Computing homotopic shortest paths in the plane

We address the problem of computing homotopic shortest paths in the presence of obstacles in the plane. Problems on homotopy of paths received attention very recently [Cabello et al., in: Proc. 18th Annu. ACM Sympos. Comput. Geom., 2002, pp. 160–169; Efrat et al., in: Proc. 10th Annu. European Sympo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algorithms Vol. 49; no. 2; pp. 284 - 303
Main Author: Bespamyatnikh, Sergei
Format: Journal Article
Language:English
Published: San Diego, CA Elsevier Inc 01.11.2003
Elsevier
Subjects:
ISSN:0196-6774, 1090-2678
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We address the problem of computing homotopic shortest paths in the presence of obstacles in the plane. Problems on homotopy of paths received attention very recently [Cabello et al., in: Proc. 18th Annu. ACM Sympos. Comput. Geom., 2002, pp. 160–169; Efrat et al., in: Proc. 10th Annu. European Sympos. Algorithms, 2002, pp. 411–423]. We present two output-sensitive algorithms, for simple paths and non-simple paths. The algorithm for simple paths improves the previous algorithm [Efrat et al., in: Proc. 10th Annu. European Sympos. Algorithms, 2002, pp. 411–423]. The algorithm for non-simple paths achieves O(log 2 n) time per output vertex which is an improvement by a factor of O( n/log 2 n) of the previous algorithm [Hershberger, Snoeyink, Comput. Geom. Theory Appl. 4 (1994) 63–98], where n is the number of obstacles. The running time has an overhead O( n 2+ ε ) for any positive constant ε. In the case k< n 2+ ε , where k is the total size of the input and output, we improve the running to O(( n+ k+( nk) 2/3)log O(1) n).
AbstractList We address the problem of computing homotopic shortest paths in the presence of obstacles in the plane. Problems on homotopy of paths received attention very recently [Cabello et al., in: Proc. 18th Annu. ACM Sympos. Comput. Geom., 2002, pp. 160–169; Efrat et al., in: Proc. 10th Annu. European Sympos. Algorithms, 2002, pp. 411–423]. We present two output-sensitive algorithms, for simple paths and non-simple paths. The algorithm for simple paths improves the previous algorithm [Efrat et al., in: Proc. 10th Annu. European Sympos. Algorithms, 2002, pp. 411–423]. The algorithm for non-simple paths achieves O(log 2 n) time per output vertex which is an improvement by a factor of O( n/log 2 n) of the previous algorithm [Hershberger, Snoeyink, Comput. Geom. Theory Appl. 4 (1994) 63–98], where n is the number of obstacles. The running time has an overhead O( n 2+ ε ) for any positive constant ε. In the case k< n 2+ ε , where k is the total size of the input and output, we improve the running to O(( n+ k+( nk) 2/3)log O(1) n).
Author Bespamyatnikh, Sergei
Author_xml – sequence: 1
  givenname: Sergei
  surname: Bespamyatnikh
  fullname: Bespamyatnikh, Sergei
  email: besp@utd.edu
  organization: Department of Computer Science, University of Texas at Dallas, Box 830688, Richardson, TX 75083, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15272408$$DView record in Pascal Francis
BookMark eNqFkEtLAzEUhYNUsK3-BGE2gi7G5jGTBy5EBl9QcKGuQ5pknMg0GZIo-O_ttKLgpqt7Ft85cL8ZmPjgLQCnCF4iiOjiGSJBS8pYdQ7JBYRQwJIdgCkaA6aMT8D0FzkCs5TeIUSorsQULJqwHj6y829FF9Yhh8HpInUhZptyMajcpcL5Ine2GHrl7TE4bFWf7MnPnYPXu9uX5qFcPt0_NjfLUhPCcslMrYxAhhAtWoYN1K0wiHJOW1UJRLHhquKaYr7iNUPCWrxiGNeo1dYSw8gcnO12B5W06tuovHZJDtGtVfySqMYMV5BvuHrH6RhSirb9Q6Ac7citHTm-LiGRWzty3L_619Muq-yCz1G5fm_7ete2GwWfzkaZtLNeW-Oi1Vma4PYsfAMtXH-2
CODEN JOALDV
CitedBy_id crossref_primary_10_1016_j_comgeo_2017_10_005
crossref_primary_10_1016_j_comgeo_2014_02_002
crossref_primary_10_1016_j_tcs_2018_05_031
crossref_primary_10_1080_0952813X_2012_741625
crossref_primary_10_1137_15M1046484
crossref_primary_10_1007_s00454_013_9555_4
crossref_primary_10_1016_j_comgeo_2006_03_003
crossref_primary_10_1109_TNN_2007_891192
crossref_primary_10_1007_s00373_006_0669_9
crossref_primary_10_1016_j_comgeo_2015_06_004
crossref_primary_10_1109_TASE_2015_2471844
crossref_primary_10_1145_1255443_1255446
crossref_primary_10_1007_s11423_014_9345_6
crossref_primary_10_1016_j_comgeo_2009_02_008
crossref_primary_10_1016_j_robot_2014_10_021
crossref_primary_10_1137_090761653
Cites_doi 10.1137/0212029
10.1007/BF02293051
10.1007/BF01840360
10.1109/TC.1984.1676428
10.1142/S0218195994000252
10.1007/BF01762115
10.1007/BF02573972
10.1002/net.3230140304
10.1016/0925-7721(94)90010-8
10.1007/3-540-45749-6_38
10.1007/978-3-642-95432-0_9
10.1007/BF01758854
ContentType Journal Article
Copyright 2003 Elsevier Inc.
2004 INIST-CNRS
Copyright_xml – notice: 2003 Elsevier Inc.
– notice: 2004 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0196-6774(03)00090-7
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
EISSN 1090-2678
EndPage 303
ExternalDocumentID 15272408
10_1016_S0196_6774_03_00090_7
S0196677403000907
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
KOM
LG5
LX9
M25
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEW
SME
SPC
SSV
SSW
SSZ
T5K
TN5
TWZ
UPT
UQL
WUQ
XJT
XPP
YQT
ZCA
ZU3
ZY4
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
IQODW
SSH
ID FETCH-LOGICAL-c337t-7d5ad91d33c9f72d0cf9d16886fa49162d8a48c628b85719ee2b72251fcee3d73
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000186399400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-6774
IngestDate Mon Jul 21 09:16:31 EDT 2025
Sat Nov 29 03:01:56 EST 2025
Tue Nov 18 21:01:48 EST 2025
Fri Feb 23 02:22:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Shortest path
Homotopy
Output-sensitive algorithm
Output sensitive algorithm
Graph theory
Computer theory
Computing
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-7d5ad91d33c9f72d0cf9d16886fa49162d8a48c628b85719ee2b72251fcee3d73
PageCount 20
ParticipantIDs pascalfrancis_primary_15272408
crossref_primary_10_1016_S0196_6774_03_00090_7
crossref_citationtrail_10_1016_S0196_6774_03_00090_7
elsevier_sciencedirect_doi_10_1016_S0196_6774_03_00090_7
PublicationCentury 2000
PublicationDate 2003-11-01
PublicationDateYYYYMMDD 2003-11-01
PublicationDate_xml – month: 11
  year: 2003
  text: 2003-11-01
  day: 01
PublicationDecade 2000
PublicationPlace San Diego, CA
PublicationPlace_xml – name: San Diego, CA
PublicationTitle Journal of algorithms
PublicationYear 2003
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Cabello, Liu, Mantler, Snoeyink (BIB003) 2002
A. Efrat, S. Kobourov, A. Lubiw, Computing homotopic shortest paths efficiently, Manuscript, April 29, 2002, 12 p.
Gao, Jerrum, Kaufmann, Mehlhorn, Rülling, Storb (BIB010) 1988
Armstrong (BIB001) 1979
Leiserson, Pinter (BIB015) 1983; 12
Cole, Siegel (BIB007) 1984
Leiserson, Maley (BIB014) 1985
Matoušek (BIB016) 1992; 8
Munkres (BIB019) 1975
Matoušek (BIB017) 1993; 10
Pinter (BIB020) 1983
Richards (BIB021) 1984; 33
Chazelle (BIB005) 1988; 3
Guibas, Hershberger, Leven, Sharir, Tarjan (BIB011) 1987; 2
Chazelle, Sharir, Welzl (BIB006) 1992; 8
Mitchell (BIB018) 2000
Hershberger, Snoeyink (BIB012) 1994; 4
Chazelle (BIB004) 1982
Lee, Preparata (BIB013) 1984; 14
Bar-Yehuda, Chazelle (BIB002) 1994; 4
Efrat, Kobourov, Lubiw (BIB009) 2002
Leiserson (10.1016/S0196-6774(03)00090-7_BIB015) 1983; 12
Chazelle (10.1016/S0196-6774(03)00090-7_BIB004) 1982
Guibas (10.1016/S0196-6774(03)00090-7_BIB011) 1987; 2
Lee (10.1016/S0196-6774(03)00090-7_BIB013) 1984; 14
Chazelle (10.1016/S0196-6774(03)00090-7_BIB005) 1988; 3
10.1016/S0196-6774(03)00090-7_BIB008
Cole (10.1016/S0196-6774(03)00090-7_BIB007) 1984
Leiserson (10.1016/S0196-6774(03)00090-7_BIB014) 1985
Efrat (10.1016/S0196-6774(03)00090-7_BIB009) 2002
Bar-Yehuda (10.1016/S0196-6774(03)00090-7_BIB002) 1994; 4
Gao (10.1016/S0196-6774(03)00090-7_BIB010) 1988
Cabello (10.1016/S0196-6774(03)00090-7_BIB003) 2002
Hershberger (10.1016/S0196-6774(03)00090-7_BIB012) 1994; 4
Armstrong (10.1016/S0196-6774(03)00090-7_BIB001) 1979
Richards (10.1016/S0196-6774(03)00090-7_BIB021) 1984; 33
Munkres (10.1016/S0196-6774(03)00090-7_BIB019) 1975
Chazelle (10.1016/S0196-6774(03)00090-7_BIB006) 1992; 8
Matoušek (10.1016/S0196-6774(03)00090-7_BIB017) 1993; 10
Mitchell (10.1016/S0196-6774(03)00090-7_BIB018) 2000
Matoušek (10.1016/S0196-6774(03)00090-7_BIB016) 1992; 8
Pinter (10.1016/S0196-6774(03)00090-7_BIB020) 1983
References_xml – volume: 2
  start-page: 209
  year: 1987
  end-page: 233
  ident: BIB011
  article-title: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons
  publication-title: Algorithmica
– year: 1979
  ident: BIB001
  article-title: Basic Topology
– volume: 4
  start-page: 475
  year: 1994
  end-page: 481
  ident: BIB002
  article-title: Triangulating disjoint Jordan chains
  publication-title: Internat. J. Comput. Geom. Appl.
– volume: 3
  start-page: 205
  year: 1988
  end-page: 221
  ident: BIB005
  article-title: An algorithm for segment-dragging and its implementation
  publication-title: Algorithmica
– volume: 10
  start-page: 157
  year: 1993
  end-page: 182
  ident: BIB017
  article-title: Range searching with efficient hierarchical cuttings
  publication-title: Discrete Comput. Geom.
– start-page: 69
  year: 1985
  end-page: 78
  ident: BIB014
  article-title: Algorithms for routing and testing routability of planar VLSI layouts
  publication-title: Proc. 17th Annu. ACM Sympos. Theory Comput.
– start-page: 411
  year: 2002
  end-page: 423
  ident: BIB009
  article-title: Computing homotopic shortest paths efficiently
  publication-title: Proc. 10th Annu. European Sympos. Algorithms
– volume: 12
  start-page: 447
  year: 1983
  end-page: 462
  ident: BIB015
  article-title: Optimal placement for river routing
  publication-title: SIAM J. Comput.
– start-page: 633
  year: 2000
  end-page: 701
  ident: BIB018
  article-title: Geometric shortest paths and network optimization
  publication-title: Handbook of Computational Geometry
– volume: 8
  start-page: 407
  year: 1992
  end-page: 429
  ident: BIB006
  article-title: Quasi-optimal upper bounds for simplex range searching and new zone theorems
  publication-title: Algorithmica
– reference: A. Efrat, S. Kobourov, A. Lubiw, Computing homotopic shortest paths efficiently, Manuscript, April 29, 2002, 12 p.,
– volume: 33
  start-page: 286
  year: 1984
  end-page: 288
  ident: BIB021
  article-title: Complexity of single layer routing
  publication-title: IEEE Trans. Comput.
– start-page: 339
  year: 1982
  end-page: 349
  ident: BIB004
  article-title: A theorem on polygon cutting with applications
  publication-title: Proc. 23th Annu. IEEE Sympos. Found. Comput. Sci.
– volume: 14
  start-page: 393
  year: 1984
  end-page: 410
  ident: BIB013
  article-title: Euclidean shortest paths in the presence of rectilinear barriers
  publication-title: Networks
– volume: 8
  start-page: 315
  year: 1992
  end-page: 334
  ident: BIB016
  article-title: Efficient partition trees
  publication-title: Discrete Comput. Geom.
– start-page: 392
  year: 1988
  end-page: 402
  ident: BIB010
  article-title: On continuous homotopic one layer routing
  publication-title: Proc. 4th Annu. ACM Sympos. Comput. Geom.
– start-page: 160
  year: 2002
  end-page: 169
  ident: BIB003
  article-title: Testing homotopy for paths in the plane
  publication-title: Proc. 18th Annu. ACM Sympos. Comput. Geom.
– volume: 4
  start-page: 63
  year: 1994
  end-page: 98
  ident: BIB012
  article-title: Computing minimum length paths of a given homotopy class
  publication-title: Comput. Geom. Theory Appl.
– year: 1975
  ident: BIB019
  article-title: Topology: A First Course
– year: 1983
  ident: BIB020
  article-title: River-routing: Methodology and analysis
– start-page: 65
  year: 1984
  end-page: 73
  ident: BIB007
  article-title: River routing every which way, but loose
  publication-title: Proc. 25th Annu. IEEE Sympos. Found. Comput. Sci.
– volume: 12
  start-page: 447
  year: 1983
  ident: 10.1016/S0196-6774(03)00090-7_BIB015
  article-title: Optimal placement for river routing
  publication-title: SIAM J. Comput.
  doi: 10.1137/0212029
– start-page: 339
  year: 1982
  ident: 10.1016/S0196-6774(03)00090-7_BIB004
  article-title: A theorem on polygon cutting with applications
– volume: 8
  start-page: 315
  issue: 3
  year: 1992
  ident: 10.1016/S0196-6774(03)00090-7_BIB016
  article-title: Efficient partition trees
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02293051
– volume: 2
  start-page: 209
  year: 1987
  ident: 10.1016/S0196-6774(03)00090-7_BIB011
  article-title: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons
  publication-title: Algorithmica
  doi: 10.1007/BF01840360
– start-page: 69
  year: 1985
  ident: 10.1016/S0196-6774(03)00090-7_BIB014
  article-title: Algorithms for routing and testing routability of planar VLSI layouts
– volume: 33
  start-page: 286
  year: 1984
  ident: 10.1016/S0196-6774(03)00090-7_BIB021
  article-title: Complexity of single layer routing
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1984.1676428
– volume: 4
  start-page: 475
  issue: 4
  year: 1994
  ident: 10.1016/S0196-6774(03)00090-7_BIB002
  article-title: Triangulating disjoint Jordan chains
  publication-title: Internat. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195994000252
– volume: 3
  start-page: 205
  year: 1988
  ident: 10.1016/S0196-6774(03)00090-7_BIB005
  article-title: An algorithm for segment-dragging and its implementation
  publication-title: Algorithmica
  doi: 10.1007/BF01762115
– start-page: 160
  year: 2002
  ident: 10.1016/S0196-6774(03)00090-7_BIB003
  article-title: Testing homotopy for paths in the plane
– volume: 10
  start-page: 157
  issue: 2
  year: 1993
  ident: 10.1016/S0196-6774(03)00090-7_BIB017
  article-title: Range searching with efficient hierarchical cuttings
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02573972
– start-page: 392
  year: 1988
  ident: 10.1016/S0196-6774(03)00090-7_BIB010
  article-title: On continuous homotopic one layer routing
– year: 1979
  ident: 10.1016/S0196-6774(03)00090-7_BIB001
– volume: 14
  start-page: 393
  year: 1984
  ident: 10.1016/S0196-6774(03)00090-7_BIB013
  article-title: Euclidean shortest paths in the presence of rectilinear barriers
  publication-title: Networks
  doi: 10.1002/net.3230140304
– volume: 4
  start-page: 63
  year: 1994
  ident: 10.1016/S0196-6774(03)00090-7_BIB012
  article-title: Computing minimum length paths of a given homotopy class
  publication-title: Comput. Geom. Theory Appl.
  doi: 10.1016/0925-7721(94)90010-8
– ident: 10.1016/S0196-6774(03)00090-7_BIB008
  doi: 10.1007/3-540-45749-6_38
– year: 1983
  ident: 10.1016/S0196-6774(03)00090-7_BIB020
  article-title: River-routing: Methodology and analysis
  doi: 10.1007/978-3-642-95432-0_9
– start-page: 65
  year: 1984
  ident: 10.1016/S0196-6774(03)00090-7_BIB007
  article-title: River routing every which way, but loose
– volume: 8
  start-page: 407
  year: 1992
  ident: 10.1016/S0196-6774(03)00090-7_BIB006
  article-title: Quasi-optimal upper bounds for simplex range searching and new zone theorems
  publication-title: Algorithmica
  doi: 10.1007/BF01758854
– start-page: 633
  year: 2000
  ident: 10.1016/S0196-6774(03)00090-7_BIB018
  article-title: Geometric shortest paths and network optimization
– year: 1975
  ident: 10.1016/S0196-6774(03)00090-7_BIB019
– start-page: 411
  year: 2002
  ident: 10.1016/S0196-6774(03)00090-7_BIB009
  article-title: Computing homotopic shortest paths efficiently
SSID ssj0011549
Score 1.7191908
Snippet We address the problem of computing homotopic shortest paths in the presence of obstacles in the plane. Problems on homotopy of paths received attention very...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 284
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Classical combinatorial problems
Combinatorics
Combinatorics. Ordered structures
Computer science; control theory; systems
Convex and discrete geometry
Exact sciences and technology
Geometry
Graph theory
Homotopy
Mathematics
Output-sensitive algorithm
Sciences and techniques of general use
Shortest path
Theoretical computing
Title Computing homotopic shortest paths in the plane
URI https://dx.doi.org/10.1016/S0196-6774(03)00090-7
Volume 49
WOSCitedRecordID wos000186399400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2678
  dateEnd: 20091031
  omitProxy: false
  ssIdentifier: ssj0011549
  issn: 0196-6774
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpoeG0Efa0PQRfGigpbixLNuSjkvZkrTNEsgWticjS3bWkHjN2g35-R1ZsrxpCdseejFGWBbomxmNxzPzIfRWRLpUNsN-gbHyIyxB5-A7whexiKXgeZ4VXZ_Zb3Q6ZfM5P7MM2U1HJ0Crit3c8Pq_Qg1jALYunf0HuN1LYQDuAXS4Auxw_SvgDU-DjgAsdKbdsi7lh2ahc2qbVrdRXTR9bmOtE13v8E7F5cVyVbaLqyGMPjk_G5_-GM-mJ1-Pu6CpLtwsb4UNiK2fc7Ese_CuhxZ54ifUcOb0ttG0E7UyEK4bOkPsZs9M0vUp-NMcm8jAuXv1oebCOgw1USkPfDqcQf1_99-OJpcwqMl3dTO2-2grpDFnI7Q1PpnMv7gfRrrTnKmMNysNxVpHw_LvAvLeLn2XG7JTiwaUozCsJmuuxuwJemRR8MYG26foXl7tosf2e8Gz1riBoZ6Sox_bRdunrg1v8wwdOVnwnCx4vSx4nSx4ZeXBDK-Thefo--fJ7NOxbxkyfEkIbX2qYqE4VoRIXtBQBbLgCieMJYWIwPEPFRMRk0nIMhZTDKoXZhQsOC7ANyKKkj00qpZV_gJ5oKs4yXGg9TPKE56JJFIqC7BUSnFB9lHUb1gqbft4zWJyma7lCfIk1fucBiTt9jml--ijm1ab_imbJrAejdQ6gca5S0GoNk09uIXesKCVnpebHniFHg668hqN2tXP_A16IK_bslkdWJn7BbkvfoA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+homotopic+shortest+paths+in+the+plane&rft.jtitle=Journal+of+algorithms&rft.au=BESPAMYATNIKH%2C+Sergei&rft.date=2003-11-01&rft.pub=Elsevier&rft.issn=0196-6774&rft.volume=49&rft.issue=2&rft.spage=284&rft.epage=303&rft_id=info:doi/10.1016%2FS0196-6774%2803%2900090-7&rft.externalDBID=n%2Fa&rft.externalDocID=15272408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-6774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-6774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-6774&client=summon