SpatialSSJP: QoS-Aware Adaptive Approximate Stream-Static Spatial Join Processor
The widespread adoption of Internet of Things (IoT) motivated the emergence of mixed workloads in smart cities, where fast arriving geo-referenced big data streams are joined with archive tables, aiming at enriching streams with descriptive attributes that enable insightful analytics. Applications a...
Uloženo v:
| Vydáno v: | IEEE transactions on parallel and distributed systems Ročník 35; číslo 1; s. 73 - 88 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1045-9219, 1558-2183 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The widespread adoption of Internet of Things (IoT) motivated the emergence of mixed workloads in smart cities, where fast arriving geo-referenced big data streams are joined with archive tables, aiming at enriching streams with descriptive attributes that enable insightful analytics. Applications are now relying on finding, in real-time, to which geographical regions data streaming tuples belong. This problem requires a computationally intensive stream-static join for joining a dynamic stream with a disk-resident static table. In addition, the time-varying nature of fluctuation in geospatial data arriving online calls for an approximate solution that can trade-off QoS constraints while ensuring that the system survives sudden spikes in data loads. In this paper, we present SpatialSSJP, an adaptive spatial-aware approximate query processing system that specifically focuses on stream-static joins in a way that guarantees achieving an agreed set of Quality-of-Service goals and maintains geo-statistics of stateful online aggregations over stream-static join results. SpatialSSJP employs a state-of-art stratified-like sampling design to select well-balanced representative geospatial data stream samples and serve them to a stream-static geospatial join operator downstream. We implemented a prototype atop Spark Structured Streaming. Our extensive evaluations on big real datasets show that our system can survive and mitigate harsh join workloads and outperform state-of-art baselines by significant magnitudes, without risking rigorous error bounds in terms of the accuracy of the output results. SpatialSSJP achieves a relative accuracy gain against plain Spark joins of approximately 10% in worst cases but reaching up to 50% in best case scenarios. |
|---|---|
| AbstractList | The widespread adoption of Internet of Things (IoT) motivated the emergence of mixed workloads in smart cities, where fast arriving geo-referenced big data streams are joined with archive tables, aiming at enriching streams with descriptive attributes that enable insightful analytics. Applications are now relying on finding, in real-time, to which geographical regions data streaming tuples belong. This problem requires a computationally intensive stream-static join for joining a dynamic stream with a disk-resident static table. In addition, the time-varying nature of fluctuation in geospatial data arriving online calls for an approximate solution that can trade-off QoS constraints while ensuring that the system survives sudden spikes in data loads. In this paper, we present SpatialSSJP, an adaptive spatial-aware approximate query processing system that specifically focuses on stream-static joins in a way that guarantees achieving an agreed set of Quality-of-Service goals and maintains geo-statistics of stateful online aggregations over stream-static join results. SpatialSSJP employs a state-of-art stratified-like sampling design to select well-balanced representative geospatial data stream samples and serve them to a stream-static geospatial join operator downstream. We implemented a prototype atop Spark Structured Streaming. Our extensive evaluations on big real datasets show that our system can survive and mitigate harsh join workloads and outperform state-of-art baselines by significant magnitudes, without risking rigorous error bounds in terms of the accuracy of the output results. SpatialSSJP achieves a relative accuracy gain against plain Spark joins of approximately 10% in worst cases but reaching up to 50% in best case scenarios. |
| Author | Montanari, Rebecca Corradi, Antonio Bellavista, Paolo Foschini, Luca Jawarneh, Isam Mashhour Al |
| Author_xml | – sequence: 1 givenname: Isam Mashhour Al orcidid: 0000-0002-4796-2181 surname: Jawarneh fullname: Jawarneh, Isam Mashhour Al email: isam.aljawarneh@studio.unibo.it organization: Dipartimento di Informatica - Scienza e Ingegneria (DISI), University of Bologna, Bologna, Italy – sequence: 2 givenname: Paolo orcidid: 0000-0003-0992-7948 surname: Bellavista fullname: Bellavista, Paolo email: paolo.bellavista@unibo.it organization: Dipartimento di Informatica - Scienza e Ingegneria (DISI), University of Bologna, Bologna, Italy – sequence: 3 givenname: Antonio orcidid: 0000-0002-5107-1023 surname: Corradi fullname: Corradi, Antonio email: antonio.corradi@unibo.it organization: Dipartimento di Informatica - Scienza e Ingegneria (DISI), University of Bologna, Bologna, Italy – sequence: 4 givenname: Luca orcidid: 0000-0001-9062-3647 surname: Foschini fullname: Foschini, Luca email: luca.foschini@unibo.it organization: Dipartimento di Informatica - Scienza e Ingegneria (DISI), University of Bologna, Bologna, Italy – sequence: 5 givenname: Rebecca orcidid: 0000-0002-3687-0361 surname: Montanari fullname: Montanari, Rebecca email: rebecca.montanari@unibo.it organization: Dipartimento di Informatica - Scienza e Ingegneria (DISI), University of Bologna, Bologna, Italy |
| BookMark | eNp9kMtqwzAQRUVJoUnaDyh0YejaqUayZKm7kD5DoC5O10JxZHBILFdS-vj7yiSL0kVXM4t7Zi5nhAatbQ1Cl4AnAFjeLIu7ckIwoRNKKeZcnqAhMCZSAoIO4o4zlkoC8gyNvN9gDBnD2RAVZadDo7dlOS9uk1dbptNP7UwyXesuNB9x6Tpnv5qdDiYpgzN6l5YhIlVyJJO5bdqkcLYy3lt3jk5rvfXm4jjH6O3hfjl7Shcvj8-z6SKtKM1DKhg1Ms81ITUwDGtZkRxWZKUxrSuecQOUagNS5JwLKetYVlKdyzVjXGio6RhdH-7Geu9744Pa2L1r40tFhIwngTCIqfyQqpz13plaVU3f3rbB6WarAKten-r1qV6fOuqLJPwhOxctuO9_masD0xhjfuUpllJw-gMV0Xtu |
| CODEN | ITDSEO |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3467375 crossref_primary_10_3390_computers14020035 crossref_primary_10_1109_TPDS_2024_3453607 crossref_primary_10_1109_TC_2025_3575917 |
| Cites_doi | 10.1109/ICAC.2017.37 10.1145/2723372.2742797 10.1007/s10707-018-0330-9 10.1145/2820783.2820860 10.14778/2536222.2536227 10.1016/j.is.2016.09.007 10.1117/12.2177233 10.1145/3183713.3190664 10.1145/1206049.1206056 10.1007/978-3-540-28608-0_16 10.1109/CAMAD50429.2020.9209294 10.3389/fdata.2020.00030 10.1145/3448016.3457269 10.1109/ICDEW.2015.7129541 10.1145/2505515.2505728 10.1109/GLOBECOM38437.2019.9014291 10.1145/253260.253291 10.1109/ACCESS.2019.2904730 10.1145/2517349.2522737 10.1145/3300061.3300132 10.5555/1863103.1863113 10.1007/978-3-319-77525-8_154 10.1145/2882903.2915237 10.1145/3139958.3139963 10.1145/3221269.3223040 10.1109/TNSM.2020.3034150 10.1109/CAMAD52502.2021.9617784 10.1109/ICAC.2017.31 10.3390/s21124160 10.1109/ICDE.2015.7113382 10.14778/3236187.3236213 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TPDS.2023.3330669 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2183 |
| EndPage | 88 |
| ExternalDocumentID | 10_1109_TPDS_2023_3330669 10309986 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: OntoTrans EU Horizon 2020 Project grantid: 862136 – fundername: H2020 SimDOME-Digital Ontology-Based Modelling Environment for Simulation of Materials grantid: 814492 |
| GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD ESBDL HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 TWZ UHB VH1 AAYXX CITATION 7SC 7SP 8FD AARMG JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c337t-853e977a22f1501d9c271b2ba03fc646e133ae198766899f50493a79d5568a1f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122809600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9219 |
| IngestDate | Sun Jun 29 15:08:06 EDT 2025 Tue Nov 18 22:34:45 EST 2025 Sat Nov 29 07:00:01 EST 2025 Wed Oct 29 06:12:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-853e977a22f1501d9c271b2ba03fc646e133ae198766899f50493a79d5568a1f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0992-7948 0000-0002-5107-1023 0000-0002-4796-2181 0000-0001-9062-3647 0000-0002-3687-0361 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10309986 |
| PQID | 2895011251 |
| PQPubID | 85437 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2895011251 ieee_primary_10309986 crossref_primary_10_1109_TPDS_2023_3330669 crossref_citationtrail_10_1109_TPDS_2023_3330669 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jan. 2024-1-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on parallel and distributed systems |
| PublicationTitleAbbrev | TPDS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref31 Lohr (ref14) 2009 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref16 ref19 ref18 (ref17) 2009-2018 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref33 doi: 10.1109/ICAC.2017.37 – ident: ref6 doi: 10.1145/2723372.2742797 – ident: ref24 doi: 10.1007/s10707-018-0330-9 – ident: ref27 doi: 10.1145/2820783.2820860 – ident: ref31 doi: 10.14778/2536222.2536227 – ident: ref30 doi: 10.1016/j.is.2016.09.007 – ident: ref28 doi: 10.1117/12.2177233 – ident: ref4 doi: 10.1145/3183713.3190664 – ident: ref8 doi: 10.1145/1206049.1206056 – ident: ref9 doi: 10.1007/978-3-540-28608-0_16 – ident: ref10 doi: 10.1109/CAMAD50429.2020.9209294 – volume-title: New York, NY, USA (N.Y.). Taxi and Limousine Commission. New York, NY, USA City Taxi Trip Data year: 2009-2018 ident: ref17 – ident: ref22 doi: 10.3389/fdata.2020.00030 – ident: ref12 doi: 10.1145/3448016.3457269 – ident: ref32 doi: 10.1109/ICDEW.2015.7129541 – ident: ref19 doi: 10.1145/2505515.2505728 – ident: ref3 doi: 10.1109/GLOBECOM38437.2019.9014291 – ident: ref15 doi: 10.1145/253260.253291 – ident: ref20 doi: 10.1109/ACCESS.2019.2904730 – ident: ref11 doi: 10.1145/2517349.2522737 – ident: ref18 doi: 10.1145/3300061.3300132 – ident: ref5 doi: 10.5555/1863103.1863113 – ident: ref16 doi: 10.1007/978-3-319-77525-8_154 – volume-title: Sampling: Design and Analysis year: 2009 ident: ref14 – ident: ref23 doi: 10.1145/2882903.2915237 – ident: ref7 doi: 10.1145/3139958.3139963 – ident: ref21 doi: 10.1145/3221269.3223040 – ident: ref29 doi: 10.1109/TNSM.2020.3034150 – ident: ref1 doi: 10.1109/CAMAD52502.2021.9617784 – ident: ref13 doi: 10.1109/ICAC.2017.31 – ident: ref2 doi: 10.3390/s21124160 – ident: ref25 doi: 10.1109/ICDE.2015.7113382 – ident: ref26 doi: 10.14778/3236187.3236213 |
| SSID | ssj0014504 |
| Score | 2.4372873 |
| Snippet | The widespread adoption of Internet of Things (IoT) motivated the emergence of mixed workloads in smart cities, where fast arriving geo-referenced big data... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 73 |
| SubjectTerms | Algorithms for data and knowledge management Apache Spark Big Data Big Data Applications Data Architecture Data transmission Geospatial analysis Internet of Things Microprocessors Pipelines QoS Data Management Quality of service Query Processing Sampling designs Smart cities Sparks Spatial data Spatial databases and GIS Spatial Indexes Spatial Join State of the art Streams Urban areas Workload Workloads |
| Title | SpatialSSJP: QoS-Aware Adaptive Approximate Stream-Static Spatial Join Processor |
| URI | https://ieeexplore.ieee.org/document/10309986 https://www.proquest.com/docview/2895011251 |
| Volume | 35 |
| WOSCitedRecordID | wos001122809600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2183 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014504 issn: 1045-9219 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPOjBZ8X6IgdPQtrdJpu43ooPREQqVehtyWazUNBuqfXx853JpqUgCt72kCy7-ZLMfJnMfACnVONESVPwBH1pLg1y1lwKxyOL9q4URWGML-J6rx8ezgeDtBeS1X0ujHPOXz5zLXr0sfyisu90VNYmSSykB2oZlrVWdbLWPGQgE68ViPQi4SmuwxDCjKO0_dS76rdIJ7wlkL4ruty8YIS8qsqPrdjbl5vNf37ZFmwER5J1a-S3YcmNdmBzJtLAwprdgfWFioO70CMJYpxy_f5d74I9Vn3e_TQTx7qFGdPGx7pUY_xriH6sYxSxNq-c_NGhZaEnu6uGIxbyC6pJA55vrp8ub3kQVeBWCD3laJ4d-nym0ynRF4yL1HZ0nHdyE4nSKqkcklbj6ChCKeRiJY5qKoxOCypVZuJS7MHKqBq5fWBaJKRSlpSldFLlOsfdQau0jBFnK2LZhGg2ypkNFcdJ-OIl88wjSjMCJiNgsgBME87mXcZ1uY2_GjcIiYWGNQhNOJphmYUV-ZYhscTfJXfu4Jduh7CGb5f1-coRrEwn7-4YVu3HdPg2OfGT7Rvjas4l |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xkmAPvNGWpw-cVnJJYsch3CoeKqVUXbUrcYscx5EqQYNK2eXnM-O4qNIKJG452Eriz_bM5_HMB3BKNU6U1AWP0ZfmUiNnzaWwPDBo70pRFFq7Iq7dpNc7f3hI-z5Z3eXCWGvd5TPbpEcXyy8q80pHZWckiYX0QC3CcixlFNTpWh9BAxk7tUAkGDFPcSX6IGYYpGfD_tWgSUrhTYEEXtH15jkz5HRV_tuMnYW52fjmt23CunclWavGfgsW7HgbNmYyDcyv2m34MVdzcAf6JEKMk24w6PQv2O9qwFv_9MSyVqGfaetjLaoy_jZCT9YyilnrJ04e6cgw35N1qtGY-QyDarILf26uh5dt7mUVuBEimXI00Ba9Ph1FJXqDYZGaKAnzKNeBKI2SyiJt1ZYOI5RCNlbiqKZCJ2lBxcp0WIo9WBpXY_sTWCJi0imLy1JaqfIkx_0hUWkZItJGhLIBwWyUM-NrjpP0xWPmuEeQZgRMRsBkHpgG_Pro8lwX3Piq8S4hMdewBqEBhzMsM78mXzKklvi75NDtf9LtBFbbw_tu1r3t3R3AGr5J1qcth7A0nbzaI1gxf6ejl8mxm3jvyazRbA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpatialSSJP%3A+QoS-Aware+Adaptive+Approximate+Stream-Static+Spatial+Join+Processor&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Isam+Mashhour+Al+Jawarneh&rft.au=Bellavista%2C+Paolo&rft.au=Corradi%2C+Antonio&rft.au=Foschini%2C+Luca&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=35&rft.issue=1&rft.spage=73&rft_id=info:doi/10.1109%2FTPDS.2023.3330669&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |