Super-hard (MoSiTiVZr)Nx high-entropy nitride coatings
High-entropy nitride coatings have become a promising alternative to traditional protective coatings due to their excellent mechanical properties, thermal stability, oxidation, and wear resistance. However, the design and fabrication of hard high-entropy nitride coatings remain a great challenge. In...
Uloženo v:
| Vydáno v: | Journal of alloys and compounds Ročník 926; s. 166807 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Elsevier B.V
10.12.2022
Elsevier BV |
| Témata: | |
| ISSN: | 0925-8388, 1873-4669 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | High-entropy nitride coatings have become a promising alternative to traditional protective coatings due to their excellent mechanical properties, thermal stability, oxidation, and wear resistance. However, the design and fabrication of hard high-entropy nitride coatings remain a great challenge. In this study, (MoSiTiVZr)Nx high-entropy nitride coatings were deposited by reactive DC magnetron sputtering at different nitrogen flow. The chemical compositions, structures, hardness, damage-tolerance, friction and corrosion resistances of the coatings were investigated. With the increase of nitrogen content in the coatings, the phase structure transforms from an amorphous structure to a single face centered cubic structure, and all alloying elements form metal-nitrogen bonds. The coating with nitrogen content of 53.7 at% exhibits an ultrahigh hardness of 45.6 GPa and the best damage-tolerance and wear resistance. The coatings with low nitrogen contents show better corrosion resistance than 304 stainless steels, however, an increase in nitrogen content results in a slight decrease in corrosion resistance. The mechanism of the structures, mechanical properties and corrosion resistance of (MoSiTiVZr)Nx coatings are discussed in details.
•(MoSiTiVZr)Nx coatings were deposited by reactive magnetron sputtering.•Effect of N addition on structures and properties of the coatings was studied.•The structure of the coatings changes from an amorphous to a single FCC structure.•The maximum hardness of the coating reaches super hard level of 45.6 GPa. |
|---|---|
| AbstractList | High-entropy nitride coatings have become a promising alternative to traditional protective coatings due to their excellent mechanical properties, thermal stability, oxidation, and wear resistance. However, the design and fabrication of hard high-entropy nitride coatings remain a great challenge. In this study, (MoSiTiVZr)Nx high-entropy nitride coatings were deposited by reactive DC magnetron sputtering at different nitrogen flow. The chemical compositions, structures, hardness, damage-tolerance, friction and corrosion resistances of the coatings were investigated. With the increase of nitrogen content in the coatings, the phase structure transforms from an amorphous structure to a single face centered cubic structure, and all alloying elements form metal-nitrogen bonds. The coating with nitrogen content of 53.7 at% exhibits an ultrahigh hardness of 45.6 GPa and the best damage-tolerance and wear resistance. The coatings with low nitrogen contents show better corrosion resistance than 304 stainless steels, however, an increase in nitrogen content results in a slight decrease in corrosion resistance. The mechanism of the structures, mechanical properties and corrosion resistance of (MoSiTiVZr)Nx coatings are discussed in details. High-entropy nitride coatings have become a promising alternative to traditional protective coatings due to their excellent mechanical properties, thermal stability, oxidation, and wear resistance. However, the design and fabrication of hard high-entropy nitride coatings remain a great challenge. In this study, (MoSiTiVZr)Nx high-entropy nitride coatings were deposited by reactive DC magnetron sputtering at different nitrogen flow. The chemical compositions, structures, hardness, damage-tolerance, friction and corrosion resistances of the coatings were investigated. With the increase of nitrogen content in the coatings, the phase structure transforms from an amorphous structure to a single face centered cubic structure, and all alloying elements form metal-nitrogen bonds. The coating with nitrogen content of 53.7 at% exhibits an ultrahigh hardness of 45.6 GPa and the best damage-tolerance and wear resistance. The coatings with low nitrogen contents show better corrosion resistance than 304 stainless steels, however, an increase in nitrogen content results in a slight decrease in corrosion resistance. The mechanism of the structures, mechanical properties and corrosion resistance of (MoSiTiVZr)Nx coatings are discussed in details. •(MoSiTiVZr)Nx coatings were deposited by reactive magnetron sputtering.•Effect of N addition on structures and properties of the coatings was studied.•The structure of the coatings changes from an amorphous to a single FCC structure.•The maximum hardness of the coating reaches super hard level of 45.6 GPa. |
| ArticleNumber | 166807 |
| Author | Zhao, Yiman Zhang, Sam Li, Jingchuan Chen, Yujie Shi, Xunwang wang, Shu |
| Author_xml | – sequence: 1 givenname: Jingchuan surname: Li fullname: Li, Jingchuan organization: Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, China – sequence: 2 givenname: Yujie surname: Chen fullname: Chen, Yujie organization: School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia – sequence: 3 givenname: Yiman surname: Zhao fullname: Zhao, Yiman organization: Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, China – sequence: 4 givenname: Xunwang surname: Shi fullname: Shi, Xunwang organization: Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, China – sequence: 5 givenname: Shu surname: wang fullname: wang, Shu email: shuwang@swu.edu.cn organization: Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, China – sequence: 6 givenname: Sam surname: Zhang fullname: Zhang, Sam email: samzhang@swu.edu.cn organization: Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, China |
| BookMark | eNqFkMtKAzEUhoNUsK0-gjDgRhcz5jKTCy5Eijeoumh14SakmbTNMJ2MyVTs25syXblxdeDwf__hfCMwaFxjADhHMEMQ0esqq1Rda7fJMMQ4Q5RyyI7AEHFG0pxSMQBDKHCRcsL5CRiFUEEIkSBoCOhs2xqfrpUvk8sXN7Nz-_Hpr15_krVdrVPTdN61u6SxnbelSbRTnW1W4RQcL1UdzNlhjsH7w_188pRO3x6fJ3fTVBPCupQziBgqFdTMcLFYFCQvhSoRVqbQClEskKGC0IU2rIC8RAVTy7jMRYEwFpCMwUXf23r3tTWhk5Xb-iaelJjFIKQ5ymOq6FPauxC8WcrW243yO4mg3CuSlTwokntFslcUuZs_nLZdfNDFr5Wt_6Vve9pEAd_WeBm0NY02pfVGd7J09p-GX2XbhYA |
| CitedBy_id | crossref_primary_10_1016_j_ceramint_2023_10_209 crossref_primary_10_1007_s11665_025_12086_5 crossref_primary_10_3390_coatings14091199 crossref_primary_10_1016_j_tsf_2024_140463 crossref_primary_10_1016_j_surfcoat_2024_131141 crossref_primary_10_1016_j_mtcomm_2025_113092 crossref_primary_10_3390_nano14242002 crossref_primary_10_1016_j_surfcoat_2025_131868 crossref_primary_10_1016_j_ceramint_2023_10_011 crossref_primary_10_1016_j_surfcoat_2024_130772 crossref_primary_10_1016_j_matdes_2024_112664 crossref_primary_10_1016_j_jallcom_2025_179822 crossref_primary_10_1016_j_jmrt_2024_07_153 crossref_primary_10_1016_j_surfcoat_2025_131742 crossref_primary_10_3390_ceramics6010019 crossref_primary_10_1016_j_surfcoat_2023_129692 crossref_primary_10_1016_j_surfcoat_2025_131788 crossref_primary_10_1016_j_jallcom_2023_172397 crossref_primary_10_1116_6_0003625 crossref_primary_10_1016_j_ceramint_2024_01_217 crossref_primary_10_3390_coatings13030635 crossref_primary_10_1016_j_vacuum_2024_113110 crossref_primary_10_1016_j_ceramint_2023_12_245 crossref_primary_10_1002_adem_202501226 crossref_primary_10_1016_j_ceramint_2025_01_083 crossref_primary_10_1016_j_apsusc_2025_163960 crossref_primary_10_1007_s11663_025_03624_6 crossref_primary_10_1016_j_ensm_2024_103954 crossref_primary_10_1016_j_ceramint_2023_05_147 crossref_primary_10_1116_6_0003678 crossref_primary_10_1116_6_0003758 crossref_primary_10_1007_s11665_024_09518_z crossref_primary_10_3390_ma18153478 crossref_primary_10_1016_j_surfcoat_2025_132570 crossref_primary_10_1016_j_ijrmhm_2025_107243 crossref_primary_10_3390_nano14100814 crossref_primary_10_1016_j_vacuum_2025_114291 crossref_primary_10_3390_coatings14081006 crossref_primary_10_1016_j_porgcoat_2023_108010 crossref_primary_10_1016_j_apsusc_2025_162698 crossref_primary_10_1016_j_surfcoat_2023_130157 crossref_primary_10_1116_6_0002872 crossref_primary_10_26599_NR_2025_94907444 crossref_primary_10_1016_j_surfcoat_2024_130793 crossref_primary_10_1116_6_0002837 crossref_primary_10_1016_j_jallcom_2025_181957 crossref_primary_10_1134_S0018143924701145 crossref_primary_10_1002_adem_202302165 crossref_primary_10_1016_j_jallcom_2025_179169 crossref_primary_10_1016_j_mtcomm_2025_112671 crossref_primary_10_1016_j_actamat_2024_120214 crossref_primary_10_1016_j_matdes_2025_114715 crossref_primary_10_1016_j_porgcoat_2024_108846 crossref_primary_10_1016_j_vacuum_2024_113173 crossref_primary_10_1016_j_ceramint_2024_02_081 crossref_primary_10_1007_s42243_025_01448_x crossref_primary_10_1016_j_surfcoat_2023_129320 crossref_primary_10_1557_s43578_025_01617_4 crossref_primary_10_1007_s44210_025_00061_7 |
| Cites_doi | 10.1557/JMR.1992.1564 10.1007/s11837-018-3270-9 10.1116/1.2194031 10.1016/S0040-6090(97)00069-2 10.1016/j.ceramint.2021.04.166 10.1088/0022-3727/27/11/017 10.1016/S0921-5093(02)00259-9 10.1016/j.apsusc.2016.10.049 10.1016/j.actamat.2011.04.011 10.1016/0965-9773(95)00044-5 10.1016/j.tsf.2011.11.025 10.1039/D1NR03289E 10.1016/j.surfcoat.2021.128051 10.3390/e21030297 10.1016/j.surfcoat.2021.128016 10.1007/s11106-014-9560-z 10.1016/j.surfcoat.2009.01.016 10.1016/S0257-8972(97)00393-9 10.1016/j.matchemphys.2014.06.062 10.1016/j.surfcoat.2006.06.048 10.1016/j.jmst.2019.07.055 10.1016/j.apsusc.2019.145101 10.1016/j.intermet.2011.01.004 10.1016/j.nimb.2010.05.039 10.1016/0020-7683(88)90091-1 10.1016/S0257-8972(02)00903-9 10.1016/j.vacuum.2021.110710 10.1016/j.mser.2021.100644 10.1016/S0043-1648(00)00488-9 10.4236/wjnse.2012.23020 10.1016/0924-0136(93)90016-Y 10.1007/s40145-021-0477-y 10.1016/j.apsusc.2011.09.006 10.1016/j.actamat.2013.07.019 10.1016/j.surfcoat.2020.126417 10.1016/j.actamat.2013.09.037 10.1016/j.pmatsci.2013.10.001 10.1016/j.surfcoat.2005.08.081 10.1016/j.tsf.2005.03.018 10.1016/j.matchemphys.2017.07.078 10.1016/j.tsf.2017.08.006 10.1016/0257-8972(93)90200-8 10.1007/s11837-013-0761-6 10.1080/14786435.2019.1566797 10.1002/adem.200300567 10.1016/j.msea.2003.10.257 10.1016/j.jallcom.2019.05.043 10.1002/adma.201000482 10.1016/S0257-8972(01)01714-5 10.1016/j.intermet.2010.05.014 10.1016/j.jeurceramsoc.2017.11.042 10.1016/j.apsusc.2020.146529 10.1016/j.surfcoat.2004.10.021 10.1016/j.vacuum.2021.110685 10.1016/j.actamat.2021.117112 10.1038/s41578-019-0170-8 10.1016/0040-6090(91)90225-M 10.1016/j.tsf.2016.08.005 10.1016/j.surfcoat.2011.09.033 10.1016/j.surfcoat.2012.03.096 10.1016/j.jallcom.2020.153836 10.1016/j.tsf.2008.01.019 10.1016/j.surfcoat.2004.08.023 10.1016/j.apsusc.2016.10.152 10.3390/coatings5030312 10.1016/j.jallcom.2016.04.064 10.1088/1361-6463/ab8bff 10.1016/j.apsusc.2004.03.255 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Dec 10, 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Dec 10, 2022 |
| DBID | AAYXX CITATION 8BQ 8FD JG9 |
| DOI | 10.1016/j.jallcom.2022.166807 |
| DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Physics |
| EISSN | 1873-4669 |
| ExternalDocumentID | 10_1016_j_jallcom_2022_166807 S092583882203198X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS T9H WUQ ~HD 8BQ 8FD AFXIZ AGCQF AGRNS BNPGV JG9 SSH |
| ID | FETCH-LOGICAL-c337t-870171da0c7e89bb534d9ad12ae5ca16291e6936bce7508d157af291495122903 |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848445000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-8388 |
| IngestDate | Fri Jul 25 05:27:33 EDT 2025 Tue Nov 18 22:26:56 EST 2025 Sat Nov 29 07:16:51 EST 2025 Fri Feb 23 02:37:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Reactive magnetron sputtering High-entropy nitride coatings Super hard Phase transition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c337t-870171da0c7e89bb534d9ad12ae5ca16291e6936bce7508d157af291495122903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2729106414 |
| PQPubID | 2045454 |
| ParticipantIDs | proquest_journals_2729106414 crossref_primary_10_1016_j_jallcom_2022_166807 crossref_citationtrail_10_1016_j_jallcom_2022_166807 elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_166807 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-10 |
| PublicationDateYYYYMMDD | 2022-12-10 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Journal of alloys and compounds |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Tsai, Lai, Cheng, Tsai, Davison, Tsau, Yeh (bib40) 2012; 520 Tang, Shen, Xu (bib50) 2005; 485 He, Liu, Wang, Wu, Liu, Nieh, Lu (bib61) 2014; 62 Moulder, Stickle, Sobol, Bomben (bib46) 1995 Piippo, Elsener, Bohni (bib72) 1993; 61 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib6) 2004; 6 Xu, Li, Xia (bib44) 2020; 523 Pogrebnjak, Yakushchenko, Bondar, Beresnev, Oyoshi, Ivasishin, Amekura, Takeda, Opielak, Kozak (bib16) 2016; 679 Chen, Shun, Yeh, Wong (bib8) 2004; 188 Abboud, Motallebzadeh, Verma, Ozerinc (bib60) 2019; 71 Chang, Liang, Han, Chen, Shieu (bib38) 2010; 268 Wu, Chen, Zhu (bib13) 2022 Yeh (bib41) 2013; 65 Sha, Zhou, Xie, Munroe (bib57) 2020; 507 Hsueh, Shen, Tsai, Yeh (bib15) 2012; 206 Yu, Li, Shi, Sun, Wang, Zhang (bib34) 2022; 442 Monshi, Foroughi, Monshi (bib37) 2012; 02 Siegel, Fougere (bib53) 1995; 6 Kim, Park, Mun, Jumaev, Hong, Song, Kim, Park, Kim, Jeong, Kwon, Kim (bib27) 2019; 797 Chen, An, Zhou, Ma, Munroe, Zhang, Xie (bib28) 2021; 13 Navinsek, Panjan, Milosev (bib4) 1997; 97 PalDey, Deevi (bib1) 2003; 342 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib17) 2014; 61 Tsianikas, Chen, Xie (bib66) 2020; 39 Shi, Yu, Nie, Li, Zhang (bib33) 2021; 47 Oliver, Pharr (bib35) 1992; 7 Akrami, Edalati, Fuji, Edalati (bib5) 2021; 146 Huang, Su, Wu, Lin (bib52) 2019; 21 Chen, Cai, Pu, Lu, Chen, Zheng, Zeng (bib32) 2020; 827 Bhattacharya, Nix (bib51) 1988; 24 Chen, Chen, An, Zhang, Zhou, Lu, Munroe, Zhang, Liao, Zhu, Xie (bib67) 2021; 215 Shen, Tsai, Yeh (bib14) 2015; 5 Wu, Xiao, Chen, Liu, Lu (bib65) 2010; 22 Durandurdu (bib69) 2019; 99 Cantor, Chang, Knight, Vincent (bib7) 2004; 375 Braic, Vladescu, Balaceanu, Luculescu, Braic (bib24) 2012; 211 Chen, Wong, Shun, Yeh (bib39) 2005; 200 Herrera, Ponge, Raabe (bib64) 2011; 59 Ziebert, Ulrich (bib3) 2006; 24 Senkov, Wilks, Miracle, Chuang, Liaw (bib63) 2010; 18 Zhao, Ju, Liu, Pei, Ji, Li, Xue, Zhou, Chen (bib55) 2020; 53 Firstov, Gorban, Danilenko, Karpets, Andreev, Makarenko (bib21) 2014; 52 Xiang, Xing, Dai, Wang, Su, Miao, Zhang, Wang, Qi, Yao, Wang, Zhao, Li, Zhou (bib10) 2021; 10 Zhao, Chen, Chen, Wu, Xie, Yan, Wang, Liao, Zhang (bib48) 2022; 195 Chowdhury, Laugier (bib49) 2004; 233 Huang, Yeh (bib11) 2009; 203 Zhang, Pelenovich, Liu, Ke, Zhang, Yang, Ma, Li, Wang (bib30) 2022; 195 Chang, Huang, Davison, Yeh, Tsau, Yang (bib42) 2008; 516 Denkena, Wippermann, Busemann, Kuntz, Gottwik (bib59) 2018; 38 Pogrebnjak, Yakushchenko, Bagdasaryan, Bondar, Krause-Rehberg, Abadias, Chartier, Oyoshi, Takeda, Beresnev, Sobol (bib20) 2014; 147 Mason, Pichilingi (bib36) 1994; 27 Garah, Touaibia, Achache, Michau, Sviridova, Postnikov, Chehimi, Schuster, Sanchette (bib31) 2022; 432 Leyland, Matthews (bib54) 2000; 246 Musil, Kunc, Zeman, Polakova (bib56) 2002; 154 Lai, Lin, Yeh, Chang (bib25) 2006; 201 Zhang, Sun, Fu, Du (bib58) 2005; 198 Zhang, Sun, Fu, Du (bib29) 2003; 167 Senkov, Wilks, Scott, Miracle (bib62) 2011; 19 Yan, Li, Zhang, Zhang (bib12) 2018; 210 Oses, Toher, Curtarolo (bib9) 2020; 5 Yujie Chen, Zonghan Xie (bib19) 2021 Liang, Tsai, Chang, Sung, Lin, Yeh, Deng, Shieu (bib26) 2011; 258 Xu, Li, Luo, Lu, Gu, Lei, Huo (bib45) 2017; 393 Greczynski, Primetzhofer, Lu, Hultman (bib47) 2017; 396 Zhang, Zhu (bib2) 1993; 39 Cui, Li, Liu, Zhang, Ma, Chen, Feng, Liaw (bib23) 2020; 834 Wan, Ding, Yousaf, Chen, Liu, Hu, Yang (bib70) 2016; 616 Lin, Hsu, Song, Lo, Lai, Tsai, Duh (bib22) 2020; 403 Pelleg, Zevin, Lungo, Croitoru (bib43) 1991; 197 Liao, Lan, Gao, Zhang, Xu, Song, Wang, Lu (bib18) 2017; 638 Sun, Zhang, Marteleur, Gloriant, Vermaut, Laille, Castany, Curfs, Jacques, Prima (bib68) 2013; 61 Milosev, Strehblow, Navinsek (bib71) 1997; 303 Durandurdu (10.1016/j.jallcom.2022.166807_bib69) 2019; 99 Pelleg (10.1016/j.jallcom.2022.166807_bib43) 1991; 197 Huang (10.1016/j.jallcom.2022.166807_bib52) 2019; 21 Braic (10.1016/j.jallcom.2022.166807_bib24) 2012; 211 Bhattacharya (10.1016/j.jallcom.2022.166807_bib51) 1988; 24 Chowdhury (10.1016/j.jallcom.2022.166807_bib49) 2004; 233 Leyland (10.1016/j.jallcom.2022.166807_bib54) 2000; 246 Akrami (10.1016/j.jallcom.2022.166807_bib5) 2021; 146 Firstov (10.1016/j.jallcom.2022.166807_bib21) 2014; 52 Lai (10.1016/j.jallcom.2022.166807_bib25) 2006; 201 Greczynski (10.1016/j.jallcom.2022.166807_bib47) 2017; 396 Milosev (10.1016/j.jallcom.2022.166807_bib71) 1997; 303 Yan (10.1016/j.jallcom.2022.166807_bib12) 2018; 210 Piippo (10.1016/j.jallcom.2022.166807_bib72) 1993; 61 Zhang (10.1016/j.jallcom.2022.166807_bib2) 1993; 39 Chen (10.1016/j.jallcom.2022.166807_bib8) 2004; 188 Navinsek (10.1016/j.jallcom.2022.166807_bib4) 1997; 97 Denkena (10.1016/j.jallcom.2022.166807_bib59) 2018; 38 Zhang (10.1016/j.jallcom.2022.166807_bib30) 2022; 195 Liao (10.1016/j.jallcom.2022.166807_bib18) 2017; 638 Monshi (10.1016/j.jallcom.2022.166807_bib37) 2012; 02 Sun (10.1016/j.jallcom.2022.166807_bib68) 2013; 61 Hsueh (10.1016/j.jallcom.2022.166807_bib15) 2012; 206 Xiang (10.1016/j.jallcom.2022.166807_bib10) 2021; 10 Yujie Chen (10.1016/j.jallcom.2022.166807_bib19) 2021 Moulder (10.1016/j.jallcom.2022.166807_bib46) 1995 Yeh (10.1016/j.jallcom.2022.166807_bib41) 2013; 65 Tsai (10.1016/j.jallcom.2022.166807_bib40) 2012; 520 Pogrebnjak (10.1016/j.jallcom.2022.166807_bib16) 2016; 679 Siegel (10.1016/j.jallcom.2022.166807_bib53) 1995; 6 Shen (10.1016/j.jallcom.2022.166807_bib14) 2015; 5 Chen (10.1016/j.jallcom.2022.166807_bib32) 2020; 827 Tang (10.1016/j.jallcom.2022.166807_bib50) 2005; 485 Oses (10.1016/j.jallcom.2022.166807_bib9) 2020; 5 Senkov (10.1016/j.jallcom.2022.166807_bib63) 2010; 18 Zhang (10.1016/j.jallcom.2022.166807_bib29) 2003; 167 Zhang (10.1016/j.jallcom.2022.166807_bib58) 2005; 198 Wu (10.1016/j.jallcom.2022.166807_bib65) 2010; 22 Chang (10.1016/j.jallcom.2022.166807_bib42) 2008; 516 Senkov (10.1016/j.jallcom.2022.166807_bib62) 2011; 19 Zhao (10.1016/j.jallcom.2022.166807_bib55) 2020; 53 Wan (10.1016/j.jallcom.2022.166807_bib70) 2016; 616 PalDey (10.1016/j.jallcom.2022.166807_bib1) 2003; 342 Kim (10.1016/j.jallcom.2022.166807_bib27) 2019; 797 Huang (10.1016/j.jallcom.2022.166807_bib11) 2009; 203 Garah (10.1016/j.jallcom.2022.166807_bib31) 2022; 432 Musil (10.1016/j.jallcom.2022.166807_bib56) 2002; 154 Chen (10.1016/j.jallcom.2022.166807_bib28) 2021; 13 Cantor (10.1016/j.jallcom.2022.166807_bib7) 2004; 375 Cui (10.1016/j.jallcom.2022.166807_bib23) 2020; 834 Sha (10.1016/j.jallcom.2022.166807_bib57) 2020; 507 Pogrebnjak (10.1016/j.jallcom.2022.166807_bib20) 2014; 147 Oliver (10.1016/j.jallcom.2022.166807_bib35) 1992; 7 Ziebert (10.1016/j.jallcom.2022.166807_bib3) 2006; 24 Chang (10.1016/j.jallcom.2022.166807_bib38) 2010; 268 Zhang (10.1016/j.jallcom.2022.166807_bib17) 2014; 61 Chen (10.1016/j.jallcom.2022.166807_bib67) 2021; 215 Herrera (10.1016/j.jallcom.2022.166807_bib64) 2011; 59 Liang (10.1016/j.jallcom.2022.166807_bib26) 2011; 258 Yu (10.1016/j.jallcom.2022.166807_bib34) 2022; 442 Mason (10.1016/j.jallcom.2022.166807_bib36) 1994; 27 Xu (10.1016/j.jallcom.2022.166807_bib45) 2017; 393 Tsianikas (10.1016/j.jallcom.2022.166807_bib66) 2020; 39 Zhao (10.1016/j.jallcom.2022.166807_bib48) 2022; 195 Yeh (10.1016/j.jallcom.2022.166807_bib6) 2004; 6 He (10.1016/j.jallcom.2022.166807_bib61) 2014; 62 Shi (10.1016/j.jallcom.2022.166807_bib33) 2021; 47 Wu (10.1016/j.jallcom.2022.166807_bib13) 2022 Chen (10.1016/j.jallcom.2022.166807_bib39) 2005; 200 Xu (10.1016/j.jallcom.2022.166807_bib44) 2020; 523 Abboud (10.1016/j.jallcom.2022.166807_bib60) 2019; 71 Lin (10.1016/j.jallcom.2022.166807_bib22) 2020; 403 |
| References_xml | – volume: 47 start-page: 21546 year: 2021 end-page: 21553 ident: bib33 article-title: Controlled growth of nanocrystalline aluminum nitride films for full color range publication-title: Ceram. Int – volume: 393 start-page: 467 year: 2017 end-page: 473 ident: bib45 article-title: Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube publication-title: Appl. Surf. Sci. – volume: 02 start-page: 154 year: 2012 end-page: 160 ident: bib37 article-title: Modified scherrer equation to estimate more accurately nano-crystallite size using XRD publication-title: World J. Nano Sci. Eng. – volume: 24 start-page: 1287 year: 1988 end-page: 1298 ident: bib51 article-title: Analysis of elastic and plastic-deformation associated with indentation testing of thin-films on substrates publication-title: Int J. Solids Struct. – volume: 5 start-page: 295 year: 2020 end-page: 309 ident: bib9 article-title: High-entropy ceramics publication-title: Nat. Rev. Mater. – volume: 827 year: 2020 ident: bib32 article-title: Effects of nitriding on the microstructure and properties of VAlTiCrMo high-entropy alloy coatings by sputtering technique publication-title: J. Alloy Compd. – volume: 10 start-page: 385 year: 2021 end-page: 441 ident: bib10 article-title: High-entropy ceramics: Present status, challenges, and a look forward publication-title: J. Adv. Ceram. – volume: 53 year: 2020 ident: bib55 article-title: A strategy to construct long-range fullerene-like nanostructure in amorphous carbon film with improved toughness and carrying capacity publication-title: J. Phys. D. Appl. Phys. – volume: 65 start-page: 1759 year: 2013 end-page: 1771 ident: bib41 article-title: Alloy design strategies and future trends in high-entropy alloys publication-title: Jom-Us – volume: 167 start-page: 113 year: 2003 end-page: 119 ident: bib29 article-title: Recent advances of superhard nanocomposite coatings: a review publication-title: Surf. Coat. Tech. – volume: 154 start-page: 304 year: 2002 end-page: 313 ident: bib56 article-title: Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings publication-title: Surf. Coat. Tech. – volume: 99 start-page: 942 year: 2019 end-page: 955 ident: bib69 article-title: Phase transition of ZrN under pressure publication-title: Philos. Mag. – volume: 523 year: 2020 ident: bib44 article-title: Synthesis and characterization of super -hard AlCrTiVZr high -entropy alloy nitride films deposited by HiPIMS publication-title: Appl. Surf. Sci. – volume: 6 start-page: 205 year: 1995 end-page: 216 ident: bib53 article-title: Mechanical properties of nanophase metals publication-title: Nanostruct. Mater. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib6 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 507 year: 2020 ident: bib57 article-title: FeMnNiCoCr-based high entropy alloy coatings: effect of nitrogen additions on microstructural development, mechanical properties and tribological performance publication-title: Appl. Surf. Sci. – volume: 7 start-page: 1564 year: 1992 end-page: 1583 ident: bib35 article-title: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res – volume: 211 start-page: 117 year: 2012 end-page: 121 ident: bib24 article-title: Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings publication-title: Surf. Coat. Tech. – volume: 520 start-page: 2613 year: 2012 end-page: 2618 ident: bib40 article-title: Strong amorphization of high-entropy AlBCrSiTi nitride film publication-title: Thin Solid Films – volume: 39 start-page: 165 year: 1993 end-page: 177 ident: bib2 article-title: TiN coating of tool steels: a review publication-title: J. Mater. Process Tech. – volume: 638 start-page: 383 year: 2017 end-page: 388 ident: bib18 article-title: Nanocrystalline high-entropy alloy (CoCrFeNiAl publication-title: Thin Solid Films – volume: 198 start-page: 74 year: 2005 end-page: 84 ident: bib58 article-title: Toughness measurement of thin films: a critical review publication-title: Surf. Coat. Tech. – volume: 5 start-page: 312 year: 2015 end-page: 325 ident: bib14 article-title: Machining performance of sputter-deposited (Al publication-title: Coatings – volume: 19 start-page: 698 year: 2011 end-page: 706 ident: bib62 article-title: Mechanical properties of Nb publication-title: Intermetallics – volume: 39 start-page: 7 year: 2020 end-page: 13 ident: bib66 article-title: Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings publication-title: J. Mater. Sci. Technol. – volume: 197 start-page: 117 year: 1991 end-page: 128 ident: bib43 article-title: Reactive-sputter-deposited tin films on glass substrates publication-title: Thin Solid Films – volume: 18 start-page: 1758 year: 2010 end-page: 1765 ident: bib63 article-title: Refractory high-entropy alloys publication-title: Intermetallics – volume: 147 start-page: 1079 year: 2014 end-page: 1091 ident: bib20 article-title: Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions publication-title: Mater. Chem. Phys. – volume: 258 start-page: 399 year: 2011 end-page: 403 ident: bib26 article-title: Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering publication-title: Appl. Surf. Sci. – volume: 403 year: 2020 ident: bib22 article-title: Improving the hardness of high entropy nitride (Cr publication-title: Surf. Coat. Tech. – volume: 200 start-page: 1361 year: 2005 end-page: 1365 ident: bib39 article-title: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering publication-title: Surf. Coat. Tech. – volume: 246 start-page: 1 year: 2000 end-page: 11 ident: bib54 article-title: On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour publication-title: Wear – volume: 97 start-page: 182 year: 1997 end-page: 191 ident: bib4 article-title: Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures publication-title: Surf. Coat. Tech. – volume: 195 year: 2022 ident: bib48 article-title: Super-hard and anti-corrosion (AlCrMoSiTi)N publication-title: Vacuum – volume: 442 year: 2022 ident: bib34 article-title: Suppression of pesting failure in MoSi2 film by doping of Si publication-title: Surf. Coat. Tech. – volume: 62 start-page: 105 year: 2014 end-page: 113 ident: bib61 article-title: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system publication-title: Acta Mater. – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: bib17 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. – volume: 303 start-page: 246 year: 1997 end-page: 254 ident: bib71 article-title: Comparison of TiN, ZrN and CrN hard nitride coatings: electrochemical and thermal oxidation publication-title: Thin Solid Films – volume: 215 year: 2021 ident: bib67 article-title: Unraveling dual phase transformations in a CrCoNi medium-entropy alloy publication-title: Acta Mater. – volume: 797 start-page: 834 year: 2019 end-page: 841 ident: bib27 article-title: Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering publication-title: J. Alloy Compd. – volume: 616 start-page: 601 year: 2016 end-page: 607 ident: bib70 article-title: Corrosion behaviors of TiN and Ti-Si-N (with 2.9 at% and 5.0 at% Si) coatings by electrochemical impedance spectroscopy publication-title: Thin Solid Films – volume: 71 start-page: 593 year: 2019 end-page: 601 ident: bib60 article-title: Nanoscratch behavior of metallic glass/crystalline nanolayered composites publication-title: Jom-Us – volume: 21 start-page: 297 year: 2019 ident: bib52 article-title: A study on the hall-petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys publication-title: Entropy – volume: 59 start-page: 4653 year: 2011 end-page: 4664 ident: bib64 article-title: Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability publication-title: Acta Mater. – volume: 24 start-page: 554 year: 2006 end-page: 583 ident: bib3 article-title: Hard multilayer coatings containing TiN and/or ZrN: a review and recent progress in their nanoscale characterization publication-title: J. Vac. Sci. Technol. A – volume: 146 year: 2021 ident: bib5 article-title: High-entropy ceramics: review of principles, production and applications publication-title: Mat. Sci. Eng. R. – volume: 375 start-page: 213 year: 2004 end-page: 218 ident: bib7 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mat. Sci. Eng. a-Struct. – volume: 52 start-page: 560 year: 2014 end-page: 566 ident: bib21 article-title: Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti-V-Zr-Nb-Hf alloy publication-title: Powder Metall. Met. Ceram. – volume: 432 year: 2022 ident: bib31 article-title: Effect of nitrogen content on structural and mechanical properties of AlTiZrTaHf(-N) high entropy films deposited by reactive magnetron sputtering publication-title: Surf. Coat. Tech. – year: 1995 ident: bib46 article-title: Handbook of X-Ray photoelectron spectroscopy, Physical Electronics publication-title: Inc., Eden Prairie, Minn. – volume: 342 start-page: 58 year: 2003 end-page: 79 ident: bib1 article-title: Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review publication-title: Mat. Sci. Eng. a-Struct. – volume: 485 start-page: 72 year: 2005 end-page: 76 ident: bib50 article-title: Hardness and elastic modulus of Au/NiCr/Ta multilayers on Al publication-title: Thin Solid Films – volume: 268 start-page: 2504 year: 2010 end-page: 2509 ident: bib38 article-title: Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering publication-title: Nucl. Instrum. Meth B – volume: 233 start-page: 219 year: 2004 end-page: 226 ident: bib49 article-title: The use of non-contact AFM with nanoindentation techniques for measuring mechanical properties of carbon nitride thin films publication-title: Appl. Surf. Sci. – year: 2022 ident: bib13 article-title: A review on the tribological performances of high-entropy alloys publication-title: Adv. Eng. Mater. – volume: 27 start-page: 2363 year: 1994 end-page: 2371 ident: bib36 article-title: Sputtering in a glow-discharge ion source-pressure dependence - theory and experiment publication-title: J. Phys. D. Appl. Phys. – volume: 38 start-page: 1760 year: 2018 end-page: 1768 ident: bib59 article-title: Comparison of residual strength behavior after indentation, scratching and grinding of zirconia-based ceramics for medical-technical applications publication-title: J. Eur. Ceram. Soc. – volume: 61 start-page: 6406 year: 2013 end-page: 6417 ident: bib68 article-title: Investigation of early stage deformation mechanisms in a metastable beta titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects publication-title: Acta Mater. – volume: 206 start-page: 4106 year: 2012 end-page: 4112 ident: bib15 article-title: Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr) publication-title: Surf. Coat. Tech. – volume: 396 start-page: 347 year: 2017 end-page: 358 ident: bib47 article-title: Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers publication-title: Appl. Surf. Sci. – volume: 22 start-page: 2770 year: 2010 end-page: 2773 ident: bib65 article-title: Bulk metallic glass composites withtransformation-mediated work-hardening and ductility publication-title: Adv. Mater. – volume: 203 start-page: 1891 year: 2009 end-page: 1896 ident: bib11 article-title: Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating publication-title: Surf. Coat. Tech. – volume: 679 start-page: 155 year: 2016 end-page: 163 ident: bib16 article-title: Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings publication-title: J. Alloy Compd. – volume: 201 start-page: 3275 year: 2006 end-page: 3280 ident: bib25 article-title: Preparation and characterization of AlCrTaTiZr multi-element nitride coatings publication-title: Surf. Coat. Tech. – volume: 13 start-page: 15074 year: 2021 end-page: 15084 ident: bib28 article-title: Remarkable toughness of a nanostructured medium-entropy nitride compound publication-title: Nanoscale – volume: 195 year: 2022 ident: bib30 article-title: Effect of bias voltages on microstructure and properties of (TiVCrNbSiTaBY)N high entropy alloy nitride coatings deposited by RF magnetron sputtering publication-title: Vacuum – volume: 516 start-page: 6402 year: 2008 end-page: 6408 ident: bib42 article-title: Nitride films deposited from an equimolar Al-Cr-Mo-Si-Ti alloy target by reactive direct current magnetron sputtering publication-title: Thin Solid Films – volume: 834 year: 2020 ident: bib23 article-title: Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films publication-title: J. Alloy Compd. – volume: 210 start-page: 12 year: 2018 end-page: 19 ident: bib12 article-title: A brief review of high-entropy films publication-title: Mater. Chem. Phys. – volume: 188 start-page: 193 year: 2004 end-page: 200 ident: bib8 article-title: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering publication-title: Surf. Coat. Tech. – start-page: 205 year: 2021 end-page: 232 ident: bib19 article-title: "High-Entropy Alloy-Based Coatings: Microstructures and Properties." In Protective Thin Coatings Technology – volume: 61 start-page: 43 year: 1993 end-page: 46 ident: bib72 article-title: Electrochemical characterization of TiN coatings publication-title: Surf. Coat. Tech. – volume: 7 start-page: 1564 year: 1992 ident: 10.1016/j.jallcom.2022.166807_bib35 article-title: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res doi: 10.1557/JMR.1992.1564 – volume: 71 start-page: 593 year: 2019 ident: 10.1016/j.jallcom.2022.166807_bib60 article-title: Nanoscratch behavior of metallic glass/crystalline nanolayered composites publication-title: Jom-Us doi: 10.1007/s11837-018-3270-9 – volume: 24 start-page: 554 year: 2006 ident: 10.1016/j.jallcom.2022.166807_bib3 article-title: Hard multilayer coatings containing TiN and/or ZrN: a review and recent progress in their nanoscale characterization publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.2194031 – volume: 303 start-page: 246 year: 1997 ident: 10.1016/j.jallcom.2022.166807_bib71 article-title: Comparison of TiN, ZrN and CrN hard nitride coatings: electrochemical and thermal oxidation publication-title: Thin Solid Films doi: 10.1016/S0040-6090(97)00069-2 – volume: 47 start-page: 21546 year: 2021 ident: 10.1016/j.jallcom.2022.166807_bib33 article-title: Controlled growth of nanocrystalline aluminum nitride films for full color range publication-title: Ceram. Int doi: 10.1016/j.ceramint.2021.04.166 – volume: 27 start-page: 2363 year: 1994 ident: 10.1016/j.jallcom.2022.166807_bib36 article-title: Sputtering in a glow-discharge ion source-pressure dependence - theory and experiment publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/27/11/017 – volume: 342 start-page: 58 year: 2003 ident: 10.1016/j.jallcom.2022.166807_bib1 article-title: Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review publication-title: Mat. Sci. Eng. a-Struct. doi: 10.1016/S0921-5093(02)00259-9 – volume: 393 start-page: 467 year: 2017 ident: 10.1016/j.jallcom.2022.166807_bib45 article-title: Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.10.049 – volume: 59 start-page: 4653 year: 2011 ident: 10.1016/j.jallcom.2022.166807_bib64 article-title: Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.04.011 – volume: 6 start-page: 205 year: 1995 ident: 10.1016/j.jallcom.2022.166807_bib53 article-title: Mechanical properties of nanophase metals publication-title: Nanostruct. Mater. doi: 10.1016/0965-9773(95)00044-5 – volume: 520 start-page: 2613 year: 2012 ident: 10.1016/j.jallcom.2022.166807_bib40 article-title: Strong amorphization of high-entropy AlBCrSiTi nitride film publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.11.025 – volume: 13 start-page: 15074 year: 2021 ident: 10.1016/j.jallcom.2022.166807_bib28 article-title: Remarkable toughness of a nanostructured medium-entropy nitride compound publication-title: Nanoscale doi: 10.1039/D1NR03289E – volume: 432 year: 2022 ident: 10.1016/j.jallcom.2022.166807_bib31 article-title: Effect of nitrogen content on structural and mechanical properties of AlTiZrTaHf(-N) high entropy films deposited by reactive magnetron sputtering publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2021.128051 – volume: 21 start-page: 297 year: 2019 ident: 10.1016/j.jallcom.2022.166807_bib52 article-title: A study on the hall-petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys publication-title: Entropy doi: 10.3390/e21030297 – volume: 442 year: 2022 ident: 10.1016/j.jallcom.2022.166807_bib34 article-title: Suppression of pesting failure in MoSi2 film by doping of Si publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2021.128016 – volume: 52 start-page: 560 year: 2014 ident: 10.1016/j.jallcom.2022.166807_bib21 article-title: Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti-V-Zr-Nb-Hf alloy publication-title: Powder Metall. Met. Ceram. doi: 10.1007/s11106-014-9560-z – volume: 203 start-page: 1891 year: 2009 ident: 10.1016/j.jallcom.2022.166807_bib11 article-title: Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2009.01.016 – volume: 834 year: 2020 ident: 10.1016/j.jallcom.2022.166807_bib23 article-title: Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films publication-title: J. Alloy Compd. – volume: 97 start-page: 182 year: 1997 ident: 10.1016/j.jallcom.2022.166807_bib4 article-title: Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures publication-title: Surf. Coat. Tech. doi: 10.1016/S0257-8972(97)00393-9 – volume: 147 start-page: 1079 year: 2014 ident: 10.1016/j.jallcom.2022.166807_bib20 article-title: Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.06.062 – volume: 201 start-page: 3275 year: 2006 ident: 10.1016/j.jallcom.2022.166807_bib25 article-title: Preparation and characterization of AlCrTaTiZr multi-element nitride coatings publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2006.06.048 – volume: 39 start-page: 7 year: 2020 ident: 10.1016/j.jallcom.2022.166807_bib66 article-title: Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.07.055 – volume: 507 year: 2020 ident: 10.1016/j.jallcom.2022.166807_bib57 article-title: FeMnNiCoCr-based high entropy alloy coatings: effect of nitrogen additions on microstructural development, mechanical properties and tribological performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.145101 – volume: 19 start-page: 698 year: 2011 ident: 10.1016/j.jallcom.2022.166807_bib62 article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2011.01.004 – volume: 268 start-page: 2504 year: 2010 ident: 10.1016/j.jallcom.2022.166807_bib38 article-title: Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering publication-title: Nucl. Instrum. Meth B doi: 10.1016/j.nimb.2010.05.039 – start-page: 205 year: 2021 ident: 10.1016/j.jallcom.2022.166807_bib19 – volume: 24 start-page: 1287 year: 1988 ident: 10.1016/j.jallcom.2022.166807_bib51 article-title: Analysis of elastic and plastic-deformation associated with indentation testing of thin-films on substrates publication-title: Int J. Solids Struct. doi: 10.1016/0020-7683(88)90091-1 – volume: 167 start-page: 113 year: 2003 ident: 10.1016/j.jallcom.2022.166807_bib29 article-title: Recent advances of superhard nanocomposite coatings: a review publication-title: Surf. Coat. Tech. doi: 10.1016/S0257-8972(02)00903-9 – volume: 195 year: 2022 ident: 10.1016/j.jallcom.2022.166807_bib30 article-title: Effect of bias voltages on microstructure and properties of (TiVCrNbSiTaBY)N high entropy alloy nitride coatings deposited by RF magnetron sputtering publication-title: Vacuum doi: 10.1016/j.vacuum.2021.110710 – volume: 146 year: 2021 ident: 10.1016/j.jallcom.2022.166807_bib5 article-title: High-entropy ceramics: review of principles, production and applications publication-title: Mat. Sci. Eng. R. doi: 10.1016/j.mser.2021.100644 – volume: 246 start-page: 1 year: 2000 ident: 10.1016/j.jallcom.2022.166807_bib54 article-title: On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour publication-title: Wear doi: 10.1016/S0043-1648(00)00488-9 – volume: 02 start-page: 154 year: 2012 ident: 10.1016/j.jallcom.2022.166807_bib37 article-title: Modified scherrer equation to estimate more accurately nano-crystallite size using XRD publication-title: World J. Nano Sci. Eng. doi: 10.4236/wjnse.2012.23020 – volume: 39 start-page: 165 year: 1993 ident: 10.1016/j.jallcom.2022.166807_bib2 article-title: TiN coating of tool steels: a review publication-title: J. Mater. Process Tech. doi: 10.1016/0924-0136(93)90016-Y – volume: 10 start-page: 385 year: 2021 ident: 10.1016/j.jallcom.2022.166807_bib10 article-title: High-entropy ceramics: Present status, challenges, and a look forward publication-title: J. Adv. Ceram. doi: 10.1007/s40145-021-0477-y – volume: 258 start-page: 399 year: 2011 ident: 10.1016/j.jallcom.2022.166807_bib26 article-title: Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.09.006 – volume: 61 start-page: 6406 year: 2013 ident: 10.1016/j.jallcom.2022.166807_bib68 article-title: Investigation of early stage deformation mechanisms in a metastable beta titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.07.019 – volume: 403 year: 2020 ident: 10.1016/j.jallcom.2022.166807_bib22 article-title: Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)N coatings via tuning substrate temperature and bias for anti-wear applications publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2020.126417 – year: 2022 ident: 10.1016/j.jallcom.2022.166807_bib13 article-title: A review on the tribological performances of high-entropy alloys publication-title: Adv. Eng. Mater. – volume: 62 start-page: 105 year: 2014 ident: 10.1016/j.jallcom.2022.166807_bib61 article-title: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.09.037 – volume: 61 start-page: 1 year: 2014 ident: 10.1016/j.jallcom.2022.166807_bib17 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 200 start-page: 1361 year: 2005 ident: 10.1016/j.jallcom.2022.166807_bib39 article-title: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2005.08.081 – volume: 485 start-page: 72 year: 2005 ident: 10.1016/j.jallcom.2022.166807_bib50 article-title: Hardness and elastic modulus of Au/NiCr/Ta multilayers on Al2O3 substrate by nanoindentation continuous stiffness measurement technique publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.03.018 – volume: 210 start-page: 12 year: 2018 ident: 10.1016/j.jallcom.2022.166807_bib12 article-title: A brief review of high-entropy films publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.07.078 – volume: 638 start-page: 383 year: 2017 ident: 10.1016/j.jallcom.2022.166807_bib18 article-title: Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering publication-title: Thin Solid Films doi: 10.1016/j.tsf.2017.08.006 – volume: 61 start-page: 43 year: 1993 ident: 10.1016/j.jallcom.2022.166807_bib72 article-title: Electrochemical characterization of TiN coatings publication-title: Surf. Coat. Tech. doi: 10.1016/0257-8972(93)90200-8 – volume: 65 start-page: 1759 year: 2013 ident: 10.1016/j.jallcom.2022.166807_bib41 article-title: Alloy design strategies and future trends in high-entropy alloys publication-title: Jom-Us doi: 10.1007/s11837-013-0761-6 – volume: 99 start-page: 942 year: 2019 ident: 10.1016/j.jallcom.2022.166807_bib69 article-title: Phase transition of ZrN under pressure publication-title: Philos. Mag. doi: 10.1080/14786435.2019.1566797 – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.jallcom.2022.166807_bib6 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 375 start-page: 213 year: 2004 ident: 10.1016/j.jallcom.2022.166807_bib7 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mat. Sci. Eng. a-Struct. doi: 10.1016/j.msea.2003.10.257 – volume: 797 start-page: 834 year: 2019 ident: 10.1016/j.jallcom.2022.166807_bib27 article-title: Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2019.05.043 – volume: 22 start-page: 2770 year: 2010 ident: 10.1016/j.jallcom.2022.166807_bib65 article-title: Bulk metallic glass composites withtransformation-mediated work-hardening and ductility publication-title: Adv. Mater. doi: 10.1002/adma.201000482 – year: 1995 ident: 10.1016/j.jallcom.2022.166807_bib46 article-title: Handbook of X-Ray photoelectron spectroscopy, Physical Electronics publication-title: Inc., Eden Prairie, Minn. – volume: 154 start-page: 304 year: 2002 ident: 10.1016/j.jallcom.2022.166807_bib56 article-title: Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings publication-title: Surf. Coat. Tech. doi: 10.1016/S0257-8972(01)01714-5 – volume: 18 start-page: 1758 year: 2010 ident: 10.1016/j.jallcom.2022.166807_bib63 article-title: Refractory high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2010.05.014 – volume: 38 start-page: 1760 year: 2018 ident: 10.1016/j.jallcom.2022.166807_bib59 article-title: Comparison of residual strength behavior after indentation, scratching and grinding of zirconia-based ceramics for medical-technical applications publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.11.042 – volume: 523 year: 2020 ident: 10.1016/j.jallcom.2022.166807_bib44 article-title: Synthesis and characterization of super -hard AlCrTiVZr high -entropy alloy nitride films deposited by HiPIMS publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146529 – volume: 198 start-page: 74 year: 2005 ident: 10.1016/j.jallcom.2022.166807_bib58 article-title: Toughness measurement of thin films: a critical review publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2004.10.021 – volume: 195 year: 2022 ident: 10.1016/j.jallcom.2022.166807_bib48 article-title: Super-hard and anti-corrosion (AlCrMoSiTi)Nx high entropy nitride coatings by multi-arc cathodic vacuum magnetic filtration deposition publication-title: Vacuum doi: 10.1016/j.vacuum.2021.110685 – volume: 215 year: 2021 ident: 10.1016/j.jallcom.2022.166807_bib67 article-title: Unraveling dual phase transformations in a CrCoNi medium-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117112 – volume: 5 start-page: 295 year: 2020 ident: 10.1016/j.jallcom.2022.166807_bib9 article-title: High-entropy ceramics publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0170-8 – volume: 197 start-page: 117 year: 1991 ident: 10.1016/j.jallcom.2022.166807_bib43 article-title: Reactive-sputter-deposited tin films on glass substrates publication-title: Thin Solid Films doi: 10.1016/0040-6090(91)90225-M – volume: 616 start-page: 601 year: 2016 ident: 10.1016/j.jallcom.2022.166807_bib70 article-title: Corrosion behaviors of TiN and Ti-Si-N (with 2.9 at% and 5.0 at% Si) coatings by electrochemical impedance spectroscopy publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.08.005 – volume: 211 start-page: 117 year: 2012 ident: 10.1016/j.jallcom.2022.166807_bib24 article-title: Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2011.09.033 – volume: 206 start-page: 4106 year: 2012 ident: 10.1016/j.jallcom.2022.166807_bib15 article-title: Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)(100−x)Nx publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2012.03.096 – volume: 827 year: 2020 ident: 10.1016/j.jallcom.2022.166807_bib32 article-title: Effects of nitriding on the microstructure and properties of VAlTiCrMo high-entropy alloy coatings by sputtering technique publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2020.153836 – volume: 516 start-page: 6402 year: 2008 ident: 10.1016/j.jallcom.2022.166807_bib42 article-title: Nitride films deposited from an equimolar Al-Cr-Mo-Si-Ti alloy target by reactive direct current magnetron sputtering publication-title: Thin Solid Films doi: 10.1016/j.tsf.2008.01.019 – volume: 188 start-page: 193 year: 2004 ident: 10.1016/j.jallcom.2022.166807_bib8 article-title: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2004.08.023 – volume: 396 start-page: 347 year: 2017 ident: 10.1016/j.jallcom.2022.166807_bib47 article-title: Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.10.152 – volume: 5 start-page: 312 year: 2015 ident: 10.1016/j.jallcom.2022.166807_bib14 article-title: Machining performance of sputter-deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride coatings publication-title: Coatings doi: 10.3390/coatings5030312 – volume: 679 start-page: 155 year: 2016 ident: 10.1016/j.jallcom.2022.166807_bib16 article-title: Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2016.04.064 – volume: 53 year: 2020 ident: 10.1016/j.jallcom.2022.166807_bib55 article-title: A strategy to construct long-range fullerene-like nanostructure in amorphous carbon film with improved toughness and carrying capacity publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/1361-6463/ab8bff – volume: 233 start-page: 219 year: 2004 ident: 10.1016/j.jallcom.2022.166807_bib49 article-title: The use of non-contact AFM with nanoindentation techniques for measuring mechanical properties of carbon nitride thin films publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2004.03.255 |
| SSID | ssj0001931 |
| Score | 2.6029007 |
| Snippet | High-entropy nitride coatings have become a promising alternative to traditional protective coatings due to their excellent mechanical properties, thermal... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 166807 |
| SubjectTerms | Alloying elements Chemical composition Corrosion mechanisms Corrosion resistance Corrosion resistant steels Corrosive wear Damage tolerance Entropy Hardness High-entropy nitride coatings Magnetron sputtering Mechanical properties Nitrides Nitrogen Oxidation resistance Phase transition Protective coatings Reactive magnetron sputtering Solid phases Stainless steels Super hard Thermal stability Wear resistance |
| Title | Super-hard (MoSiTiVZr)Nx high-entropy nitride coatings |
| URI | https://dx.doi.org/10.1016/j.jallcom.2022.166807 https://www.proquest.com/docview/2729106414 |
| Volume | 926 |
| WOSCitedRecordID | wos000848445000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELbKBgIeEBTQBgPlgQdQlTLbSew8TtUQTFAhpaBsL5HrJGqqLY3aZnT_nnNsJ9MKGiDxElVWbae-7-zz9e4-hN7kQghGZe4yIqXr0XwKKuXlLskxDkjIeZZrsgk2HvM4Dr_2epHNhbk8Z2XJN5uw-q-ihjYQtkqd_Qtxt4NCA3wGocMTxA7PPxJ8VFfZ0p0Z98CXRVRMiu9nIJhwvBmo6sSucuguqqsBaPOySFW4uli3DvNtQ1X9NX-1sglwleJhag3xz00wwAn0lrO6A9rI5Hyc1vOiRc7ZTDR-2dPiovtm1JAKD-K6_CHMIWp8EKShQzHRqI1jbCs5RnsYie9yqln7hpneXzmjrhdodha7AYc6Z35rM9d-hflwDr9ThfaomYc4CLjmyb1RJztS86npCFGZWTy-g3YJ80PY6naPPh3HJ-0BDTZrQ6Ro369L7Hr_y8l-Z7LcOLwbi2TyGD0yEnKONASeoF5W9tH9kWXw66OH14pN9tG9JthXrp6ioIOI87YFyLvxxrkOD8fAw7HweIa-fTiejD66hj_DlZSyNRx0qhhSKg4ly3g4nfrUS0ORYiIyXwqlijgLQhpMZQZ2I0-xz0QOjXBnxooGgD5HO-WizPaQA_dIRomgcpqGntLvwxz7MoUhMU9l6u0jzy5RIk1xecVxcp7YKMJ5YlY2USub6JXdR8O2W6Wrq9zWgdv1T4yJqE2_BEBzW9cDK6_EqOsqIXC3xGCVY-_Fv4_8Ej3olOIA7ayXdfYK3ZWX62K1fG3Q9xPWiJSq |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-hard+%28MoSiTiVZr%29Nx+high-entropy+nitride+coatings&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Li%2C+Jingchuan&rft.au=Chen%2C+Yujie&rft.au=Zhao%2C+Yiman&rft.au=Shi%2C+Xunwang&rft.date=2022-12-10&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=926&rft_id=info:doi/10.1016%2Fj.jallcom.2022.166807&rft.externalDocID=S092583882203198X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |