e_1_2_10_23_2
  article-title: A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM
  publication-title: Computers & Security
– ident: e_1_2_10_4_2
  doi: 10.1016/j.compind.2021.103459
– volume: 52
  start-page: 718
  year: 2015
  ident: e_1_2_10_2_2
  article-title: Anomaly intrusion behavior detection based on fuzzy clustering and features selsection
  publication-title: Journal of Computer Research and Development
– volume: 2021
  start-page: 1
  year: 2021
  ident: e_1_2_10_14_2
  article-title: Mining network traffic with the k-means clustering algorithm for stepping-stone intrusion detection
  publication-title: Wireless Communications & Mobile Computing
– ident: e_1_2_10_17_2
  doi: 10.1016/j.ins.2021.04.001
– volume: 57
  start-page: 791
  year: 2020
  ident: e_1_2_10_11_2
  article-title: The optimization method of wireless network attacks detection based on semi-supervised learning
  publication-title: Journal of Computer Research and Development
– ident: e_1_2_10_16_2
  doi: 10.1016/j.ins.2021.03.039
– ident: e_1_2_10_9_2
  article-title: Social networks cross-platform malicious user detection method based on vertical federated learning
  publication-title: Journal of Chinese Computer Systems
– volume: 37
  start-page: 1400
  year: 2020
  ident: e_1_2_10_24_2
  article-title: Conditional-probability zone transformation coding for categorical features
  publication-title: Application Research of Computers
– volume: 48
  start-page: 92
  year: 2021
  ident: e_1_2_10_8_2
  article-title: Network anomaly detection based on federated learning
  publication-title: Journal of Beijing University of Chemical Technology (Natural Science Edition)
– ident: e_1_2_10_13_2
  doi: 10.1109/TPDS.2021.3056773
– volume: 45
  start-page: 292
  year: 2018
  ident: e_1_2_10_15_2
  article-title: Study on parallel k-means algorithm based on CUDA
  publication-title: Computer Science
– ident: e_1_2_10_3_2
  doi: 10.1007/s10922-021-09606-8
SSID ssj0003021
Score 2.3205838
Snippet The existing wireless network intrusion detection algorithms based on supervised learning confront many challenges, such as high false detection rate,...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Behavior
Cluster analysis
Clustering
Datasets
Federated learning
Intrusion detection systems
Machine learning
Principal components analysis
Privacy
Vector quantization
Wireless networks
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46FPRB_InTKXmYTxKsjUmTxzkdE3WIqOyttOl1G9RO7NR_30ubDXWIPgauebjL3X1fe_1CSBOLoko9CUyn2mf24m2mIABmfCTNQiCAKKd8n26CXk_1-_rOiSQV85_wsdtZen56gjDDx20XyaIS9vDed_uzgss938miekxJqafz7T-e_dZ5loeW8n6M5kpw2Vc662TNAULaqiK4QRYg3ySrX2QCt0jeymlF_iGh1-wWsL3QdvZmNQ7QgF7l9s8JdDC9gEk5WpXTVjYYI-8fPlNEpdTOuGZY02ivmvou6Dl2r4SiYceqSSDgTKiTWh1sk8fO5UO7y9w9CcxwHkywXiHm01Fq4sQzKfgG27xIjMQVpDKJPG601CLlCGZ4emZAgtAgE0xWHoMf8R1Sy8c57BLqQRADKAkRQpVIpCrCfDVSI2wEreKoTo6nPgyNExG3d1lkYUkmhAitx0Pn8To5mlm_VOIZv9g1XTj-MGtMYxW6TCtChGycIytScu9_u-yTFbusXqM0SA0jBAdkybxPRsXrYXmyPgFVUcXP
  priority: 102
  providerName: Hindawi Publishing
Title An Improved K-Means Clustering Intrusion Detection Algorithm for Wireless Networks Based on Federated Learning
URI https://dx.doi.org/10.1155/2021/9322368
https://www.proquest.com/docview/2563359786
Volume 2021
WOSCitedRecordID wos000687445100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: K7-
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: PIMPY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKujBt_gse6gnWZpm3U32JFVbWrQlFJXqJaSbiQoxPlr17zubbLUg6sFLIMmQBGbzzTeTyTeEVBAU_cSRwFSiXGYGbzMfPGDaxaRZCCQQeZfv1bnX7fr9vgpswW1o2yrHmJgDdfyoTY28iqGZc2S_vjx6emZmapT5umpHaEyTUs11a2adn3nsE4m541q9VIf5Uqpx47sQJuevVZG7uNyIrE6EpLk7kwu_33_D5jzgNJf--6jLZNFSTVov1sYKmYJslSxMCBCukaye0aKsADE9Yx3AwEVP0lejnoAGtJ2ZfzLQdfQURnnTVkbr6S3ebHT3QJHvUtM9myJa0m7RTz6kxxgXY4qGTaNTgVQ2plbE9XadXDYbFyctZicwMM25N0IkRDapokQPYkcn4GokECLWEvcgkXHkcK2kEglHmsSTQw0ShAIZIwzwAbgR3yAz2WMGm4Q64A0AfAkRkqBIJH6ESKClQkIKyh9EW-Rg7IRQW3lyMyUjDfM0RYjQuCy0Ltsi-5_WT4Usxw92FevPP8x2x54M7Ts8DL_cuP376R0yby5WFGZ2yQx6BvbIrH4b3Q9fyqR03OgGvXK-NHEbiBs8FrQ7wTXu9Vr9D-Ch69g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VTcCBHbEU8AFOyCLEtRsfECqFiqql4gAIcQmpMwGkEpYWKn6Kb2ScBZAQcOLAMcrIkuPneW-c8QzAOjlFL3IUch1pl9vG29zDMnLjUtAsJQmIJMv3rFlutbzzc31cgNf8LoxNq8x9YuKowztjz8i3iJqFIPXrqd37B267Rtm_q3kLjRQWDXzpU8jW3anv0_puuG7t4KR6yLOuAtwIUe7R7iaFpIPItEPHROgaIkUZGkVPGKkwcITRSstIEPWLqGRQodSoQoK2aKMbCBp3AIZKJQqWaP8cy4t3zy8cN6vP6nBPKZ0n2ktpzxi2t0grucIWdf1EgSPXNvbu33zhgoTgapP_7dNMwUQmpVklxf40FDCegfFPBRZnIa7ELD02wZA1-BESMbNq58lWhyADVo_tnROCJtvHXpKUFrNK54om17u-ZaTnmc0O7hAbsFaaL99le8T7ISPDmq3DQVI9ZFmR2qs5OP2TCc_DYHwX4wIwB8ttRE9hQCIvkJEXkKczSpPgRu21g0XYzBfdN1n5ddsFpOMnYZiUvoWIn0FkETbere_TsiPf2K1n-PnFrJgjx898VNf_gM3Sz6_XYPTw5KjpN-utxjKM2YHTQ6giDNIq4QoMm-feTfdxNdkODC7_GmRvW5VFvQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xKIgeoLwEhYIPcKqsDTF24gOqFpYVq6WrPbQV6iVknfGCtITHLiD-Gr-u48QBpIr2xIFjlJElx5_n-8YZzwBskVOMbaCQa6tD7hpv8xgj5CakoFlKEhBFlu-v46jTiU9OdHcMHqu7MC6tsvKJhaPOLo07I68RNQtB6jdWNevTIrqN5rera-46SLk_rVU7jRIibXy4p_BtuNdq0Fpvh2Hz8MfBEfcdBrgRIhrRTie1pFNrellgLIaGCFJmRtETWpWlgTBaaWkFyQBhdw0qlBpVRjAXPQxTQeOOw2REMaYL_Lry9xMLiCD0tVoDHiulq6R7Kd15w06NdFMoXIHXF3Q4debi8Pvzv3ihILvm3Hv-TJ9g1ktsVi_3xDyMYb4AH18UXlyEvJ6z8jgFM9bm35EImx0Mbl3VCDJgrdzdRSHIsgaOimS1nNUHfZrc6OyCkc5nLmt4QCzBOmUe_ZDtkx7IGBk2XX0OkvAZ88Vr-0vw800mvAwT-WWOK8ACjHqIscKUxF8qbZySBzRKkxBHHffSVfhaASAxviy76w4ySIrwTMrEwSXxcFmF7Sfrq7IcySt2Wx5L_zFbr1CUeN81TJ4h9PnfrzdhmrCVHLc67TWYceOWZ1PrMEGLhF_gg7kbnQ9vNoqdweD0rTH2B112TpE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+K-Means+Clustering+Intrusion+Detection+Algorithm+for+Wireless+Networks+Based+on+Federated+Learning&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Xie%2C+Bin&rft.au=Dong%2C+Xinyu&rft.au=Wang%2C+Changguang&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F9322368&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon