Detection of Power Data Outliers Using Density Peaks Clustering Algorithm Based on K-Nearest Neighbors

As an important research branch in data mining, outlier detection has been widely used in equipment operation monitoring and system operation control. Power data outlier detection is playing an increasingly vital role in power systems. Density peak clustering (DPC) is a simple and efficient density-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Wireless communications and mobile computing Ročník 2022; číslo 1
Hlavní autori: Li, Qingpeng, Chen, Lei, Wang, Yuhan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Hindawi 2022
John Wiley & Sons, Inc
Predmet:
ISSN:1530-8669, 1530-8677
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As an important research branch in data mining, outlier detection has been widely used in equipment operation monitoring and system operation control. Power data outlier detection is playing an increasingly vital role in power systems. Density peak clustering (DPC) is a simple and efficient density-based clustering algorithm with a good application prospect. Nevertheless, the clustering results by the DPC algorithm can be greatly influenced by the cutoff distance, indicating that the results are highly sensitive to this parameter. To address the shortcomings of the DPC algorithm and take the characteristics of power data into consideration, we propose a DPC algorithm based on K-nearest neighbors for the detection of power data outliers. The proposed DPC algorithm introduces the idea of K-nearest neighbors and uses a unified definition of local density. In the DPC algorithm, only one parameter (K) needs to be determined, thus eliminating the influence of cutoff distance on the clustering result of the algorithm. The experimental results showed that the proposed algorithm can achieve accurate detection of power data outliers and has broad application prospects.
AbstractList As an important research branch in data mining, outlier detection has been widely used in equipment operation monitoring and system operation control. Power data outlier detection is playing an increasingly vital role in power systems. Density peak clustering (DPC) is a simple and efficient density-based clustering algorithm with a good application prospect. Nevertheless, the clustering results by the DPC algorithm can be greatly influenced by the cutoff distance, indicating that the results are highly sensitive to this parameter. To address the shortcomings of the DPC algorithm and take the characteristics of power data into consideration, we propose a DPC algorithm based on K-nearest neighbors for the detection of power data outliers. The proposed DPC algorithm introduces the idea of K-nearest neighbors and uses a unified definition of local density. In the DPC algorithm, only one parameter (K) needs to be determined, thus eliminating the influence of cutoff distance on the clustering result of the algorithm. The experimental results showed that the proposed algorithm can achieve accurate detection of power data outliers and has broad application prospects.
Author Wang, Yuhan
Li, Qingpeng
Chen, Lei
Author_xml – sequence: 1
  givenname: Qingpeng
  surname: Li
  fullname: Li, Qingpeng
  organization: Nanchang Power Supply CompanyState Grid Jiangxi Electric Power CompanyNanchang 330200China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-2658-2067
  surname: Chen
  fullname: Chen, Lei
  organization: School of Information EngineeringNanchang Institute of TechnologyNanchang 330099Chinanit.edu.cn
– sequence: 3
  givenname: Yuhan
  surname: Wang
  fullname: Wang, Yuhan
  organization: Nanchang Power Supply CompanyState Grid Jiangxi Electric Power CompanyNanchang 330200China
BookMark eNp9kMtOwzAQRS1UJEphxwdYYgmhfiRxvCwtL1G1XdB1ZCd265LGxXZU9e9J1IoFEqxmpDn3zsy9BL3a1gqAG4weME6SIUGEDAlBFFN2Bvo4oSjKUsZ6P33KL8Cl9xuEEEUE94GeqKCKYGwNrYYLu1cOTkQQcN6Eyijn4dKbegUnqvYmHOBCiU8Px1Xjg3LdYFStrDNhvYWPwqsStkbv0UwJp3yAM2VWa2mdvwLnWlReXZ_qACyfnz7Gr9F0_vI2Hk2jglIWooyTlMZlQZiWKBM60wUtpZBcqjTOmEgQySiXKYsTormmWLRvyIxhKuOiFJQOwO3Rd-fsV9OekG9s4-p2ZU5SzpMYc0Za6v5IFc5675TOd85shTvkGOVdknmXZH5KssXJL7wwQXSZBSdM9Zfo7iham7oUe_P_im_xbIQK
CitedBy_id crossref_primary_10_4018_IJIIT_385734
crossref_primary_10_1155_2023_9890424
Cites_doi 10.1504/IJBIC.2021.113363
10.1109/TII.2018.2873814
10.1007/s00779-016-0954-4
10.1023/A:1009745219419
10.1007/978-3-319-13563-2_27
10.1016/j.energy.2021.122333
10.1007/s00138-013-0516-y
10.1016/j.epsr.2015.03.004
10.1016/j.rcl.2021.07.008
ContentType Journal Article
Copyright Copyright © 2022 Qingpeng Li et al.
Copyright © 2022 Qingpeng Li et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2022 Qingpeng Li et al.
– notice: Copyright © 2022 Qingpeng Li et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2022/2203137
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Chen, Chi-Hua
Editor_xml – sequence: 1
  givenname: Chi-Hua
  surname: Chen
  fullname: Chen, Chi-Hua
ExternalDocumentID 10_1155_2022_2203137
GroupedDBID .3N
.4S
.DC
.GA
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABIJN
ABPVW
ACGFO
ADBBV
ADIZJ
AENEX
AEUQT
AFBPY
AFKRA
AIAGR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ARCSS
ASPBG
ATUGU
AVWKF
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
EDO
F00
F01
F04
F21
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HZ~
I-F
IAO
ITC
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LITHE
LP6
LP7
M0N
MK4
MY~
N04
N05
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WLBEL
XPP
XV2
~IA
~WT
.Y3
24P
31~
5VS
AAEVG
AAMMB
AANHP
AAYXX
AAZKR
ACBWZ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AEUCX
AFFHD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
AZFZN
BDRZF
BFHJK
CITATION
EJD
FEDTE
H13
HF~
HVGLF
LH4
LW6
O8X
PHGZM
PHGZT
PQGLB
ROL
WYUIH
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c337t-892634dc27fb08af8fc3dbab9be6487a502839b67452f9f31a030b8713b4cda33
IEDL.DBID RHX
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852895500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-8669
IngestDate Thu Aug 07 12:12:05 EDT 2025
Sat Nov 29 07:31:50 EST 2025
Tue Nov 18 20:51:33 EST 2025
Sun Jun 02 19:20:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-892634dc27fb08af8fc3dbab9be6487a502839b67452f9f31a030b8713b4cda33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2658-2067
OpenAccessLink https://dx.doi.org/10.1155/2022/2203137
PQID 2699541972
PQPubID 2034344
ParticipantIDs proquest_journals_2699541972
crossref_primary_10_1155_2022_2203137
crossref_citationtrail_10_1155_2022_2203137
hindawi_primary_10_1155_2022_2203137
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References Dong Z. (e_1_2_8_2_2) 2014; 38
e_1_2_8_16_2
Wei W. (e_1_2_8_7_2) 2019; 50
Chao C. (e_1_2_8_3_2) 2014; 37
e_1_2_8_12_2
e_1_2_8_15_2
Wang G. (e_1_2_8_4_2) 2016; 40
e_1_2_8_9_2
e_1_2_8_1_2
e_1_2_8_6_2
Rodriguez A. (e_1_2_8_14_2) 2014; 34
e_1_2_8_5_2
e_1_2_8_8_2
Ruixuan F. (e_1_2_8_11_2) 2020; 41
Jia H. J. (e_1_2_8_13_2) 2015; 23
e_1_2_8_10_2
References_xml – ident: e_1_2_8_16_2
  doi: 10.1504/IJBIC.2021.113363
– ident: e_1_2_8_8_2
  doi: 10.1109/TII.2018.2873814
– ident: e_1_2_8_15_2
  doi: 10.1007/s00779-016-0954-4
– volume: 40
  start-page: 27
  year: 2016
  ident: e_1_2_8_4_2
  article-title: Fast clustering and anomaly detection technique for large-scale power data stream
  publication-title: Automation of Electric Power Systems
– ident: e_1_2_8_12_2
  doi: 10.1023/A:1009745219419
– volume: 41
  start-page: 752
  year: 2020
  ident: e_1_2_8_11_2
  article-title: Outlier detection algorithm with personalized k-nearest neighbor
  publication-title: Journal of Chinese Computer Systems
– ident: e_1_2_8_10_2
  doi: 10.1007/978-3-319-13563-2_27
– volume: 23
  start-page: 12
  year: 2015
  ident: e_1_2_8_13_2
  article-title: Approximate weighted kernel k-means for large-scale spectral clustering
  publication-title: Journal of Software
– volume: 34
  start-page: 14
  year: 2014
  ident: e_1_2_8_14_2
  article-title: Machine learning. Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 37
  start-page: 153
  year: 2014
  ident: e_1_2_8_3_2
  article-title: Research for electric power big data quality evaluation model and dynamic exploration technology
  publication-title: Modern Electronics Technique
– ident: e_1_2_8_5_2
  doi: 10.1016/j.energy.2021.122333
– ident: e_1_2_8_9_2
  doi: 10.1007/s00138-013-0516-y
– ident: e_1_2_8_6_2
  doi: 10.1016/j.epsr.2015.03.004
– volume: 50
  start-page: 612
  year: 2019
  ident: e_1_2_8_7_2
  article-title: Anomaly detection for characteristics of power IT monitoring objects based on probability statistic mode
  publication-title: Journal of Shandong Agricultural University (Natural Science Edition)
– volume: 38
  start-page: 1
  year: 2014
  ident: e_1_2_8_2_2
  article-title: rom smart grid to energy internet: basic concept and research framework
  publication-title: Automation of Electric Power Systems
– ident: e_1_2_8_1_2
  doi: 10.1016/j.rcl.2021.07.008
SSID ssj0003021
Score 2.3005235
Snippet As an important research branch in data mining, outlier detection has been widely used in equipment operation monitoring and system operation control. Power...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Cluster analysis
Clustering
Consumption
Control equipment
Data analysis
Data mining
Datasets
Density
Outliers (statistics)
Parameter sensitivity
Teaching methods
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66KujBt_gmBz1JcJu0aXoSdRVBqYuoeCtJ2rjiuqvbrOK_N9PN-kDUg-eEtGSm3zw6fB9CWxF1yGuMIoEMJAldSkCUFiERsoiYEpwVFTv_9VmcpuLmJmn6hlvpxyqHmFgBdd7V0CPfpRyYy0Aka-_xiYBqFPxd9RIao2gMmMqcn48dHKXNi3csZnXqGVPrRHCeDEffowiqfrpLKXAXxl-C0kQLquGXu2_oXIWc45n_vuwsmvbJJt4feMccGik682jqEwXhAjKNwlbTWB3cNbgJmmm4Ia3E533bBplsXA0V4AYMuttX7CD0vsSH7T4QLMDCfvvWPdm2HvCBC4g5dgedkhSYcUuLU2i8Oi8rF9HV8dHl4Qnx2gtEMxZbIhLKWZhrGhtVF9IIo1mupEpUwV2NIyPISxLF4zCiJjEskO6ulau-mAp1LhlbQrVOt1MsI5y4nIMaERoVFCENmNRKACVMzEOjleYraGd4-Zn2xOSgj9HOqgIlijIwVeZNtYK233c_Dgg5fti35e34x7b1oQUz__WW2Yf5Vn9fXkOTcNigJbOOarbXLzbQuH62d2Vv0zvjG4TM5Ls
  priority: 102
  providerName: ProQuest
Title Detection of Power Data Outliers Using Density Peaks Clustering Algorithm Based on K-Nearest Neighbors
URI https://dx.doi.org/10.1155/2022/2203137
https://www.proquest.com/docview/2699541972
Volume 2022
WOSCitedRecordID wos000852895500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: K7-
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: PIMPY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT9swFMCf1g4kOKAxQMCg8gFOk0VjJ45zLBTEBIQIwdRxiWw3HtVKixp30_57_NIUwRAal0hJHB_ec96H_fR7AHsR85bXWk0DFSga-pCAaiNDKlURcS0FLyo6__fzOE1lr5dkNSSpfH2E770dpufsgDGEDMYNaMgIK7euTntPBpe3WY1FbVMpRDKvb__n2xeeZ_EOU94_g1cmuPIrJ59gpQ4ISWemwVX4UIw-w_IzTOAa2G7hqoqpERlbkmFfM9JVTpHLqRtiK2tSHfyTLhaju7_Em7lfJTkaThGCgC86w5_jycDd3ZND77T6xE90RlOk15aOpLg56ldCuQ43J8fXR6e07o9ADeexozJhgod9w2Kr21JZaQ3va6UTXQifh6gIY4dEiziMmE0sD5QXlfYZEteh6SvON6A5Go-KTSCJjwuYlaHVQRGygCujJWJbYhFao43Ygq9z2eWmhodjD4thXiURUZSjpPNa0luw_zT6YQbNeGPcXq2G_wzbmesor_-wMmcCSXbYNG37fbN8gSW8nW2f7EDTTabFLiyY325QTlrw8fA4za5a0DiLqb9m0a1_ln27yH60qtX2CC_hx3U
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH41dSDgwDdiMMCH7YSsNbbjOAeExsq0ql3oYaBxCrZjs4nSjsVl2p_iN-I3TQYIAacdONuy5Pjx-5XXzwOwkbJoeb03NNGJpiKGBNRYJajSLuVGSe4adv5346wo1OFhPlmBb91bGGyr7GxiY6irucUa-RaTyFyGIlkvT75QVI3Cv6udhMYSFiN3fhZTtvrFcBDPd5Ox3dcHO3u0VRWglvMsUJUzyUVlWeZNX2mvvOWV0SY3TsboXafocXMjM5Eyn3ue6HgPTMwruBG20lgAjSZ_VUSw93uwOhnuT95f2H7eZy1Da58qKfOu1T5NscrAthhDrsTsFyd49Qiz77Pj37xB4-J2b_1vH-c23GyDabK9RP8dWHGzu3DjJ4rFe-AHLjTdZjMy92SCmnBkoIMmbxZhijLgpGmaIANs5A_nJLqITzXZmS6QQAIHtqcf407D0WfyKjr8isSFRrRA5t86kAILy_EW1ffh7aVs9AH0ZvOZewgkjzEV80p4kzjBEq6tUUh5k0nhrbFyDZ53h13alngd9T-mZZOApWmJ0ChbaKzB5sXskyXhyB_mbbS4-ce09Q4xZWud6vIHXB79ffgZXNs72B-X42ExegzXceFl-WkdeuF04Z7AFfs1HNenT9uLQODDZcPrOwy6QZg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxQxGH5DFiV68AM0oqg9wIk0u9POR-dgDDBsJEvGjVHDbWw7rRCWXWS6Ev6av86-sx3UGPXEwfM0TTp93s9553kANhPmPa-1ikYykjT2KQFVWsRUSJNwJVJuWnb-j4dZWYqjo3y8BN-6f2FwrLLzia2jrmcae-R9liJzGYpk9W0YixgXw9fnXygqSOGX1k5OYwGRkbm69OVb8-qg8He9xdhw__3eGxoUBqjmPHNU5Czlca1ZZtVASCus5rWSKlcm9Zm8TDD65irN4oTZ3PJIeptQvsbgKta1xGaod__LGfdFTw-Wd_fL8bvrOMAHLLC1DqhI07wbu08S7DiwPmPIm5j9EhBvH2MlfnnyW2Row93w_v_8oh7AvZBkk52FVTyEJTNdhbs_US-ugS2Ma6fQpmRmyRi14kghnSRv526C8uCkHaYgBQ74uyviQ8dpQ_YmcySWwAc7k8_-pO74jOz6RKAmfqMRLZERuHGkxIazt67mEXy4kYM-ht50NjVPgOQ-12JWxFZFJmYRl1oJpMLJ0thqpdN12O4uvtKBkB11QSZVW5glSYUwqQJM1mHrevX5gojkD-s2A4b-sWyjQ08VvFZT_YDO078_fgkrHlPV4UE5egZ3cN9FV2oDeu5ibp7DLf3VnTQXL4JNEPh00-j6DoShSjI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%5BRetracted%5D+Detection+of+Power+Data+Outliers+Using+Density+Peaks+Clustering+Algorithm+Based+on+K%E2%80%90Nearest+Neighbors&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Li%2C+Qingpeng&rft.au=Chen%2C+Lei&rft.au=Wang%2C+Yuhan&rft.date=2022&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft.issue=1&rft_id=info:doi/10.1155%2F2022%2F2203137&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_2203137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon