An entropy-based, self-adaptive predictive algorithm for battery degradation

In order to avoid excess waste generation and provide much needed energy storage capacity, lithium ion (Li-ion) batteries, when retired from their 1st-life, can be repurposed or given a 2nd-life in lower-stress storage roles. To do so, and to determine for what purpose, accurately predicting the deg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources Jg. 656; S. 237920
Hauptverfasser: Strugnell-Lees, Benedick, Evdokimova, Eva, Wik, Torsten
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.11.2025
Schlagworte:
ISSN:0378-7753
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In order to avoid excess waste generation and provide much needed energy storage capacity, lithium ion (Li-ion) batteries, when retired from their 1st-life, can be repurposed or given a 2nd-life in lower-stress storage roles. To do so, and to determine for what purpose, accurately predicting the degradation rate of 2nd-life Li-ion batteries’ state of health is highly important, yet difficult, owing to the lack of available data from cells of sufficient aging variety. Additionally, as there are no formal standards on what information may come with potential 2nd-life batteries, it is hard to predict their subsequent behavior. While certain models do exist for predicting degradation of certain cell types/chemistries, such models typically rely on extensive data from the battery’s 1st-life and do not generalize well over different types of cell. This work aims to establish a novel entropy-based theoretical approach, and a novel entropy-based algorithm, for predicting 2nd-life batteries’ behavior. The proposed model hybridizes simple machine learning methods with a light weight model based on physics, centered around approximating the amounts of generated irreversible thermodynamic entropy and Shannon entropy. Tests of this model on three different Li-ion battery types (LFP, LCO, NMC) show that the model is able to make accurate predictions on 2nd-life battery lifetime while only requiring data from one single cycle. Subsequent sampling is shown to further improve model accuracy, placing this novel algorithm on par with state of the art ML-estimates, but without the need for extensive training or reliance on extensive data from 1st-life. [Display omitted] •Method proposed uses a hybrid model that uses physics and information based entropy.•This approach is tested with 3 different ML types ranging from regression to a NN.•Method obtains results on par with the current state of the art in BMS SOH prediction.•Method only needs limited data, and is very quick to train, as it is lightweight.•This work explores self-adaptive modeling for 2nd-life batteries.
AbstractList In order to avoid excess waste generation and provide much needed energy storage capacity, lithium ion (Li-ion) batteries, when retired from their 1st-life, can be repurposed or given a 2nd-life in lower-stress storage roles. To do so, and to determine for what purpose, accurately predicting the degradation rate of 2nd-life Li-ion batteries’ state of health is highly important, yet difficult, owing to the lack of available data from cells of sufficient aging variety. Additionally, as there are no formal standards on what information may come with potential 2nd-life batteries, it is hard to predict their subsequent behavior. While certain models do exist for predicting degradation of certain cell types/chemistries, such models typically rely on extensive data from the battery's 1st-life and do not generalize well over different types of cell. This work aims to establish a novel entropy-based theoretical approach, and a novel entropy-based algorithm, for predicting 2nd-life batteries’ behavior. The proposed model hybridizes simple machine learning methods with a light weight model based on physics, centered around approximating the amounts of generated irreversible thermodynamic entropy and Shannon entropy. Tests of this model on three different Li-ion battery types (LFP, LCO, NMC) show that the model is able to make accurate predictions on 2nd-life battery lifetime while only requiring data from one single cycle. Subsequent sampling is shown to further improve model accuracy, placing this novel algorithm on par with state of the art ML-estimates, but without the need for extensive training or reliance on extensive data from 1st-life.
In order to avoid excess waste generation and provide much needed energy storage capacity, lithium ion (Li-ion) batteries, when retired from their 1st-life, can be repurposed or given a 2nd-life in lower-stress storage roles. To do so, and to determine for what purpose, accurately predicting the degradation rate of 2nd-life Li-ion batteries’ state of health is highly important, yet difficult, owing to the lack of available data from cells of sufficient aging variety. Additionally, as there are no formal standards on what information may come with potential 2nd-life batteries, it is hard to predict their subsequent behavior. While certain models do exist for predicting degradation of certain cell types/chemistries, such models typically rely on extensive data from the battery’s 1st-life and do not generalize well over different types of cell. This work aims to establish a novel entropy-based theoretical approach, and a novel entropy-based algorithm, for predicting 2nd-life batteries’ behavior. The proposed model hybridizes simple machine learning methods with a light weight model based on physics, centered around approximating the amounts of generated irreversible thermodynamic entropy and Shannon entropy. Tests of this model on three different Li-ion battery types (LFP, LCO, NMC) show that the model is able to make accurate predictions on 2nd-life battery lifetime while only requiring data from one single cycle. Subsequent sampling is shown to further improve model accuracy, placing this novel algorithm on par with state of the art ML-estimates, but without the need for extensive training or reliance on extensive data from 1st-life. [Display omitted] •Method proposed uses a hybrid model that uses physics and information based entropy.•This approach is tested with 3 different ML types ranging from regression to a NN.•Method obtains results on par with the current state of the art in BMS SOH prediction.•Method only needs limited data, and is very quick to train, as it is lightweight.•This work explores self-adaptive modeling for 2nd-life batteries.
ArticleNumber 237920
Author Evdokimova, Eva
Wik, Torsten
Strugnell-Lees, Benedick
Author_xml – sequence: 1
  givenname: Benedick
  orcidid: 0009-0007-0615-0236
  surname: Strugnell-Lees
  fullname: Strugnell-Lees, Benedick
  email: benidick@chalmers.se
  organization: Department of Electrical Engineering, Chalmers University of Technology, Chalmersgatan 4, 412 96 Gothenburg, Sweden
– sequence: 2
  givenname: Eva
  orcidid: 0009-0005-4649-7176
  surname: Evdokimova
  fullname: Evdokimova, Eva
  organization: Department of Bioscience, University of Skövde, Högskolevägen 1, 541 28 Skövde, Sweden
– sequence: 3
  givenname: Torsten
  orcidid: 0000-0002-5234-8426
  surname: Wik
  fullname: Wik, Torsten
  organization: Department of Electrical Engineering, Chalmers University of Technology, Chalmersgatan 4, 412 96 Gothenburg, Sweden
BackLink https://research.chalmers.se/publication/547874$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNqFkMtOwzAQRb0oEi3wCygfQIofSZzsqCpeUiUWwHo0sSetqzaO7LRV_56UAltWcxdzz2jOhI1a3xJjt4JPBRfF_Xq67vwh-l2YSi7zqVS6knzExlzpMtU6V5dsEuOacy6E5mO2mLUJtX3w3TGtMZK9SyJtmhQtdr3bU9IFss58R9wsfXD9aps0PiQ19j2FY2JpGYbt3vn2ml00uIl08zOv2OfT48f8JV28Pb_OZ4vUKKX7tKwqzLktsVKEQpnc1kSZwEZIIRAlZsiNMpgJUmQkSm5VQYIbK20tilxdsfczNx6o29XQBbfFcASPDgJFwmBWYFa42VKIEAkkqorrugSRYQOZ1RWUmiuoKqWGw3VRFtlALc5UE3yMgZo_ruBwsgtr-LULJ7twtjsUH85FGn7eOwoQjaPWDOICmR6sd_8hvgDHLYxU
Cites_doi 10.3390/inventions4020023
10.1016/j.rser.2015.11.042
10.1016/j.jpowsour.2012.07.016
10.1109/TR.2014.2299152
10.1016/j.joule.2021.06.005
10.1016/j.eswa.2023.123123
10.1109/TMECH.2020.2975343
10.3390/batteries10050161
10.1016/j.est.2023.109741
10.1016/j.est.2021.103119
10.1016/j.jpowsour.2006.11.071
10.1016/j.rser.2021.111903
10.1016/j.ymssp.2024.111120
10.3390/batteries10030076
10.1016/j.ymssp.2022.109002
10.1016/j.est.2024.113604
10.1016/j.jpowsour.2018.08.064
10.1109/ACCESS.2021.3111927
10.1016/j.electacta.2020.137337
10.3390/batteries10100356
10.1016/j.jmsy.2021.03.019
10.1109/ACCESS.2024.3455255
10.3390/batteries9120571
10.1016/j.jechem.2020.10.017
10.1016/j.jpowsour.2018.10.019
10.1021/acsenergylett.4c01358
10.1016/j.egypro.2017.03.676
10.1016/j.jpowsour.2016.12.011
10.1016/j.rser.2019.109254
10.1109/TTE.2021.3138357
10.1038/s41560-019-0356-8
10.1109/TVT.2018.2865664
10.1016/j.joule.2019.11.018
10.1016/j.scitotenv.2004.04.070
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
ADTPV
AOWAS
F1S
DOI 10.1016/j.jpowsour.2025.237920
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_research_chalmers_se_2a3907b8_14af_4d79_8703_993341ab6864
10_1016_j_jpowsour_2025_237920
S0378775325017562
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
~HD
29L
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
T9H
VH1
VOH
WUQ
ADTPV
AOWAS
F1S
ID FETCH-LOGICAL-c337t-899a50d8a93ea13c5dbee41af1211aa2a4a0c3ca41e3ec2a20d36e10cd2db1653
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001560476200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7753
IngestDate Wed Nov 05 04:21:09 EST 2025
Sat Nov 29 06:48:51 EST 2025
Sat Nov 29 17:03:53 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Thermodynamics
Second-life
Entropy
Batteries
State of health (SOH)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-899a50d8a93ea13c5dbee41af1211aa2a4a0c3ca41e3ec2a20d36e10cd2db1653
ORCID 0009-0007-0615-0236
0009-0005-4649-7176
0000-0002-5234-8426
ParticipantIDs swepub_primary_oai_research_chalmers_se_2a3907b8_14af_4d79_8703_993341ab6864
crossref_primary_10_1016_j_jpowsour_2025_237920
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2025_237920
PublicationCentury 2000
PublicationDate 2025-11-15
PublicationDateYYYYMMDD 2025-11-15
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of power sources
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dubarry, Truchot, Liaw (b30) 2012; 219
Wang, Wang, Heringa, Bai, Wagemaker (b47) 2024
Jia, Ma, Guo, Li (b39) 2021; 61
Kainat, Anwer, Hamid, Gull, Khan (b49) 2023; 313
Plett (b21) 2016
Hu, Che, Lin, Deng (b26) 2020; 25
McKinsey & Company (b2) 2023
Sulzer, Mohtat, Aitio, Lee, Yeh, Steinbacher, Khan, Lee, Siegel, Stefanopoulou, Howey (b20) 2021; 5
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b58) 2011; 12
International Electrotechnical Comission, Interlek (b11) 2022
Bole, Kulkarni, Daigle (b63) 2014; 6
Yao, Xu, Tang, Zhou, Hou, Xiao, Fu (b14) 2021; 12
Namdari, Li (b53) 2020; vol. 63 4
BloombergNEF (b1) 2023
Gray (b55) 2011
Osara, Ezekoye, Marr, Bryant (b52) 2021; 42
André (b64) 2004; 334–335
Bennett (b54) 2003; 34
Maddipatla, Kong, Pecht (b46) 2024; 10
The European Union, LEX (b5) 2006
Hu, Yuan, Zou, Li, Zhang (b16) 2018; 67
Xiong, Li, Tian (b23) 2018; 405
Kohtz, Xu, Zheng, Wang (b33) 2022; 172
International Energy Agency (b8) 2024
Brillouin (b43) 1962
Severson, Attia, Jin (b60) 2019; 4
Börner, Frieges, Späth, Spütz, Heimes, Sauer, Li (b25) 2022; 3
S&P Global Commodity Insights (b3) 2024
Plett (b24) 2015
Rauf, Khalid, Arshad (b37) 2022; 156
Abo Gamra, Zähringer, Ladner, Allgäuer, Lienkamp (b66) 2024; 15
World Energy Outlook Special Report (b4) 2024
Hassan, Khan, Li, Su, Zhou, Wang, Wang (b6) 2023; 9
Osara, Bryant (b44) 2019; 4
International Electrotechnical Comission (b12) 2022
Esperilla, Félez, Romero, Carretero (b50) 2007; 165
Azizighalehsari, Singh, Soeiro, Rietveld (b9) 2024; 10
Birkl (b10) 2016; 341
Lucu, Martinez-Laserna, Gandiaga, Camblong (b22) 2018; 401
Bak, Lee (b38) 2019; 11
Chen, Kang, Zhao, Wang, Liu, Li, Liang, He, Li, Tavajohi, Li (b48) 2021; 59
Severson, Attia, Jin (b65) 2017
Vignesh, Che, Selvaraj, Tey, Lee, Shareef, Errouissi (b29) 2024; 369
Verleysen, Rossi, François (b57) 2009
Noura, Boulon, Jemei (b28) 2020; 44
Thi Minh Lien, Quoc Anh, Duc Tuyen, Fujita (b32) 2024; 12
Sorouri, Oshnoei, Che, Teodorescu (b36) 2024; 100
Vermeer, Chandra Mouli, Bauer (b19) 2022; 8
Alsuwian, Ansari, Ammirrul Atiqi Mohd Zainuri, Ayob, Hussain, Hossain Lipu, Alhawari, Almawgani, Almasabi, Taher Hindi (b35) 2024; 246
Chen (b62) 2024
Gu, Bai, Cui, Zhu, Zhuang, Li, Hu, Song (b7) 2023; 192
Dineva (b45) 2024; 10
Li, Zhang, Li, Si (b34) 2024; 209
United Nations Economic Commission for Europe, section 38.3 (b13) 2023
Sun, Liu, Wang (b56) 2017; 105
Oji, Zhou, Ci, Kang, Chen, X. (b31) 2021; 9
Osara, Bryant (b41) 2021; 365
Hu, Xu, Lin, Pecht (b17) 2020; 4
Yang, Yang, Meng, Song, He, Cai, Xie, Xu (b40) 2024; 75
Li, Liu, Foley, Zulke, Berecibar, Nanini-Maury, Mierlo, Hoster (b18) 2019; 113
Howey, Birk (b67) 2017
Birkl (b61) 2017
Berecibar, Gandiaga, Villarreal, Omar, Van Mierlo, Van den Bossche (b15) 2016; 56
Kondepudi, Prigogine (b51) 1998
Liao, Köttig (b27) 2014; 63
Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (b59) 2017
Atkins, Jones (b42) 2010
Dubarry (10.1016/j.jpowsour.2025.237920_b30) 2012; 219
Osara (10.1016/j.jpowsour.2025.237920_b41) 2021; 365
Chen (10.1016/j.jpowsour.2025.237920_b62) 2024
Gray (10.1016/j.jpowsour.2025.237920_b55) 2011
Liao (10.1016/j.jpowsour.2025.237920_b27) 2014; 63
André (10.1016/j.jpowsour.2025.237920_b64) 2004; 334–335
Howey (10.1016/j.jpowsour.2025.237920_b67) 2017
Paszke (10.1016/j.jpowsour.2025.237920_b59) 2017
S&P Global Commodity Insights (10.1016/j.jpowsour.2025.237920_b3) 2024
International Electrotechnical Comission, Interlek (10.1016/j.jpowsour.2025.237920_b11) 2022
Hu (10.1016/j.jpowsour.2025.237920_b17) 2020; 4
Kohtz (10.1016/j.jpowsour.2025.237920_b33) 2022; 172
Jia (10.1016/j.jpowsour.2025.237920_b39) 2021; 61
Severson (10.1016/j.jpowsour.2025.237920_b60) 2019; 4
Hassan (10.1016/j.jpowsour.2025.237920_b6) 2023; 9
Yang (10.1016/j.jpowsour.2025.237920_b40) 2024; 75
Maddipatla (10.1016/j.jpowsour.2025.237920_b46) 2024; 10
Vermeer (10.1016/j.jpowsour.2025.237920_b19) 2022; 8
BloombergNEF (10.1016/j.jpowsour.2025.237920_b1) 2023
Kainat (10.1016/j.jpowsour.2025.237920_b49) 2023; 313
Li (10.1016/j.jpowsour.2025.237920_b18) 2019; 113
Osara (10.1016/j.jpowsour.2025.237920_b44) 2019; 4
Namdari (10.1016/j.jpowsour.2025.237920_b53) 2020; vol. 63 4
Azizighalehsari (10.1016/j.jpowsour.2025.237920_b9) 2024; 10
Verleysen (10.1016/j.jpowsour.2025.237920_b57) 2009
Plett (10.1016/j.jpowsour.2025.237920_b24) 2015
Esperilla (10.1016/j.jpowsour.2025.237920_b50) 2007; 165
Birkl (10.1016/j.jpowsour.2025.237920_b61) 2017
United Nations Economic Commission for Europe, section 38.3 (10.1016/j.jpowsour.2025.237920_b13) 2023
Plett (10.1016/j.jpowsour.2025.237920_b21) 2016
Hu (10.1016/j.jpowsour.2025.237920_b26) 2020; 25
Abo Gamra (10.1016/j.jpowsour.2025.237920_b66) 2024; 15
Bak (10.1016/j.jpowsour.2025.237920_b38) 2019; 11
McKinsey & Company (10.1016/j.jpowsour.2025.237920_b2) 2023
Bennett (10.1016/j.jpowsour.2025.237920_b54) 2003; 34
Oji (10.1016/j.jpowsour.2025.237920_b31) 2021; 9
Berecibar (10.1016/j.jpowsour.2025.237920_b15) 2016; 56
Li (10.1016/j.jpowsour.2025.237920_b34) 2024; 209
Xiong (10.1016/j.jpowsour.2025.237920_b23) 2018; 405
Thi Minh Lien (10.1016/j.jpowsour.2025.237920_b32) 2024; 12
Yao (10.1016/j.jpowsour.2025.237920_b14) 2021; 12
Rauf (10.1016/j.jpowsour.2025.237920_b37) 2022; 156
Wang (10.1016/j.jpowsour.2025.237920_b47) 2024
Severson (10.1016/j.jpowsour.2025.237920_b65) 2017
Brillouin (10.1016/j.jpowsour.2025.237920_b43) 1962
Kondepudi (10.1016/j.jpowsour.2025.237920_b51) 1998
Gu (10.1016/j.jpowsour.2025.237920_b7) 2023; 192
International Electrotechnical Comission (10.1016/j.jpowsour.2025.237920_b12) 2022
Chen (10.1016/j.jpowsour.2025.237920_b48) 2021; 59
Noura (10.1016/j.jpowsour.2025.237920_b28) 2020; 44
Bole (10.1016/j.jpowsour.2025.237920_b63) 2014; 6
Sulzer (10.1016/j.jpowsour.2025.237920_b20) 2021; 5
Hu (10.1016/j.jpowsour.2025.237920_b16) 2018; 67
Dineva (10.1016/j.jpowsour.2025.237920_b45) 2024; 10
Birkl (10.1016/j.jpowsour.2025.237920_b10) 2016; 341
Vignesh (10.1016/j.jpowsour.2025.237920_b29) 2024; 369
Pedregosa (10.1016/j.jpowsour.2025.237920_b58) 2011; 12
Börner (10.1016/j.jpowsour.2025.237920_b25) 2022; 3
Lucu (10.1016/j.jpowsour.2025.237920_b22) 2018; 401
World Energy Outlook Special Report (10.1016/j.jpowsour.2025.237920_b4) 2024
Osara (10.1016/j.jpowsour.2025.237920_b52) 2021; 42
Sun (10.1016/j.jpowsour.2025.237920_b56) 2017; 105
The European Union, LEX (10.1016/j.jpowsour.2025.237920_b5) 2006
International Energy Agency (10.1016/j.jpowsour.2025.237920_b8) 2024
Atkins (10.1016/j.jpowsour.2025.237920_b42) 2010
Alsuwian (10.1016/j.jpowsour.2025.237920_b35) 2024; 246
Sorouri (10.1016/j.jpowsour.2025.237920_b36) 2024; 100
References_xml – volume: 219
  start-page: 204
  year: 2012
  end-page: 216
  ident: b30
  article-title: Synthesize battery degradation modes via a diagnostic and prognostic model
  publication-title: J. Power Sources
– volume: 369
  start-page: 5
  year: 2024
  end-page: 45
  ident: b29
  article-title: State of health (SoH) estimation methods for second life lithium-ion battery—Review and challenges
  publication-title: Appl. Energy
– year: 2022
  ident: b11
  article-title: IEC 62133: Safety testing for lithium ion batteries
– year: 2022
  ident: b12
  article-title: IEC 62619:2022
– year: 2023
  ident: b1
  article-title: New energy outlook series — bloombergnef — bloomberg finance LP
– volume: 12
  start-page: 129022
  year: 2024
  end-page: 129039
  ident: b32
  article-title: Prediction of state-of-health and remaining-useful-life of battery based on hybrid neural network model
  publication-title: IEEE Access
– volume: 15
  year: 2024
  ident: b66
  article-title: Examining model-based fast-charging and preconditioning on a vehicle level
  publication-title: World Electr. Veh. J.
– volume: 209
  year: 2024
  ident: b34
  article-title: A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities
  publication-title: Mech. Syst. Signal Process.
– volume: 10
  year: 2024
  ident: b46
  article-title: Safety analysis of lithium-ion cylindrical batteries using design and process failure mode and effect analysis
  publication-title: Batteries
– year: 2006
  ident: b5
  article-title: Directive 2006/66/EC of the European parliament and of the council
– year: 1962
  ident: b43
  article-title: Science and Information Theory
– volume: 156
  year: 2022
  ident: b37
  article-title: Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling
  publication-title: Renew. Sustain. Energy Rev.
– year: 2024
  ident: b4
  article-title: Batteries and secure energy transitions
– volume: 11
  year: 2019
  ident: b38
  article-title: Accurate estimation of battery SOH and RUL based on a progressive LSTM with a time compensated entropy index
  publication-title: Annu. Conf. PHM Soc.
– year: 2023
  ident: b13
  article-title: Manual of tests and criteria, revision 8
– volume: 172
  start-page: 2
  year: 2022
  end-page: 15
  ident: b33
  article-title: Physics-informed machine learning model for battery state of health prognostics using partial charging segments
  publication-title: Mech. Syst. Signal Process.
– volume: 405
  start-page: 18
  year: 2018
  end-page: 29
  ident: b23
  article-title: Towards a smarter battery management system: A critical review on battery state of health monitoring methods
  publication-title: J. Power Sources
– volume: 165
  start-page: 436
  year: 2007
  end-page: 445
  ident: b50
  article-title: A full model for simulation of electrochemical cells including complex behavior
  publication-title: J. Power Sources
– year: 2017
  ident: b65
  article-title: Data-driven prediction of battery cycle life before capacity degradation, batch 2017-06-30
– volume: 401
  start-page: 85
  year: 2018
  end-page: 101
  ident: b22
  article-title: A critical review on self-adaptive Li-ion battery ageing models
  publication-title: J. Power Sources
– year: 2011
  ident: b55
  article-title: Entropy and Information Theory
– year: 2024
  ident: b47
  article-title: High-entropy electrolytes for lithium-ion batteries
  publication-title: ACS Energy Lett.
– volume: 100
  year: 2024
  ident: b36
  article-title: A comprehensive review of hybrid battery state of charge estimation: Exploring physics-aware AI-based approaches
  publication-title: J. Energy Storage
– volume: 3
  year: 2022
  ident: b25
  article-title: Challenges of second-life concepts for retired electric vehicle batteries
  publication-title: Cell Rep. Phys. Sci.
– year: 1998
  ident: b51
  article-title: Modern Thermodynamics: From Heat Engines to Dissipative Structures
– volume: 10
  year: 2024
  ident: b45
  article-title: Evaluation of advances in battery health prediction for electric vehicles from traditional linear filters to latest machine learning approaches
  publication-title: Batteries
– year: 2024
  ident: b8
  article-title: Trends in electric vehicle batteries - Global EV outlook 2024 - analysis - IEA
– year: 2024
  ident: b3
  article-title: New global battery energy storage systems capacity doubles in 2023, IEA says
– volume: 25
  start-page: 1
  year: 2020
  end-page: 10
  ident: b26
  article-title: Health prognosis for electric vehicle battery packs: A data-driven approach
  publication-title: IEEE/ASME Trans. Mechatronics
– year: 2017
  ident: b59
  article-title: Automatic differentiation in pytorch
  publication-title: OpenReview
– volume: 75
  year: 2024
  ident: b40
  article-title: Joint evaluation and prediction of SOH and RUL for lithium batteries based on a GBLS booster multi-task model
  publication-title: J. Energy Storage
– volume: 246
  year: 2024
  ident: b35
  article-title: A review of expert hybrid and co-estimation techniques for SOH and RUL estimation in battery management system with electric vehicle application
  publication-title: Expert Syst. Appl.
– volume: 56
  start-page: 572
  year: 2016
  end-page: 587
  ident: b15
  article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 4
  start-page: 383
  year: 2019
  end-page: 391
  ident: b60
  article-title: Data-driven prediction of battery cycle life before capacity degradation.
  publication-title: Nat. Energy
– volume: 42
  year: 2021
  ident: b52
  article-title: A methodology for analyzing aging and performance of lithium-ion batteries: Consistent cycling application
  publication-title: J. Energy Storage
– volume: 192
  start-page: 1
  year: 2023
  end-page: 20
  ident: b7
  article-title: Challenges and opportunities for second-life batteries: Key technologies and economy
  publication-title: Renew. Sustain. Energy Rev.
– volume: 4
  start-page: 310
  year: 2020
  end-page: 346
  ident: b17
  article-title: Battery lifetime prognostics
  publication-title: Joule
– year: 2017
  ident: b61
  article-title: Oxford battery degradation dataset 1
  publication-title: Univ. Oxf.
– volume: 10
  start-page: 1
  year: 2024
  end-page: 39
  ident: b9
  article-title: Empowering electric vehicles batteries: A comprehensive look at the application and challenges of second-life batteries
  publication-title: Batteries
– year: 2010
  ident: b42
  article-title: Chemical Principles: The Quest for Insight
– year: 2024
  ident: b62
  article-title: NASA lithium ion battery dataset
  publication-title: IEEE Dataport
– volume: 59
  start-page: 83
  year: 2021
  end-page: 99
  ident: b48
  article-title: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards
  publication-title: J. Energy Chem.
– volume: 67
  start-page: 319
  year: 2018
  end-page: 10 329
  ident: b16
  article-title: Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus
  publication-title: IEEE Trans. Veh. Technol.
– volume: 4
  year: 2019
  ident: b44
  article-title: A thermodynamic model for lithium-ion battery degradation: Application of the degradation-entropy generation theorem
  publication-title: Inventions
– volume: 113
  year: 2019
  ident: b18
  article-title: Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 61
  start-page: 773
  year: 2021
  end-page: 781
  ident: b39
  article-title: A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine
  publication-title: J. Manuf. Syst.
– volume: 9
  start-page: 126903
  year: 2021
  end-page: 126916
  ident: b31
  article-title: Data-driven methods for battery SOH estimation: Survey and a critical analysis
  publication-title: IEEE Access
– volume: 334–335
  start-page: 73
  year: 2004
  end-page: 84
  ident: b64
  article-title: The ARTEMIS European driving cycles for measuring car pollutant emissions
  publication-title: Sci. Total Environ.
– year: 2017
  ident: b67
  article-title: Oxford battery degradation dataset 1
  publication-title: Univ. Oxf.
– volume: 12
  start-page: 1
  year: 2021
  end-page: 18
  ident: b14
  article-title: A review of lithium-ion battery state of health estimation and prediction methods
  publication-title: World Electr. Veh.
– volume: 5
  start-page: 1934
  year: 2021
  end-page: 1955
  ident: b20
  article-title: The challenge and opportunity of battery lifetime prediction from field data
  publication-title: Joule
– volume: 34
  start-page: 1
  year: 2003
  end-page: 10
  ident: b54
  article-title: Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon
  publication-title: Elsevier Sci.
– start-page: 52
  year: 2009
  end-page: 69
  ident: b57
  article-title: Advances in feature selection with mutual information
  publication-title: Similarity-Based Clustering: Recent Developments and Biomedical Applications
– volume: vol. 63 4
  start-page: 1
  year: 2020
  end-page: 7
  ident: b53
  article-title: An entropy-based approach for modeling lithium-ion battery capacity fade
  publication-title: 2020 Annual Reliability and Maintainability Symposium
– volume: 9
  start-page: 3
  year: 2023
  end-page: 21
  ident: b6
  article-title: Second-life batteries: A review on power grid applications, degradation mechanisms, and power electronics interface architectures
  publication-title: Batteries
– volume: 63
  start-page: 191
  year: 2014
  end-page: 207
  ident: b27
  article-title: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction
  publication-title: IEEE Trans. Reliab.
– volume: 365
  start-page: 1
  year: 2021
  end-page: 14
  ident: b41
  article-title: Performance and degradation characterization of electrochemical power sources using thermodynamics
  publication-title: Electrochim. Acta
– year: 2023
  ident: b2
  article-title: The trends shaping the energy transition
– volume: 341
  start-page: 373
  year: 2016
  end-page: 386
  ident: b10
  article-title: Degradation diagnostics for lithium ion cells
  publication-title: J. Power Sources
– year: 2015
  ident: b24
  article-title: Battery Management Systems Volume 1, Battery Modeling
– volume: 44
  start-page: 4
  year: 2020
  end-page: 16
  ident: b28
  article-title: A review of battery state of health estimation methods: Hybrid electric vehicle challenges
  publication-title: World Electr. Veh. J.
– volume: 12
  year: 2011
  ident: b58
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 2205
  year: 2022
  end-page: 2232
  ident: b19
  article-title: A comprehensive review on the characteristics and modeling of lithium-ion battery aging
  publication-title: IEEE Trans. Transp. Electrification
– volume: 313
  year: 2023
  ident: b49
  article-title: Electrolytes in lithium-ion batteries: Advancements in the era of twenties (2020’s)
  publication-title: Mater. Chem. Phys.
– volume: 105
  start-page: 2354
  year: 2017
  end-page: 2359
  ident: b56
  article-title: Real-time fault diagnosis method of battery system based on Shannon entropy
  publication-title: Energy Procedia
– year: 2016
  ident: b21
  article-title: Battery Management Systems Volume 2, Equivalent-Circuit Methods
– volume: 6
  year: 2014
  ident: b63
  article-title: Adaptation of an electrochemistry-based Li-ion battery model to account for deterioration observed under randomized use
  publication-title: Annu. Conf. PHM Soc.
– year: 2015
  ident: 10.1016/j.jpowsour.2025.237920_b24
– volume: 4
  issue: 2
  year: 2019
  ident: 10.1016/j.jpowsour.2025.237920_b44
  article-title: A thermodynamic model for lithium-ion battery degradation: Application of the degradation-entropy generation theorem
  publication-title: Inventions
  doi: 10.3390/inventions4020023
– volume: 56
  start-page: 572
  year: 2016
  ident: 10.1016/j.jpowsour.2025.237920_b15
  article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.042
– volume: 219
  start-page: 204
  year: 2012
  ident: 10.1016/j.jpowsour.2025.237920_b30
  article-title: Synthesize battery degradation modes via a diagnostic and prognostic model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.07.016
– year: 2011
  ident: 10.1016/j.jpowsour.2025.237920_b55
– volume: 63
  start-page: 191
  year: 2014
  ident: 10.1016/j.jpowsour.2025.237920_b27
  article-title: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2014.2299152
– year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b62
  article-title: NASA lithium ion battery dataset
  publication-title: IEEE Dataport
– volume: 6
  issue: 1
  year: 2014
  ident: 10.1016/j.jpowsour.2025.237920_b63
  article-title: Adaptation of an electrochemistry-based Li-ion battery model to account for deterioration observed under randomized use
  publication-title: Annu. Conf. PHM Soc.
– year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b4
– volume: 5
  start-page: 1934
  issue: 8
  year: 2021
  ident: 10.1016/j.jpowsour.2025.237920_b20
  article-title: The challenge and opportunity of battery lifetime prediction from field data
  publication-title: Joule
  doi: 10.1016/j.joule.2021.06.005
– volume: 246
  year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b35
  article-title: A review of expert hybrid and co-estimation techniques for SOH and RUL estimation in battery management system with electric vehicle application
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.123123
– volume: 44
  start-page: 4
  year: 2020
  ident: 10.1016/j.jpowsour.2025.237920_b28
  article-title: A review of battery state of health estimation methods: Hybrid electric vehicle challenges
  publication-title: World Electr. Veh. J.
– year: 1998
  ident: 10.1016/j.jpowsour.2025.237920_b51
– year: 2006
  ident: 10.1016/j.jpowsour.2025.237920_b5
– volume: 25
  start-page: 1
  year: 2020
  ident: 10.1016/j.jpowsour.2025.237920_b26
  article-title: Health prognosis for electric vehicle battery packs: A data-driven approach
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2020.2975343
– year: 1962
  ident: 10.1016/j.jpowsour.2025.237920_b43
– year: 2023
  ident: 10.1016/j.jpowsour.2025.237920_b2
– volume: 313
  year: 2023
  ident: 10.1016/j.jpowsour.2025.237920_b49
  article-title: Electrolytes in lithium-ion batteries: Advancements in the era of twenties (2020’s)
  publication-title: Mater. Chem. Phys.
– year: 2017
  ident: 10.1016/j.jpowsour.2025.237920_b59
  article-title: Automatic differentiation in pytorch
  publication-title: OpenReview
– volume: 10
  start-page: 1
  year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b9
  article-title: Empowering electric vehicles batteries: A comprehensive look at the application and challenges of second-life batteries
  publication-title: Batteries
  doi: 10.3390/batteries10050161
– volume: 12
  year: 2011
  ident: 10.1016/j.jpowsour.2025.237920_b58
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: vol. 63 4
  start-page: 1
  year: 2020
  ident: 10.1016/j.jpowsour.2025.237920_b53
  article-title: An entropy-based approach for modeling lithium-ion battery capacity fade
– volume: 3
  issue: 10
  year: 2022
  ident: 10.1016/j.jpowsour.2025.237920_b25
  article-title: Challenges of second-life concepts for retired electric vehicle batteries
  publication-title: Cell Rep. Phys. Sci.
– volume: 75
  year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b40
  article-title: Joint evaluation and prediction of SOH and RUL for lithium batteries based on a GBLS booster multi-task model
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109741
– volume: 42
  year: 2021
  ident: 10.1016/j.jpowsour.2025.237920_b52
  article-title: A methodology for analyzing aging and performance of lithium-ion batteries: Consistent cycling application
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103119
– volume: 165
  start-page: 436
  issue: 1
  year: 2007
  ident: 10.1016/j.jpowsour.2025.237920_b50
  article-title: A full model for simulation of electrochemical cells including complex behavior
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.11.071
– volume: 156
  year: 2022
  ident: 10.1016/j.jpowsour.2025.237920_b37
  article-title: Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111903
– year: 2022
  ident: 10.1016/j.jpowsour.2025.237920_b12
– volume: 209
  year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b34
  article-title: A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.111120
– volume: 192
  start-page: 1
  year: 2023
  ident: 10.1016/j.jpowsour.2025.237920_b7
  article-title: Challenges and opportunities for second-life batteries: Key technologies and economy
  publication-title: Renew. Sustain. Energy Rev.
– volume: 10
  issue: 3
  year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b46
  article-title: Safety analysis of lithium-ion cylindrical batteries using design and process failure mode and effect analysis
  publication-title: Batteries
  doi: 10.3390/batteries10030076
– volume: 172
  start-page: 2
  year: 2022
  ident: 10.1016/j.jpowsour.2025.237920_b33
  article-title: Physics-informed machine learning model for battery state of health prognostics using partial charging segments
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109002
– year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b3
– volume: 100
  year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b36
  article-title: A comprehensive review of hybrid battery state of charge estimation: Exploring physics-aware AI-based approaches
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.113604
– volume: 401
  start-page: 85
  year: 2018
  ident: 10.1016/j.jpowsour.2025.237920_b22
  article-title: A critical review on self-adaptive Li-ion battery ageing models
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.08.064
– volume: 9
  start-page: 126903
  year: 2021
  ident: 10.1016/j.jpowsour.2025.237920_b31
  article-title: Data-driven methods for battery SOH estimation: Survey and a critical analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3111927
– year: 2017
  ident: 10.1016/j.jpowsour.2025.237920_b65
– volume: 12
  start-page: 1
  year: 2021
  ident: 10.1016/j.jpowsour.2025.237920_b14
  article-title: A review of lithium-ion battery state of health estimation and prediction methods
  publication-title: World Electr. Veh.
– volume: 365
  start-page: 1
  year: 2021
  ident: 10.1016/j.jpowsour.2025.237920_b41
  article-title: Performance and degradation characterization of electrochemical power sources using thermodynamics
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137337
– volume: 10
  issue: 10
  year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b45
  article-title: Evaluation of advances in battery health prediction for electric vehicles from traditional linear filters to latest machine learning approaches
  publication-title: Batteries
  doi: 10.3390/batteries10100356
– volume: 15
  issue: 8
  year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b66
  article-title: Examining model-based fast-charging and preconditioning on a vehicle level
  publication-title: World Electr. Veh. J.
– volume: 61
  start-page: 773
  year: 2021
  ident: 10.1016/j.jpowsour.2025.237920_b39
  article-title: A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.03.019
– volume: 11
  year: 2019
  ident: 10.1016/j.jpowsour.2025.237920_b38
  article-title: Accurate estimation of battery SOH and RUL based on a progressive LSTM with a time compensated entropy index
  publication-title: Annu. Conf. PHM Soc.
– year: 2023
  ident: 10.1016/j.jpowsour.2025.237920_b13
– volume: 12
  start-page: 129022
  year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b32
  article-title: Prediction of state-of-health and remaining-useful-life of battery based on hybrid neural network model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3455255
– year: 2017
  ident: 10.1016/j.jpowsour.2025.237920_b61
  article-title: Oxford battery degradation dataset 1
  publication-title: Univ. Oxf.
– volume: 9
  start-page: 3
  issue: 12
  year: 2023
  ident: 10.1016/j.jpowsour.2025.237920_b6
  article-title: Second-life batteries: A review on power grid applications, degradation mechanisms, and power electronics interface architectures
  publication-title: Batteries
  doi: 10.3390/batteries9120571
– year: 2016
  ident: 10.1016/j.jpowsour.2025.237920_b21
– volume: 59
  start-page: 83
  year: 2021
  ident: 10.1016/j.jpowsour.2025.237920_b48
  article-title: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.10.017
– year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b8
– volume: 405
  start-page: 18
  year: 2018
  ident: 10.1016/j.jpowsour.2025.237920_b23
  article-title: Towards a smarter battery management system: A critical review on battery state of health monitoring methods
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.019
– year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b47
  article-title: High-entropy electrolytes for lithium-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.4c01358
– year: 2017
  ident: 10.1016/j.jpowsour.2025.237920_b67
  article-title: Oxford battery degradation dataset 1
  publication-title: Univ. Oxf.
– volume: 369
  start-page: 5
  year: 2024
  ident: 10.1016/j.jpowsour.2025.237920_b29
  article-title: State of health (SoH) estimation methods for second life lithium-ion battery—Review and challenges
  publication-title: Appl. Energy
– volume: 105
  start-page: 2354
  year: 2017
  ident: 10.1016/j.jpowsour.2025.237920_b56
  article-title: Real-time fault diagnosis method of battery system based on Shannon entropy
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.676
– volume: 341
  start-page: 373
  year: 2016
  ident: 10.1016/j.jpowsour.2025.237920_b10
  article-title: Degradation diagnostics for lithium ion cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.011
– year: 2010
  ident: 10.1016/j.jpowsour.2025.237920_b42
– start-page: 52
  year: 2009
  ident: 10.1016/j.jpowsour.2025.237920_b57
  article-title: Advances in feature selection with mutual information
– year: 2023
  ident: 10.1016/j.jpowsour.2025.237920_b1
– volume: 113
  year: 2019
  ident: 10.1016/j.jpowsour.2025.237920_b18
  article-title: Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109254
– volume: 34
  start-page: 1
  year: 2003
  ident: 10.1016/j.jpowsour.2025.237920_b54
  article-title: Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon
  publication-title: Elsevier Sci.
– year: 2022
  ident: 10.1016/j.jpowsour.2025.237920_b11
– volume: 8
  start-page: 2205
  issue: 2
  year: 2022
  ident: 10.1016/j.jpowsour.2025.237920_b19
  article-title: A comprehensive review on the characteristics and modeling of lithium-ion battery aging
  publication-title: IEEE Trans. Transp. Electrification
  doi: 10.1109/TTE.2021.3138357
– volume: 4
  start-page: 383
  year: 2019
  ident: 10.1016/j.jpowsour.2025.237920_b60
  article-title: Data-driven prediction of battery cycle life before capacity degradation.
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0356-8
– volume: 67
  start-page: 319
  year: 2018
  ident: 10.1016/j.jpowsour.2025.237920_b16
  article-title: Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2865664
– volume: 4
  start-page: 310
  year: 2020
  ident: 10.1016/j.jpowsour.2025.237920_b17
  article-title: Battery lifetime prognostics
  publication-title: Joule
  doi: 10.1016/j.joule.2019.11.018
– volume: 334–335
  start-page: 73
  year: 2004
  ident: 10.1016/j.jpowsour.2025.237920_b64
  article-title: The ARTEMIS European driving cycles for measuring car pollutant emissions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2004.04.070
SSID ssj0001170
Score 2.4927938
Snippet In order to avoid excess waste generation and provide much needed energy storage capacity, lithium ion (Li-ion) batteries, when retired from their 1st-life,...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 237920
SubjectTerms Batteries
Entropy
Second-life
State of health (SOH)
Thermodynamics
Title An entropy-based, self-adaptive predictive algorithm for battery degradation
URI https://dx.doi.org/10.1016/j.jpowsour.2025.237920
https://research.chalmers.se/publication/547874
Volume 656
WOSCitedRecordID wos001560476200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-7753
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001170
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFOUl3LgtmRx4jiJjwsqArSqOBS0N2tiO2y3JYk2q6r994ztPHYprx64RFGkOI7ny_jzxPMNIa80AkGJRIScQYkLFFqEAPZzL3JcuimVc1dF4es8OzrKFwvxuQtlt66cQFZV-cWFaP6rqfEaGtumzl7D3EOjeAHP0eh4RLPj8Z8MP6smNmJbN5ehnaKcBVtzVoagoXEbhZq1_TvjTuHsW70-2Sy_-22bTmzzcqKtgoQebXaVvDa2uNrER_4HVj5URQ7nxnuft-hJda-773i7rk8RHeeOsiKLH8M-fsd2jWS0S07rQhExtzl5PhmzT8HCJWmWefXf3r2mfMdBsky47LervtuHEVbTFb6C7f_UPmI63rArlv3TJDZsLex3ra1k34607Ujfzk2yH2dcoPvbn308XHwaJm1bgMf9cOreYCuZ_Nc9-i2P2RacdSTl-B652xkomHlU3Cc3TPWA3NnSnHxI5rMq2MHH62AHHcGIjmBAR4DoCDp0BFvoeES-vD88fvch7EpqhIqxbBPi6ho41TkIZiBiiuvCmCSC0ir9AcSQAFVMQRIZZlQMMdUsNRFVOtZFlHL2mOxVdWWekCBPbWUzyguT8CSmqjAxFIpymqgSJwFxQN70AyQbr5wi_2ycAyL6cZQd__O8TiJE_nrv3A_88Cyrm94JZi2lWrpqRK1sjYyBCZoVOa56oZSJzoTE_jKJTB0pHRRpniZPr935Z-T2-Ek8J3v4xZkX5JY635y065cd3H4AWaGdcQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+entropy-based%2C+self-adaptive+predictive+algorithm+for+battery+degradation&rft.jtitle=Journal+of+power+sources&rft.au=Strugnell-Lees%2C+Benedick&rft.au=Evdokimova%2C+Eva&rft.au=Wik%2C+Torsten&rft.date=2025-11-15&rft.issn=0378-7753&rft.volume=656&rft.spage=237920&rft_id=info:doi/10.1016%2Fj.jpowsour.2025.237920&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2025_237920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon