Super-hard (MoSiTiVZr)Nx high-entropy nitride coatings

High-entropy nitride coatings have become a promising alternative to traditional protective coatings due to their excellent mechanical properties, thermal stability, oxidation, and wear resistance. However, the design and fabrication of hard high-entropy nitride coatings remain a great challenge. In...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of alloys and compounds Ročník 926; s. 166807
Hlavní autoři: Li, Jingchuan, Chen, Yujie, Zhao, Yiman, Shi, Xunwang, wang, Shu, Zhang, Sam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Elsevier B.V 10.12.2022
Elsevier BV
Témata:
ISSN:0925-8388, 1873-4669
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract High-entropy nitride coatings have become a promising alternative to traditional protective coatings due to their excellent mechanical properties, thermal stability, oxidation, and wear resistance. However, the design and fabrication of hard high-entropy nitride coatings remain a great challenge. In this study, (MoSiTiVZr)Nx high-entropy nitride coatings were deposited by reactive DC magnetron sputtering at different nitrogen flow. The chemical compositions, structures, hardness, damage-tolerance, friction and corrosion resistances of the coatings were investigated. With the increase of nitrogen content in the coatings, the phase structure transforms from an amorphous structure to a single face centered cubic structure, and all alloying elements form metal-nitrogen bonds. The coating with nitrogen content of 53.7 at% exhibits an ultrahigh hardness of 45.6 GPa and the best damage-tolerance and wear resistance. The coatings with low nitrogen contents show better corrosion resistance than 304 stainless steels, however, an increase in nitrogen content results in a slight decrease in corrosion resistance. The mechanism of the structures, mechanical properties and corrosion resistance of (MoSiTiVZr)Nx coatings are discussed in details. •(MoSiTiVZr)Nx coatings were deposited by reactive magnetron sputtering.•Effect of N addition on structures and properties of the coatings was studied.•The structure of the coatings changes from an amorphous to a single FCC structure.•The maximum hardness of the coating reaches super hard level of 45.6 GPa.
AbstractList High-entropy nitride coatings have become a promising alternative to traditional protective coatings due to their excellent mechanical properties, thermal stability, oxidation, and wear resistance. However, the design and fabrication of hard high-entropy nitride coatings remain a great challenge. In this study, (MoSiTiVZr)Nx high-entropy nitride coatings were deposited by reactive DC magnetron sputtering at different nitrogen flow. The chemical compositions, structures, hardness, damage-tolerance, friction and corrosion resistances of the coatings were investigated. With the increase of nitrogen content in the coatings, the phase structure transforms from an amorphous structure to a single face centered cubic structure, and all alloying elements form metal-nitrogen bonds. The coating with nitrogen content of 53.7 at% exhibits an ultrahigh hardness of 45.6 GPa and the best damage-tolerance and wear resistance. The coatings with low nitrogen contents show better corrosion resistance than 304 stainless steels, however, an increase in nitrogen content results in a slight decrease in corrosion resistance. The mechanism of the structures, mechanical properties and corrosion resistance of (MoSiTiVZr)Nx coatings are discussed in details.
High-entropy nitride coatings have become a promising alternative to traditional protective coatings due to their excellent mechanical properties, thermal stability, oxidation, and wear resistance. However, the design and fabrication of hard high-entropy nitride coatings remain a great challenge. In this study, (MoSiTiVZr)Nx high-entropy nitride coatings were deposited by reactive DC magnetron sputtering at different nitrogen flow. The chemical compositions, structures, hardness, damage-tolerance, friction and corrosion resistances of the coatings were investigated. With the increase of nitrogen content in the coatings, the phase structure transforms from an amorphous structure to a single face centered cubic structure, and all alloying elements form metal-nitrogen bonds. The coating with nitrogen content of 53.7 at% exhibits an ultrahigh hardness of 45.6 GPa and the best damage-tolerance and wear resistance. The coatings with low nitrogen contents show better corrosion resistance than 304 stainless steels, however, an increase in nitrogen content results in a slight decrease in corrosion resistance. The mechanism of the structures, mechanical properties and corrosion resistance of (MoSiTiVZr)Nx coatings are discussed in details. •(MoSiTiVZr)Nx coatings were deposited by reactive magnetron sputtering.•Effect of N addition on structures and properties of the coatings was studied.•The structure of the coatings changes from an amorphous to a single FCC structure.•The maximum hardness of the coating reaches super hard level of 45.6 GPa.
ArticleNumber 166807
Author Zhao, Yiman
Zhang, Sam
Li, Jingchuan
Chen, Yujie
Shi, Xunwang
wang, Shu
Author_xml – sequence: 1
  givenname: Jingchuan
  surname: Li
  fullname: Li, Jingchuan
  organization: Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, China
– sequence: 2
  givenname: Yujie
  surname: Chen
  fullname: Chen, Yujie
  organization: School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
– sequence: 3
  givenname: Yiman
  surname: Zhao
  fullname: Zhao, Yiman
  organization: Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, China
– sequence: 4
  givenname: Xunwang
  surname: Shi
  fullname: Shi, Xunwang
  organization: Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, China
– sequence: 5
  givenname: Shu
  surname: wang
  fullname: wang, Shu
  email: shuwang@swu.edu.cn
  organization: Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, China
– sequence: 6
  givenname: Sam
  surname: Zhang
  fullname: Zhang, Sam
  email: samzhang@swu.edu.cn
  organization: Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, China
BookMark eNqFkMtKAzEUhoNUsK0-gjDgRhcz5jKTCy5Eijeoumh14SakmbTNMJ2MyVTs25syXblxdeDwf__hfCMwaFxjADhHMEMQ0esqq1Rda7fJMMQ4Q5RyyI7AEHFG0pxSMQBDKHCRcsL5CRiFUEEIkSBoCOhs2xqfrpUvk8sXN7Nz-_Hpr15_krVdrVPTdN61u6SxnbelSbRTnW1W4RQcL1UdzNlhjsH7w_188pRO3x6fJ3fTVBPCupQziBgqFdTMcLFYFCQvhSoRVqbQClEskKGC0IU2rIC8RAVTy7jMRYEwFpCMwUXf23r3tTWhk5Xb-iaelJjFIKQ5ymOq6FPauxC8WcrW243yO4mg3CuSlTwokntFslcUuZs_nLZdfNDFr5Wt_6Vve9pEAd_WeBm0NY02pfVGd7J09p-GX2XbhYA
CitedBy_id crossref_primary_10_1016_j_ceramint_2023_10_209
crossref_primary_10_1007_s11665_025_12086_5
crossref_primary_10_3390_coatings14091199
crossref_primary_10_1016_j_tsf_2024_140463
crossref_primary_10_1016_j_surfcoat_2024_131141
crossref_primary_10_1016_j_mtcomm_2025_113092
crossref_primary_10_3390_nano14242002
crossref_primary_10_1016_j_surfcoat_2025_131868
crossref_primary_10_1016_j_ceramint_2023_10_011
crossref_primary_10_1016_j_surfcoat_2024_130772
crossref_primary_10_1016_j_matdes_2024_112664
crossref_primary_10_1016_j_jallcom_2025_179822
crossref_primary_10_1016_j_jmrt_2024_07_153
crossref_primary_10_1016_j_surfcoat_2025_131742
crossref_primary_10_3390_ceramics6010019
crossref_primary_10_1016_j_surfcoat_2023_129692
crossref_primary_10_1016_j_surfcoat_2025_131788
crossref_primary_10_1016_j_jallcom_2023_172397
crossref_primary_10_1116_6_0003625
crossref_primary_10_1016_j_ceramint_2024_01_217
crossref_primary_10_3390_coatings13030635
crossref_primary_10_1016_j_vacuum_2024_113110
crossref_primary_10_1016_j_ceramint_2023_12_245
crossref_primary_10_1002_adem_202501226
crossref_primary_10_1016_j_ceramint_2025_01_083
crossref_primary_10_1016_j_apsusc_2025_163960
crossref_primary_10_1007_s11663_025_03624_6
crossref_primary_10_1016_j_ensm_2024_103954
crossref_primary_10_1016_j_ceramint_2023_05_147
crossref_primary_10_1116_6_0003678
crossref_primary_10_1116_6_0003758
crossref_primary_10_1007_s11665_024_09518_z
crossref_primary_10_3390_ma18153478
crossref_primary_10_1016_j_surfcoat_2025_132570
crossref_primary_10_1016_j_ijrmhm_2025_107243
crossref_primary_10_3390_nano14100814
crossref_primary_10_1016_j_vacuum_2025_114291
crossref_primary_10_3390_coatings14081006
crossref_primary_10_1016_j_porgcoat_2023_108010
crossref_primary_10_1016_j_apsusc_2025_162698
crossref_primary_10_1016_j_surfcoat_2023_130157
crossref_primary_10_1116_6_0002872
crossref_primary_10_26599_NR_2025_94907444
crossref_primary_10_1016_j_surfcoat_2024_130793
crossref_primary_10_1116_6_0002837
crossref_primary_10_1016_j_jallcom_2025_181957
crossref_primary_10_1134_S0018143924701145
crossref_primary_10_1002_adem_202302165
crossref_primary_10_1016_j_jallcom_2025_179169
crossref_primary_10_1016_j_mtcomm_2025_112671
crossref_primary_10_1016_j_actamat_2024_120214
crossref_primary_10_1016_j_matdes_2025_114715
crossref_primary_10_1016_j_porgcoat_2024_108846
crossref_primary_10_1016_j_vacuum_2024_113173
crossref_primary_10_1016_j_ceramint_2024_02_081
crossref_primary_10_1007_s42243_025_01448_x
crossref_primary_10_1016_j_surfcoat_2023_129320
crossref_primary_10_1557_s43578_025_01617_4
crossref_primary_10_1007_s44210_025_00061_7
Cites_doi 10.1557/JMR.1992.1564
10.1007/s11837-018-3270-9
10.1116/1.2194031
10.1016/S0040-6090(97)00069-2
10.1016/j.ceramint.2021.04.166
10.1088/0022-3727/27/11/017
10.1016/S0921-5093(02)00259-9
10.1016/j.apsusc.2016.10.049
10.1016/j.actamat.2011.04.011
10.1016/0965-9773(95)00044-5
10.1016/j.tsf.2011.11.025
10.1039/D1NR03289E
10.1016/j.surfcoat.2021.128051
10.3390/e21030297
10.1016/j.surfcoat.2021.128016
10.1007/s11106-014-9560-z
10.1016/j.surfcoat.2009.01.016
10.1016/S0257-8972(97)00393-9
10.1016/j.matchemphys.2014.06.062
10.1016/j.surfcoat.2006.06.048
10.1016/j.jmst.2019.07.055
10.1016/j.apsusc.2019.145101
10.1016/j.intermet.2011.01.004
10.1016/j.nimb.2010.05.039
10.1016/0020-7683(88)90091-1
10.1016/S0257-8972(02)00903-9
10.1016/j.vacuum.2021.110710
10.1016/j.mser.2021.100644
10.1016/S0043-1648(00)00488-9
10.4236/wjnse.2012.23020
10.1016/0924-0136(93)90016-Y
10.1007/s40145-021-0477-y
10.1016/j.apsusc.2011.09.006
10.1016/j.actamat.2013.07.019
10.1016/j.surfcoat.2020.126417
10.1016/j.actamat.2013.09.037
10.1016/j.pmatsci.2013.10.001
10.1016/j.surfcoat.2005.08.081
10.1016/j.tsf.2005.03.018
10.1016/j.matchemphys.2017.07.078
10.1016/j.tsf.2017.08.006
10.1016/0257-8972(93)90200-8
10.1007/s11837-013-0761-6
10.1080/14786435.2019.1566797
10.1002/adem.200300567
10.1016/j.msea.2003.10.257
10.1016/j.jallcom.2019.05.043
10.1002/adma.201000482
10.1016/S0257-8972(01)01714-5
10.1016/j.intermet.2010.05.014
10.1016/j.jeurceramsoc.2017.11.042
10.1016/j.apsusc.2020.146529
10.1016/j.surfcoat.2004.10.021
10.1016/j.vacuum.2021.110685
10.1016/j.actamat.2021.117112
10.1038/s41578-019-0170-8
10.1016/0040-6090(91)90225-M
10.1016/j.tsf.2016.08.005
10.1016/j.surfcoat.2011.09.033
10.1016/j.surfcoat.2012.03.096
10.1016/j.jallcom.2020.153836
10.1016/j.tsf.2008.01.019
10.1016/j.surfcoat.2004.08.023
10.1016/j.apsusc.2016.10.152
10.3390/coatings5030312
10.1016/j.jallcom.2016.04.064
10.1088/1361-6463/ab8bff
10.1016/j.apsusc.2004.03.255
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Dec 10, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 10, 2022
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2022.166807
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2022_166807
S092583882203198X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
T9H
WUQ
~HD
8BQ
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JG9
SSH
ID FETCH-LOGICAL-c337t-870171da0c7e89bb534d9ad12ae5ca16291e6936bce7508d157af291495122903
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848445000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-8388
IngestDate Fri Jul 25 05:27:33 EDT 2025
Tue Nov 18 22:26:56 EST 2025
Sat Nov 29 07:16:51 EST 2025
Fri Feb 23 02:37:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reactive magnetron sputtering
High-entropy nitride coatings
Super hard
Phase transition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-870171da0c7e89bb534d9ad12ae5ca16291e6936bce7508d157af291495122903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2729106414
PQPubID 2045454
ParticipantIDs proquest_journals_2729106414
crossref_primary_10_1016_j_jallcom_2022_166807
crossref_citationtrail_10_1016_j_jallcom_2022_166807
elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_166807
PublicationCentury 2000
PublicationDate 2022-12-10
PublicationDateYYYYMMDD 2022-12-10
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-10
  day: 10
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Tsai, Lai, Cheng, Tsai, Davison, Tsau, Yeh (bib40) 2012; 520
Tang, Shen, Xu (bib50) 2005; 485
He, Liu, Wang, Wu, Liu, Nieh, Lu (bib61) 2014; 62
Moulder, Stickle, Sobol, Bomben (bib46) 1995
Piippo, Elsener, Bohni (bib72) 1993; 61
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib6) 2004; 6
Xu, Li, Xia (bib44) 2020; 523
Pogrebnjak, Yakushchenko, Bondar, Beresnev, Oyoshi, Ivasishin, Amekura, Takeda, Opielak, Kozak (bib16) 2016; 679
Chen, Shun, Yeh, Wong (bib8) 2004; 188
Abboud, Motallebzadeh, Verma, Ozerinc (bib60) 2019; 71
Chang, Liang, Han, Chen, Shieu (bib38) 2010; 268
Wu, Chen, Zhu (bib13) 2022
Yeh (bib41) 2013; 65
Sha, Zhou, Xie, Munroe (bib57) 2020; 507
Hsueh, Shen, Tsai, Yeh (bib15) 2012; 206
Yu, Li, Shi, Sun, Wang, Zhang (bib34) 2022; 442
Monshi, Foroughi, Monshi (bib37) 2012; 02
Siegel, Fougere (bib53) 1995; 6
Kim, Park, Mun, Jumaev, Hong, Song, Kim, Park, Kim, Jeong, Kwon, Kim (bib27) 2019; 797
Chen, An, Zhou, Ma, Munroe, Zhang, Xie (bib28) 2021; 13
Navinsek, Panjan, Milosev (bib4) 1997; 97
PalDey, Deevi (bib1) 2003; 342
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib17) 2014; 61
Tsianikas, Chen, Xie (bib66) 2020; 39
Shi, Yu, Nie, Li, Zhang (bib33) 2021; 47
Oliver, Pharr (bib35) 1992; 7
Akrami, Edalati, Fuji, Edalati (bib5) 2021; 146
Huang, Su, Wu, Lin (bib52) 2019; 21
Chen, Cai, Pu, Lu, Chen, Zheng, Zeng (bib32) 2020; 827
Bhattacharya, Nix (bib51) 1988; 24
Chen, Chen, An, Zhang, Zhou, Lu, Munroe, Zhang, Liao, Zhu, Xie (bib67) 2021; 215
Shen, Tsai, Yeh (bib14) 2015; 5
Wu, Xiao, Chen, Liu, Lu (bib65) 2010; 22
Durandurdu (bib69) 2019; 99
Cantor, Chang, Knight, Vincent (bib7) 2004; 375
Braic, Vladescu, Balaceanu, Luculescu, Braic (bib24) 2012; 211
Chen, Wong, Shun, Yeh (bib39) 2005; 200
Herrera, Ponge, Raabe (bib64) 2011; 59
Ziebert, Ulrich (bib3) 2006; 24
Senkov, Wilks, Miracle, Chuang, Liaw (bib63) 2010; 18
Zhao, Ju, Liu, Pei, Ji, Li, Xue, Zhou, Chen (bib55) 2020; 53
Firstov, Gorban, Danilenko, Karpets, Andreev, Makarenko (bib21) 2014; 52
Xiang, Xing, Dai, Wang, Su, Miao, Zhang, Wang, Qi, Yao, Wang, Zhao, Li, Zhou (bib10) 2021; 10
Zhao, Chen, Chen, Wu, Xie, Yan, Wang, Liao, Zhang (bib48) 2022; 195
Chowdhury, Laugier (bib49) 2004; 233
Huang, Yeh (bib11) 2009; 203
Zhang, Pelenovich, Liu, Ke, Zhang, Yang, Ma, Li, Wang (bib30) 2022; 195
Chang, Huang, Davison, Yeh, Tsau, Yang (bib42) 2008; 516
Denkena, Wippermann, Busemann, Kuntz, Gottwik (bib59) 2018; 38
Pogrebnjak, Yakushchenko, Bagdasaryan, Bondar, Krause-Rehberg, Abadias, Chartier, Oyoshi, Takeda, Beresnev, Sobol (bib20) 2014; 147
Mason, Pichilingi (bib36) 1994; 27
Garah, Touaibia, Achache, Michau, Sviridova, Postnikov, Chehimi, Schuster, Sanchette (bib31) 2022; 432
Leyland, Matthews (bib54) 2000; 246
Musil, Kunc, Zeman, Polakova (bib56) 2002; 154
Lai, Lin, Yeh, Chang (bib25) 2006; 201
Zhang, Sun, Fu, Du (bib58) 2005; 198
Zhang, Sun, Fu, Du (bib29) 2003; 167
Senkov, Wilks, Scott, Miracle (bib62) 2011; 19
Yan, Li, Zhang, Zhang (bib12) 2018; 210
Oses, Toher, Curtarolo (bib9) 2020; 5
Yujie Chen, Zonghan Xie (bib19) 2021
Liang, Tsai, Chang, Sung, Lin, Yeh, Deng, Shieu (bib26) 2011; 258
Xu, Li, Luo, Lu, Gu, Lei, Huo (bib45) 2017; 393
Greczynski, Primetzhofer, Lu, Hultman (bib47) 2017; 396
Zhang, Zhu (bib2) 1993; 39
Cui, Li, Liu, Zhang, Ma, Chen, Feng, Liaw (bib23) 2020; 834
Wan, Ding, Yousaf, Chen, Liu, Hu, Yang (bib70) 2016; 616
Lin, Hsu, Song, Lo, Lai, Tsai, Duh (bib22) 2020; 403
Pelleg, Zevin, Lungo, Croitoru (bib43) 1991; 197
Liao, Lan, Gao, Zhang, Xu, Song, Wang, Lu (bib18) 2017; 638
Sun, Zhang, Marteleur, Gloriant, Vermaut, Laille, Castany, Curfs, Jacques, Prima (bib68) 2013; 61
Milosev, Strehblow, Navinsek (bib71) 1997; 303
Durandurdu (10.1016/j.jallcom.2022.166807_bib69) 2019; 99
Pelleg (10.1016/j.jallcom.2022.166807_bib43) 1991; 197
Huang (10.1016/j.jallcom.2022.166807_bib52) 2019; 21
Braic (10.1016/j.jallcom.2022.166807_bib24) 2012; 211
Bhattacharya (10.1016/j.jallcom.2022.166807_bib51) 1988; 24
Chowdhury (10.1016/j.jallcom.2022.166807_bib49) 2004; 233
Leyland (10.1016/j.jallcom.2022.166807_bib54) 2000; 246
Akrami (10.1016/j.jallcom.2022.166807_bib5) 2021; 146
Firstov (10.1016/j.jallcom.2022.166807_bib21) 2014; 52
Lai (10.1016/j.jallcom.2022.166807_bib25) 2006; 201
Greczynski (10.1016/j.jallcom.2022.166807_bib47) 2017; 396
Milosev (10.1016/j.jallcom.2022.166807_bib71) 1997; 303
Yan (10.1016/j.jallcom.2022.166807_bib12) 2018; 210
Piippo (10.1016/j.jallcom.2022.166807_bib72) 1993; 61
Zhang (10.1016/j.jallcom.2022.166807_bib2) 1993; 39
Chen (10.1016/j.jallcom.2022.166807_bib8) 2004; 188
Navinsek (10.1016/j.jallcom.2022.166807_bib4) 1997; 97
Denkena (10.1016/j.jallcom.2022.166807_bib59) 2018; 38
Zhang (10.1016/j.jallcom.2022.166807_bib30) 2022; 195
Liao (10.1016/j.jallcom.2022.166807_bib18) 2017; 638
Monshi (10.1016/j.jallcom.2022.166807_bib37) 2012; 02
Sun (10.1016/j.jallcom.2022.166807_bib68) 2013; 61
Hsueh (10.1016/j.jallcom.2022.166807_bib15) 2012; 206
Xiang (10.1016/j.jallcom.2022.166807_bib10) 2021; 10
Yujie Chen (10.1016/j.jallcom.2022.166807_bib19) 2021
Moulder (10.1016/j.jallcom.2022.166807_bib46) 1995
Yeh (10.1016/j.jallcom.2022.166807_bib41) 2013; 65
Tsai (10.1016/j.jallcom.2022.166807_bib40) 2012; 520
Pogrebnjak (10.1016/j.jallcom.2022.166807_bib16) 2016; 679
Siegel (10.1016/j.jallcom.2022.166807_bib53) 1995; 6
Shen (10.1016/j.jallcom.2022.166807_bib14) 2015; 5
Chen (10.1016/j.jallcom.2022.166807_bib32) 2020; 827
Tang (10.1016/j.jallcom.2022.166807_bib50) 2005; 485
Oses (10.1016/j.jallcom.2022.166807_bib9) 2020; 5
Senkov (10.1016/j.jallcom.2022.166807_bib63) 2010; 18
Zhang (10.1016/j.jallcom.2022.166807_bib29) 2003; 167
Zhang (10.1016/j.jallcom.2022.166807_bib58) 2005; 198
Wu (10.1016/j.jallcom.2022.166807_bib65) 2010; 22
Chang (10.1016/j.jallcom.2022.166807_bib42) 2008; 516
Senkov (10.1016/j.jallcom.2022.166807_bib62) 2011; 19
Zhao (10.1016/j.jallcom.2022.166807_bib55) 2020; 53
Wan (10.1016/j.jallcom.2022.166807_bib70) 2016; 616
PalDey (10.1016/j.jallcom.2022.166807_bib1) 2003; 342
Kim (10.1016/j.jallcom.2022.166807_bib27) 2019; 797
Huang (10.1016/j.jallcom.2022.166807_bib11) 2009; 203
Garah (10.1016/j.jallcom.2022.166807_bib31) 2022; 432
Musil (10.1016/j.jallcom.2022.166807_bib56) 2002; 154
Chen (10.1016/j.jallcom.2022.166807_bib28) 2021; 13
Cantor (10.1016/j.jallcom.2022.166807_bib7) 2004; 375
Cui (10.1016/j.jallcom.2022.166807_bib23) 2020; 834
Sha (10.1016/j.jallcom.2022.166807_bib57) 2020; 507
Pogrebnjak (10.1016/j.jallcom.2022.166807_bib20) 2014; 147
Oliver (10.1016/j.jallcom.2022.166807_bib35) 1992; 7
Ziebert (10.1016/j.jallcom.2022.166807_bib3) 2006; 24
Chang (10.1016/j.jallcom.2022.166807_bib38) 2010; 268
Zhang (10.1016/j.jallcom.2022.166807_bib17) 2014; 61
Chen (10.1016/j.jallcom.2022.166807_bib67) 2021; 215
Herrera (10.1016/j.jallcom.2022.166807_bib64) 2011; 59
Liang (10.1016/j.jallcom.2022.166807_bib26) 2011; 258
Yu (10.1016/j.jallcom.2022.166807_bib34) 2022; 442
Mason (10.1016/j.jallcom.2022.166807_bib36) 1994; 27
Xu (10.1016/j.jallcom.2022.166807_bib45) 2017; 393
Tsianikas (10.1016/j.jallcom.2022.166807_bib66) 2020; 39
Zhao (10.1016/j.jallcom.2022.166807_bib48) 2022; 195
Yeh (10.1016/j.jallcom.2022.166807_bib6) 2004; 6
He (10.1016/j.jallcom.2022.166807_bib61) 2014; 62
Shi (10.1016/j.jallcom.2022.166807_bib33) 2021; 47
Wu (10.1016/j.jallcom.2022.166807_bib13) 2022
Chen (10.1016/j.jallcom.2022.166807_bib39) 2005; 200
Xu (10.1016/j.jallcom.2022.166807_bib44) 2020; 523
Abboud (10.1016/j.jallcom.2022.166807_bib60) 2019; 71
Lin (10.1016/j.jallcom.2022.166807_bib22) 2020; 403
References_xml – volume: 47
  start-page: 21546
  year: 2021
  end-page: 21553
  ident: bib33
  article-title: Controlled growth of nanocrystalline aluminum nitride films for full color range
  publication-title: Ceram. Int
– volume: 393
  start-page: 467
  year: 2017
  end-page: 473
  ident: bib45
  article-title: Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube
  publication-title: Appl. Surf. Sci.
– volume: 02
  start-page: 154
  year: 2012
  end-page: 160
  ident: bib37
  article-title: Modified scherrer equation to estimate more accurately nano-crystallite size using XRD
  publication-title: World J. Nano Sci. Eng.
– volume: 24
  start-page: 1287
  year: 1988
  end-page: 1298
  ident: bib51
  article-title: Analysis of elastic and plastic-deformation associated with indentation testing of thin-films on substrates
  publication-title: Int J. Solids Struct.
– volume: 5
  start-page: 295
  year: 2020
  end-page: 309
  ident: bib9
  article-title: High-entropy ceramics
  publication-title: Nat. Rev. Mater.
– volume: 827
  year: 2020
  ident: bib32
  article-title: Effects of nitriding on the microstructure and properties of VAlTiCrMo high-entropy alloy coatings by sputtering technique
  publication-title: J. Alloy Compd.
– volume: 10
  start-page: 385
  year: 2021
  end-page: 441
  ident: bib10
  article-title: High-entropy ceramics: Present status, challenges, and a look forward
  publication-title: J. Adv. Ceram.
– volume: 53
  year: 2020
  ident: bib55
  article-title: A strategy to construct long-range fullerene-like nanostructure in amorphous carbon film with improved toughness and carrying capacity
  publication-title: J. Phys. D. Appl. Phys.
– volume: 65
  start-page: 1759
  year: 2013
  end-page: 1771
  ident: bib41
  article-title: Alloy design strategies and future trends in high-entropy alloys
  publication-title: Jom-Us
– volume: 167
  start-page: 113
  year: 2003
  end-page: 119
  ident: bib29
  article-title: Recent advances of superhard nanocomposite coatings: a review
  publication-title: Surf. Coat. Tech.
– volume: 154
  start-page: 304
  year: 2002
  end-page: 313
  ident: bib56
  article-title: Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings
  publication-title: Surf. Coat. Tech.
– volume: 99
  start-page: 942
  year: 2019
  end-page: 955
  ident: bib69
  article-title: Phase transition of ZrN under pressure
  publication-title: Philos. Mag.
– volume: 523
  year: 2020
  ident: bib44
  article-title: Synthesis and characterization of super -hard AlCrTiVZr high -entropy alloy nitride films deposited by HiPIMS
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 205
  year: 1995
  end-page: 216
  ident: bib53
  article-title: Mechanical properties of nanophase metals
  publication-title: Nanostruct. Mater.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib6
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 507
  year: 2020
  ident: bib57
  article-title: FeMnNiCoCr-based high entropy alloy coatings: effect of nitrogen additions on microstructural development, mechanical properties and tribological performance
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 1564
  year: 1992
  end-page: 1583
  ident: bib35
  article-title: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res
– volume: 211
  start-page: 117
  year: 2012
  end-page: 121
  ident: bib24
  article-title: Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings
  publication-title: Surf. Coat. Tech.
– volume: 520
  start-page: 2613
  year: 2012
  end-page: 2618
  ident: bib40
  article-title: Strong amorphization of high-entropy AlBCrSiTi nitride film
  publication-title: Thin Solid Films
– volume: 39
  start-page: 165
  year: 1993
  end-page: 177
  ident: bib2
  article-title: TiN coating of tool steels: a review
  publication-title: J. Mater. Process Tech.
– volume: 638
  start-page: 383
  year: 2017
  end-page: 388
  ident: bib18
  article-title: Nanocrystalline high-entropy alloy (CoCrFeNiAl
  publication-title: Thin Solid Films
– volume: 198
  start-page: 74
  year: 2005
  end-page: 84
  ident: bib58
  article-title: Toughness measurement of thin films: a critical review
  publication-title: Surf. Coat. Tech.
– volume: 5
  start-page: 312
  year: 2015
  end-page: 325
  ident: bib14
  article-title: Machining performance of sputter-deposited (Al
  publication-title: Coatings
– volume: 19
  start-page: 698
  year: 2011
  end-page: 706
  ident: bib62
  article-title: Mechanical properties of Nb
  publication-title: Intermetallics
– volume: 39
  start-page: 7
  year: 2020
  end-page: 13
  ident: bib66
  article-title: Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings
  publication-title: J. Mater. Sci. Technol.
– volume: 197
  start-page: 117
  year: 1991
  end-page: 128
  ident: bib43
  article-title: Reactive-sputter-deposited tin films on glass substrates
  publication-title: Thin Solid Films
– volume: 18
  start-page: 1758
  year: 2010
  end-page: 1765
  ident: bib63
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
– volume: 147
  start-page: 1079
  year: 2014
  end-page: 1091
  ident: bib20
  article-title: Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions
  publication-title: Mater. Chem. Phys.
– volume: 258
  start-page: 399
  year: 2011
  end-page: 403
  ident: bib26
  article-title: Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering
  publication-title: Appl. Surf. Sci.
– volume: 403
  year: 2020
  ident: bib22
  article-title: Improving the hardness of high entropy nitride (Cr
  publication-title: Surf. Coat. Tech.
– volume: 200
  start-page: 1361
  year: 2005
  end-page: 1365
  ident: bib39
  article-title: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering
  publication-title: Surf. Coat. Tech.
– volume: 246
  start-page: 1
  year: 2000
  end-page: 11
  ident: bib54
  article-title: On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour
  publication-title: Wear
– volume: 97
  start-page: 182
  year: 1997
  end-page: 191
  ident: bib4
  article-title: Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures
  publication-title: Surf. Coat. Tech.
– volume: 195
  year: 2022
  ident: bib48
  article-title: Super-hard and anti-corrosion (AlCrMoSiTi)N
  publication-title: Vacuum
– volume: 442
  year: 2022
  ident: bib34
  article-title: Suppression of pesting failure in MoSi2 film by doping of Si
  publication-title: Surf. Coat. Tech.
– volume: 62
  start-page: 105
  year: 2014
  end-page: 113
  ident: bib61
  article-title: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system
  publication-title: Acta Mater.
– volume: 61
  start-page: 1
  year: 2014
  end-page: 93
  ident: bib17
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
– volume: 303
  start-page: 246
  year: 1997
  end-page: 254
  ident: bib71
  article-title: Comparison of TiN, ZrN and CrN hard nitride coatings: electrochemical and thermal oxidation
  publication-title: Thin Solid Films
– volume: 215
  year: 2021
  ident: bib67
  article-title: Unraveling dual phase transformations in a CrCoNi medium-entropy alloy
  publication-title: Acta Mater.
– volume: 797
  start-page: 834
  year: 2019
  end-page: 841
  ident: bib27
  article-title: Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering
  publication-title: J. Alloy Compd.
– volume: 616
  start-page: 601
  year: 2016
  end-page: 607
  ident: bib70
  article-title: Corrosion behaviors of TiN and Ti-Si-N (with 2.9 at% and 5.0 at% Si) coatings by electrochemical impedance spectroscopy
  publication-title: Thin Solid Films
– volume: 71
  start-page: 593
  year: 2019
  end-page: 601
  ident: bib60
  article-title: Nanoscratch behavior of metallic glass/crystalline nanolayered composites
  publication-title: Jom-Us
– volume: 21
  start-page: 297
  year: 2019
  ident: bib52
  article-title: A study on the hall-petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys
  publication-title: Entropy
– volume: 59
  start-page: 4653
  year: 2011
  end-page: 4664
  ident: bib64
  article-title: Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability
  publication-title: Acta Mater.
– volume: 24
  start-page: 554
  year: 2006
  end-page: 583
  ident: bib3
  article-title: Hard multilayer coatings containing TiN and/or ZrN: a review and recent progress in their nanoscale characterization
  publication-title: J. Vac. Sci. Technol. A
– volume: 146
  year: 2021
  ident: bib5
  article-title: High-entropy ceramics: review of principles, production and applications
  publication-title: Mat. Sci. Eng. R.
– volume: 375
  start-page: 213
  year: 2004
  end-page: 218
  ident: bib7
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mat. Sci. Eng. a-Struct.
– volume: 52
  start-page: 560
  year: 2014
  end-page: 566
  ident: bib21
  article-title: Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti-V-Zr-Nb-Hf alloy
  publication-title: Powder Metall. Met. Ceram.
– volume: 432
  year: 2022
  ident: bib31
  article-title: Effect of nitrogen content on structural and mechanical properties of AlTiZrTaHf(-N) high entropy films deposited by reactive magnetron sputtering
  publication-title: Surf. Coat. Tech.
– year: 1995
  ident: bib46
  article-title: Handbook of X-Ray photoelectron spectroscopy, Physical Electronics
  publication-title: Inc., Eden Prairie, Minn.
– volume: 342
  start-page: 58
  year: 2003
  end-page: 79
  ident: bib1
  article-title: Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review
  publication-title: Mat. Sci. Eng. a-Struct.
– volume: 485
  start-page: 72
  year: 2005
  end-page: 76
  ident: bib50
  article-title: Hardness and elastic modulus of Au/NiCr/Ta multilayers on Al
  publication-title: Thin Solid Films
– volume: 268
  start-page: 2504
  year: 2010
  end-page: 2509
  ident: bib38
  article-title: Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering
  publication-title: Nucl. Instrum. Meth B
– volume: 233
  start-page: 219
  year: 2004
  end-page: 226
  ident: bib49
  article-title: The use of non-contact AFM with nanoindentation techniques for measuring mechanical properties of carbon nitride thin films
  publication-title: Appl. Surf. Sci.
– year: 2022
  ident: bib13
  article-title: A review on the tribological performances of high-entropy alloys
  publication-title: Adv. Eng. Mater.
– volume: 27
  start-page: 2363
  year: 1994
  end-page: 2371
  ident: bib36
  article-title: Sputtering in a glow-discharge ion source-pressure dependence - theory and experiment
  publication-title: J. Phys. D. Appl. Phys.
– volume: 38
  start-page: 1760
  year: 2018
  end-page: 1768
  ident: bib59
  article-title: Comparison of residual strength behavior after indentation, scratching and grinding of zirconia-based ceramics for medical-technical applications
  publication-title: J. Eur. Ceram. Soc.
– volume: 61
  start-page: 6406
  year: 2013
  end-page: 6417
  ident: bib68
  article-title: Investigation of early stage deformation mechanisms in a metastable beta titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects
  publication-title: Acta Mater.
– volume: 206
  start-page: 4106
  year: 2012
  end-page: 4112
  ident: bib15
  article-title: Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)
  publication-title: Surf. Coat. Tech.
– volume: 396
  start-page: 347
  year: 2017
  end-page: 358
  ident: bib47
  article-title: Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers
  publication-title: Appl. Surf. Sci.
– volume: 22
  start-page: 2770
  year: 2010
  end-page: 2773
  ident: bib65
  article-title: Bulk metallic glass composites withtransformation-mediated work-hardening and ductility
  publication-title: Adv. Mater.
– volume: 203
  start-page: 1891
  year: 2009
  end-page: 1896
  ident: bib11
  article-title: Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating
  publication-title: Surf. Coat. Tech.
– volume: 679
  start-page: 155
  year: 2016
  end-page: 163
  ident: bib16
  article-title: Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings
  publication-title: J. Alloy Compd.
– volume: 201
  start-page: 3275
  year: 2006
  end-page: 3280
  ident: bib25
  article-title: Preparation and characterization of AlCrTaTiZr multi-element nitride coatings
  publication-title: Surf. Coat. Tech.
– volume: 13
  start-page: 15074
  year: 2021
  end-page: 15084
  ident: bib28
  article-title: Remarkable toughness of a nanostructured medium-entropy nitride compound
  publication-title: Nanoscale
– volume: 195
  year: 2022
  ident: bib30
  article-title: Effect of bias voltages on microstructure and properties of (TiVCrNbSiTaBY)N high entropy alloy nitride coatings deposited by RF magnetron sputtering
  publication-title: Vacuum
– volume: 516
  start-page: 6402
  year: 2008
  end-page: 6408
  ident: bib42
  article-title: Nitride films deposited from an equimolar Al-Cr-Mo-Si-Ti alloy target by reactive direct current magnetron sputtering
  publication-title: Thin Solid Films
– volume: 834
  year: 2020
  ident: bib23
  article-title: Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films
  publication-title: J. Alloy Compd.
– volume: 210
  start-page: 12
  year: 2018
  end-page: 19
  ident: bib12
  article-title: A brief review of high-entropy films
  publication-title: Mater. Chem. Phys.
– volume: 188
  start-page: 193
  year: 2004
  end-page: 200
  ident: bib8
  article-title: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering
  publication-title: Surf. Coat. Tech.
– start-page: 205
  year: 2021
  end-page: 232
  ident: bib19
  article-title: "High-Entropy Alloy-Based Coatings: Microstructures and Properties." In Protective Thin Coatings Technology
– volume: 61
  start-page: 43
  year: 1993
  end-page: 46
  ident: bib72
  article-title: Electrochemical characterization of TiN coatings
  publication-title: Surf. Coat. Tech.
– volume: 7
  start-page: 1564
  year: 1992
  ident: 10.1016/j.jallcom.2022.166807_bib35
  article-title: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res
  doi: 10.1557/JMR.1992.1564
– volume: 71
  start-page: 593
  year: 2019
  ident: 10.1016/j.jallcom.2022.166807_bib60
  article-title: Nanoscratch behavior of metallic glass/crystalline nanolayered composites
  publication-title: Jom-Us
  doi: 10.1007/s11837-018-3270-9
– volume: 24
  start-page: 554
  year: 2006
  ident: 10.1016/j.jallcom.2022.166807_bib3
  article-title: Hard multilayer coatings containing TiN and/or ZrN: a review and recent progress in their nanoscale characterization
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.2194031
– volume: 303
  start-page: 246
  year: 1997
  ident: 10.1016/j.jallcom.2022.166807_bib71
  article-title: Comparison of TiN, ZrN and CrN hard nitride coatings: electrochemical and thermal oxidation
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(97)00069-2
– volume: 47
  start-page: 21546
  year: 2021
  ident: 10.1016/j.jallcom.2022.166807_bib33
  article-title: Controlled growth of nanocrystalline aluminum nitride films for full color range
  publication-title: Ceram. Int
  doi: 10.1016/j.ceramint.2021.04.166
– volume: 27
  start-page: 2363
  year: 1994
  ident: 10.1016/j.jallcom.2022.166807_bib36
  article-title: Sputtering in a glow-discharge ion source-pressure dependence - theory and experiment
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/27/11/017
– volume: 342
  start-page: 58
  year: 2003
  ident: 10.1016/j.jallcom.2022.166807_bib1
  article-title: Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review
  publication-title: Mat. Sci. Eng. a-Struct.
  doi: 10.1016/S0921-5093(02)00259-9
– volume: 393
  start-page: 467
  year: 2017
  ident: 10.1016/j.jallcom.2022.166807_bib45
  article-title: Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.10.049
– volume: 59
  start-page: 4653
  year: 2011
  ident: 10.1016/j.jallcom.2022.166807_bib64
  article-title: Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.04.011
– volume: 6
  start-page: 205
  year: 1995
  ident: 10.1016/j.jallcom.2022.166807_bib53
  article-title: Mechanical properties of nanophase metals
  publication-title: Nanostruct. Mater.
  doi: 10.1016/0965-9773(95)00044-5
– volume: 520
  start-page: 2613
  year: 2012
  ident: 10.1016/j.jallcom.2022.166807_bib40
  article-title: Strong amorphization of high-entropy AlBCrSiTi nitride film
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.11.025
– volume: 13
  start-page: 15074
  year: 2021
  ident: 10.1016/j.jallcom.2022.166807_bib28
  article-title: Remarkable toughness of a nanostructured medium-entropy nitride compound
  publication-title: Nanoscale
  doi: 10.1039/D1NR03289E
– volume: 432
  year: 2022
  ident: 10.1016/j.jallcom.2022.166807_bib31
  article-title: Effect of nitrogen content on structural and mechanical properties of AlTiZrTaHf(-N) high entropy films deposited by reactive magnetron sputtering
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2021.128051
– volume: 21
  start-page: 297
  year: 2019
  ident: 10.1016/j.jallcom.2022.166807_bib52
  article-title: A study on the hall-petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys
  publication-title: Entropy
  doi: 10.3390/e21030297
– volume: 442
  year: 2022
  ident: 10.1016/j.jallcom.2022.166807_bib34
  article-title: Suppression of pesting failure in MoSi2 film by doping of Si
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2021.128016
– volume: 52
  start-page: 560
  year: 2014
  ident: 10.1016/j.jallcom.2022.166807_bib21
  article-title: Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti-V-Zr-Nb-Hf alloy
  publication-title: Powder Metall. Met. Ceram.
  doi: 10.1007/s11106-014-9560-z
– volume: 203
  start-page: 1891
  year: 2009
  ident: 10.1016/j.jallcom.2022.166807_bib11
  article-title: Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2009.01.016
– volume: 834
  year: 2020
  ident: 10.1016/j.jallcom.2022.166807_bib23
  article-title: Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films
  publication-title: J. Alloy Compd.
– volume: 97
  start-page: 182
  year: 1997
  ident: 10.1016/j.jallcom.2022.166807_bib4
  article-title: Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/S0257-8972(97)00393-9
– volume: 147
  start-page: 1079
  year: 2014
  ident: 10.1016/j.jallcom.2022.166807_bib20
  article-title: Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.06.062
– volume: 201
  start-page: 3275
  year: 2006
  ident: 10.1016/j.jallcom.2022.166807_bib25
  article-title: Preparation and characterization of AlCrTaTiZr multi-element nitride coatings
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2006.06.048
– volume: 39
  start-page: 7
  year: 2020
  ident: 10.1016/j.jallcom.2022.166807_bib66
  article-title: Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.07.055
– volume: 507
  year: 2020
  ident: 10.1016/j.jallcom.2022.166807_bib57
  article-title: FeMnNiCoCr-based high entropy alloy coatings: effect of nitrogen additions on microstructural development, mechanical properties and tribological performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.145101
– volume: 19
  start-page: 698
  year: 2011
  ident: 10.1016/j.jallcom.2022.166807_bib62
  article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.01.004
– volume: 268
  start-page: 2504
  year: 2010
  ident: 10.1016/j.jallcom.2022.166807_bib38
  article-title: Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering
  publication-title: Nucl. Instrum. Meth B
  doi: 10.1016/j.nimb.2010.05.039
– start-page: 205
  year: 2021
  ident: 10.1016/j.jallcom.2022.166807_bib19
– volume: 24
  start-page: 1287
  year: 1988
  ident: 10.1016/j.jallcom.2022.166807_bib51
  article-title: Analysis of elastic and plastic-deformation associated with indentation testing of thin-films on substrates
  publication-title: Int J. Solids Struct.
  doi: 10.1016/0020-7683(88)90091-1
– volume: 167
  start-page: 113
  year: 2003
  ident: 10.1016/j.jallcom.2022.166807_bib29
  article-title: Recent advances of superhard nanocomposite coatings: a review
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/S0257-8972(02)00903-9
– volume: 195
  year: 2022
  ident: 10.1016/j.jallcom.2022.166807_bib30
  article-title: Effect of bias voltages on microstructure and properties of (TiVCrNbSiTaBY)N high entropy alloy nitride coatings deposited by RF magnetron sputtering
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2021.110710
– volume: 146
  year: 2021
  ident: 10.1016/j.jallcom.2022.166807_bib5
  article-title: High-entropy ceramics: review of principles, production and applications
  publication-title: Mat. Sci. Eng. R.
  doi: 10.1016/j.mser.2021.100644
– volume: 246
  start-page: 1
  year: 2000
  ident: 10.1016/j.jallcom.2022.166807_bib54
  article-title: On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour
  publication-title: Wear
  doi: 10.1016/S0043-1648(00)00488-9
– volume: 02
  start-page: 154
  year: 2012
  ident: 10.1016/j.jallcom.2022.166807_bib37
  article-title: Modified scherrer equation to estimate more accurately nano-crystallite size using XRD
  publication-title: World J. Nano Sci. Eng.
  doi: 10.4236/wjnse.2012.23020
– volume: 39
  start-page: 165
  year: 1993
  ident: 10.1016/j.jallcom.2022.166807_bib2
  article-title: TiN coating of tool steels: a review
  publication-title: J. Mater. Process Tech.
  doi: 10.1016/0924-0136(93)90016-Y
– volume: 10
  start-page: 385
  year: 2021
  ident: 10.1016/j.jallcom.2022.166807_bib10
  article-title: High-entropy ceramics: Present status, challenges, and a look forward
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-021-0477-y
– volume: 258
  start-page: 399
  year: 2011
  ident: 10.1016/j.jallcom.2022.166807_bib26
  article-title: Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.09.006
– volume: 61
  start-page: 6406
  year: 2013
  ident: 10.1016/j.jallcom.2022.166807_bib68
  article-title: Investigation of early stage deformation mechanisms in a metastable beta titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.07.019
– volume: 403
  year: 2020
  ident: 10.1016/j.jallcom.2022.166807_bib22
  article-title: Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)N coatings via tuning substrate temperature and bias for anti-wear applications
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2020.126417
– year: 2022
  ident: 10.1016/j.jallcom.2022.166807_bib13
  article-title: A review on the tribological performances of high-entropy alloys
  publication-title: Adv. Eng. Mater.
– volume: 62
  start-page: 105
  year: 2014
  ident: 10.1016/j.jallcom.2022.166807_bib61
  article-title: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.09.037
– volume: 61
  start-page: 1
  year: 2014
  ident: 10.1016/j.jallcom.2022.166807_bib17
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 200
  start-page: 1361
  year: 2005
  ident: 10.1016/j.jallcom.2022.166807_bib39
  article-title: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2005.08.081
– volume: 485
  start-page: 72
  year: 2005
  ident: 10.1016/j.jallcom.2022.166807_bib50
  article-title: Hardness and elastic modulus of Au/NiCr/Ta multilayers on Al2O3 substrate by nanoindentation continuous stiffness measurement technique
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.03.018
– volume: 210
  start-page: 12
  year: 2018
  ident: 10.1016/j.jallcom.2022.166807_bib12
  article-title: A brief review of high-entropy films
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.07.078
– volume: 638
  start-page: 383
  year: 2017
  ident: 10.1016/j.jallcom.2022.166807_bib18
  article-title: Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2017.08.006
– volume: 61
  start-page: 43
  year: 1993
  ident: 10.1016/j.jallcom.2022.166807_bib72
  article-title: Electrochemical characterization of TiN coatings
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/0257-8972(93)90200-8
– volume: 65
  start-page: 1759
  year: 2013
  ident: 10.1016/j.jallcom.2022.166807_bib41
  article-title: Alloy design strategies and future trends in high-entropy alloys
  publication-title: Jom-Us
  doi: 10.1007/s11837-013-0761-6
– volume: 99
  start-page: 942
  year: 2019
  ident: 10.1016/j.jallcom.2022.166807_bib69
  article-title: Phase transition of ZrN under pressure
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2019.1566797
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.jallcom.2022.166807_bib6
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 375
  start-page: 213
  year: 2004
  ident: 10.1016/j.jallcom.2022.166807_bib7
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mat. Sci. Eng. a-Struct.
  doi: 10.1016/j.msea.2003.10.257
– volume: 797
  start-page: 834
  year: 2019
  ident: 10.1016/j.jallcom.2022.166807_bib27
  article-title: Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2019.05.043
– volume: 22
  start-page: 2770
  year: 2010
  ident: 10.1016/j.jallcom.2022.166807_bib65
  article-title: Bulk metallic glass composites withtransformation-mediated work-hardening and ductility
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000482
– year: 1995
  ident: 10.1016/j.jallcom.2022.166807_bib46
  article-title: Handbook of X-Ray photoelectron spectroscopy, Physical Electronics
  publication-title: Inc., Eden Prairie, Minn.
– volume: 154
  start-page: 304
  year: 2002
  ident: 10.1016/j.jallcom.2022.166807_bib56
  article-title: Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/S0257-8972(01)01714-5
– volume: 18
  start-page: 1758
  year: 2010
  ident: 10.1016/j.jallcom.2022.166807_bib63
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.05.014
– volume: 38
  start-page: 1760
  year: 2018
  ident: 10.1016/j.jallcom.2022.166807_bib59
  article-title: Comparison of residual strength behavior after indentation, scratching and grinding of zirconia-based ceramics for medical-technical applications
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.11.042
– volume: 523
  year: 2020
  ident: 10.1016/j.jallcom.2022.166807_bib44
  article-title: Synthesis and characterization of super -hard AlCrTiVZr high -entropy alloy nitride films deposited by HiPIMS
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146529
– volume: 198
  start-page: 74
  year: 2005
  ident: 10.1016/j.jallcom.2022.166807_bib58
  article-title: Toughness measurement of thin films: a critical review
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2004.10.021
– volume: 195
  year: 2022
  ident: 10.1016/j.jallcom.2022.166807_bib48
  article-title: Super-hard and anti-corrosion (AlCrMoSiTi)Nx high entropy nitride coatings by multi-arc cathodic vacuum magnetic filtration deposition
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2021.110685
– volume: 215
  year: 2021
  ident: 10.1016/j.jallcom.2022.166807_bib67
  article-title: Unraveling dual phase transformations in a CrCoNi medium-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117112
– volume: 5
  start-page: 295
  year: 2020
  ident: 10.1016/j.jallcom.2022.166807_bib9
  article-title: High-entropy ceramics
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0170-8
– volume: 197
  start-page: 117
  year: 1991
  ident: 10.1016/j.jallcom.2022.166807_bib43
  article-title: Reactive-sputter-deposited tin films on glass substrates
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(91)90225-M
– volume: 616
  start-page: 601
  year: 2016
  ident: 10.1016/j.jallcom.2022.166807_bib70
  article-title: Corrosion behaviors of TiN and Ti-Si-N (with 2.9 at% and 5.0 at% Si) coatings by electrochemical impedance spectroscopy
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.08.005
– volume: 211
  start-page: 117
  year: 2012
  ident: 10.1016/j.jallcom.2022.166807_bib24
  article-title: Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2011.09.033
– volume: 206
  start-page: 4106
  year: 2012
  ident: 10.1016/j.jallcom.2022.166807_bib15
  article-title: Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)(100−x)Nx
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2012.03.096
– volume: 827
  year: 2020
  ident: 10.1016/j.jallcom.2022.166807_bib32
  article-title: Effects of nitriding on the microstructure and properties of VAlTiCrMo high-entropy alloy coatings by sputtering technique
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2020.153836
– volume: 516
  start-page: 6402
  year: 2008
  ident: 10.1016/j.jallcom.2022.166807_bib42
  article-title: Nitride films deposited from an equimolar Al-Cr-Mo-Si-Ti alloy target by reactive direct current magnetron sputtering
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2008.01.019
– volume: 188
  start-page: 193
  year: 2004
  ident: 10.1016/j.jallcom.2022.166807_bib8
  article-title: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2004.08.023
– volume: 396
  start-page: 347
  year: 2017
  ident: 10.1016/j.jallcom.2022.166807_bib47
  article-title: Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.10.152
– volume: 5
  start-page: 312
  year: 2015
  ident: 10.1016/j.jallcom.2022.166807_bib14
  article-title: Machining performance of sputter-deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride coatings
  publication-title: Coatings
  doi: 10.3390/coatings5030312
– volume: 679
  start-page: 155
  year: 2016
  ident: 10.1016/j.jallcom.2022.166807_bib16
  article-title: Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2016.04.064
– volume: 53
  year: 2020
  ident: 10.1016/j.jallcom.2022.166807_bib55
  article-title: A strategy to construct long-range fullerene-like nanostructure in amorphous carbon film with improved toughness and carrying capacity
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/ab8bff
– volume: 233
  start-page: 219
  year: 2004
  ident: 10.1016/j.jallcom.2022.166807_bib49
  article-title: The use of non-contact AFM with nanoindentation techniques for measuring mechanical properties of carbon nitride thin films
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2004.03.255
SSID ssj0001931
Score 2.6029007
Snippet High-entropy nitride coatings have become a promising alternative to traditional protective coatings due to their excellent mechanical properties, thermal...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 166807
SubjectTerms Alloying elements
Chemical composition
Corrosion mechanisms
Corrosion resistance
Corrosion resistant steels
Corrosive wear
Damage tolerance
Entropy
Hardness
High-entropy nitride coatings
Magnetron sputtering
Mechanical properties
Nitrides
Nitrogen
Oxidation resistance
Phase transition
Protective coatings
Reactive magnetron sputtering
Solid phases
Stainless steels
Super hard
Thermal stability
Wear resistance
Title Super-hard (MoSiTiVZr)Nx high-entropy nitride coatings
URI https://dx.doi.org/10.1016/j.jallcom.2022.166807
https://www.proquest.com/docview/2729106414
Volume 926
WOSCitedRecordID wos000848445000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELbKBgIeEBTQBgPlgQdQlTLbSew8TtUQTFAhpaBsL5HrJGqqLY3aZnT_nnNsJ9MKGiDxElVWbae-7-zz9e4-hN7kQghGZe4yIqXr0XwKKuXlLskxDkjIeZZrsgk2HvM4Dr_2epHNhbk8Z2XJN5uw-q-ihjYQtkqd_Qtxt4NCA3wGocMTxA7PPxJ8VFfZ0p0Z98CXRVRMiu9nIJhwvBmo6sSucuguqqsBaPOySFW4uli3DvNtQ1X9NX-1sglwleJhag3xz00wwAn0lrO6A9rI5Hyc1vOiRc7ZTDR-2dPiovtm1JAKD-K6_CHMIWp8EKShQzHRqI1jbCs5RnsYie9yqln7hpneXzmjrhdodha7AYc6Z35rM9d-hflwDr9ThfaomYc4CLjmyb1RJztS86npCFGZWTy-g3YJ80PY6naPPh3HJ-0BDTZrQ6Ro369L7Hr_y8l-Z7LcOLwbi2TyGD0yEnKONASeoF5W9tH9kWXw66OH14pN9tG9JthXrp6ioIOI87YFyLvxxrkOD8fAw7HweIa-fTiejD66hj_DlZSyNRx0qhhSKg4ly3g4nfrUS0ORYiIyXwqlijgLQhpMZQZ2I0-xz0QOjXBnxooGgD5HO-WizPaQA_dIRomgcpqGntLvwxz7MoUhMU9l6u0jzy5RIk1xecVxcp7YKMJ5YlY2USub6JXdR8O2W6Wrq9zWgdv1T4yJqE2_BEBzW9cDK6_EqOsqIXC3xGCVY-_Fv4_8Ej3olOIA7ayXdfYK3ZWX62K1fG3Q9xPWiJSq
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-hard+%28MoSiTiVZr%29Nx+high-entropy+nitride+coatings&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Li%2C+Jingchuan&rft.au=Chen%2C+Yujie&rft.au=Zhao%2C+Yiman&rft.au=Shi%2C+Xunwang&rft.date=2022-12-10&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=926&rft_id=info:doi/10.1016%2Fj.jallcom.2022.166807&rft.externalDocID=S092583882203198X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon