Modified Evolutionary Algorithm and Chaotic Search for Bilevel Programming Problems
Bi-level programming problem (BLPP) is an optimization problem consists of two interconnected hierarchical optimization problems. Solving BLPP is one of the hardest tasks facing the optimization community. This paper proposes a modified genetic algorithm and a chaotic search to solve BLPP. Firstly,...
Saved in:
| Published in: | Symmetry (Basel) Vol. 12; no. 5; p. 767 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.05.2020
|
| Subjects: | |
| ISSN: | 2073-8994, 2073-8994 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Bi-level programming problem (BLPP) is an optimization problem consists of two interconnected hierarchical optimization problems. Solving BLPP is one of the hardest tasks facing the optimization community. This paper proposes a modified genetic algorithm and a chaotic search to solve BLPP. Firstly, the proposed algorithm solves the upper-level problem using a modified genetic algorithm. The genetic algorithm has modified with a new selection technique. The new selection technique helps the upper-level decision-maker to take an appropriate decision in anticipation of a lower level’s reaction. It distinguishes the proposed algorithm with a very small number of solving the lower-level problem, enhances the algorithm performance and fasts convergence to the solution. Secondly, a local search based on chaos theory has applied around the modified genetic algorithm solution. Chaotic local search enables the algorithm to escape from local solutions and increase convergence to the global solution. The proposed algorithm has evaluated on forty different test problems to show the proposed algorithm effectiveness. The results have analyzed to illustrate the new selection technique effect and the chaotic search effect on the algorithm performance. A comparison between the proposed algorithm results and other state-of-the-art algorithms results has introduced to show the proposed algorithm superiority. |
|---|---|
| AbstractList | Bi-level programming problem (BLPP) is an optimization problem consists of two interconnected hierarchical optimization problems. Solving BLPP is one of the hardest tasks facing the optimization community. This paper proposes a modified genetic algorithm and a chaotic search to solve BLPP. Firstly, the proposed algorithm solves the upper-level problem using a modified genetic algorithm. The genetic algorithm has modified with a new selection technique. The new selection technique helps the upper-level decision-maker to take an appropriate decision in anticipation of a lower level’s reaction. It distinguishes the proposed algorithm with a very small number of solving the lower-level problem, enhances the algorithm performance and fasts convergence to the solution. Secondly, a local search based on chaos theory has applied around the modified genetic algorithm solution. Chaotic local search enables the algorithm to escape from local solutions and increase convergence to the global solution. The proposed algorithm has evaluated on forty different test problems to show the proposed algorithm effectiveness. The results have analyzed to illustrate the new selection technique effect and the chaotic search effect on the algorithm performance. A comparison between the proposed algorithm results and other state-of-the-art algorithms results has introduced to show the proposed algorithm superiority. Bi-level programming problem (BLPP) is an optimization problem consists of two interconnected hierarchical optimization problems. Solving BLPP is one of the hardest tasks facing the optimization community. This paper proposes a modified genetic algorithm and a chaotic search to solve BLPP. Firstly, the proposed algorithm solves the upper-level problem using a modified genetic algorithm. The genetic algorithm has modified with a new selection technique. The new selection technique helps the upper-level decision-maker to take an appropriate decision in anticipation of a lower level's reaction. It distinguishes the proposed algorithm with a very small number of solving the lower-level problem, enhances the algorithm performance and fasts convergence to the solution. Secondly, a local search based on chaos theory has applied around the modified genetic algorithm solution. Chaotic local search enables the algorithm to escape from local solutions and increase convergence to the global solution. The proposed algorithm has evaluated on forty different test problems to show the proposed algorithm effectiveness. The results have analyzed to illustrate the new selection technique effect and the chaotic search effect on the algorithm performance. A comparison between the proposed algorithm results and other state-of-the-art algorithms results has introduced to show the proposed algorithm superiority. Keywords: bi-level optimization; chaos theory; evolutionary algorithms; genetic algorithm |
| Audience | Academic |
| Author | Abo-Elnaga, Yousria Nasr, Sarah |
| Author_xml | – sequence: 1 givenname: Yousria surname: Abo-Elnaga fullname: Abo-Elnaga, Yousria – sequence: 2 givenname: Sarah surname: Nasr fullname: Nasr, Sarah |
| BookMark | eNptkE1rAyEQhqWk0DTNqX9A6LFsquuqu8c0pB-Q0kLas7iuJgZ3TXUTyL-vIT2EUufgHJ53hnmuwaDznQbgFqMJIRV6iIcW54gizvgFGOaIk6ysqmJw1l-BcYwblB5FtGBoCJZvvrHG6gbO997teus7GQ5w6lY-2H7dQtk1cLaWvrcKLrUMag2ND_DROr3XDn4EvwqybW23Ova10228AZdGuqjHv_8IfD3NP2cv2eL9-XU2XWSKEN5nXLEcMUVMg7nCtcFEM1bjklS14QbJShtalFQXpapwyalChrKaF4o3VCNpyAjcneZug__e6diLjd-FLq0UeZFOpHlVFomanKiVdFrYzvg-SJWq0a1VSaFJp4gpSzDBtMxT4P4UUMHHGLQR22DbZEVgJI6mxZnpROM_tLK9PHpMa6z7N_MDLxaC6A |
| CitedBy_id | crossref_primary_10_1007_s11042_020_10139_6 crossref_primary_10_1007_s43069_024_00294_z crossref_primary_10_3390_e24020283 crossref_primary_10_3390_fractalfract6080412 crossref_primary_10_1371_journal_pone_0273564 crossref_primary_10_3390_a13100260 crossref_primary_10_1016_j_ijhydene_2024_05_095 |
| Cites_doi | 10.1155/2019/6068743 10.1016/j.knosys.2017.09.038 10.1007/s00500-019-03988-3 10.1109/TSMCC.2004.841908 10.1137/0911017 10.1016/j.swevo.2014.06.002 10.1016/j.aml.2006.07.013 10.1162/EVCO_a_00116 10.1016/j.asoc.2017.02.021 10.1016/j.ijepes.2014.04.028 10.1016/j.epsr.2010.12.005 10.9734/BJMCS/2015/16193 10.1016/j.chaos.2004.11.095 10.1007/978-3-319-99010-1 10.1080/24725854.2018.1442032 10.1162/evco_a_00198 10.1007/978-3-030-21803-4_54 10.1016/j.chaos.2007.09.063 10.3923/ajsr.2017.227.235 10.1007/s10957-011-9943-y 10.1007/s10479-007-0176-2 10.1007/s10732-019-09426-9 10.1007/978-3-030-12127-3_5 10.1016/j.camwa.2008.05.006 10.1016/j.swevo.2012.08.001 10.1016/j.ins.2017.08.019 10.1007/978-981-10-3325-4_34 10.1109/CEC.2012.6256557 10.1007/s10898-016-0478-5 10.1109/CEC.2014.6900391 10.1016/j.camwa.2003.12.003 10.1109/TEVC.2017.2712906 10.1016/j.trpro.2015.09.092 10.1016/j.swevo.2011.11.005 10.1287/ijoc.1100.0430 10.1016/j.cam.2010.08.030 10.1016/j.chaos.2016.01.007 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 MDPI AG 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3390/sym12050767 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | A629831582 10_3390_sym12050767 |
| GeographicLocations | Egypt |
| GeographicLocations_xml | – name: Egypt |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c337t-7c6206c3fd17c1bf13e66b1839bf7f0a9ef5485e48c91875c0f56b74c7d5e0af3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540226400085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 12:14:53 EDT 2025 Tue Nov 04 17:55:49 EST 2025 Tue Nov 18 22:16:44 EST 2025 Sat Nov 29 07:12:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-7c6206c3fd17c1bf13e66b1839bf7f0a9ef5485e48c91875c0f56b74c7d5e0af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2400552984?pq-origsite=%requestingapplication% |
| PQID | 2400552984 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_2400552984 gale_infotracacademiconefile_A629831582 crossref_primary_10_3390_sym12050767 crossref_citationtrail_10_3390_sym12050767 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Wang (ref_56) 2011; 23 Xiang (ref_34) 2007; 190 ref_11 ref_55 Mousa (ref_45) 2011; 235 Gue (ref_35) 2019; 2019 Mousa (ref_52) 2014; 81 ref_19 ref_18 Alatas (ref_36) 2009; 40 Mousa (ref_50) 2012; 3 Sinha (ref_40) 2014; 22 Yabo (ref_20) 2017; 2017 Zhang (ref_24) 2017; 2017 Colson (ref_43) 2007; 153 Mousa (ref_46) 2016; 85 Dempe (ref_16) 2017; 68 Lan (ref_30) 2007; 20 Osman (ref_54) 2004; 155 Osman (ref_7) 2018; 7 Anter (ref_31) 2020; 24 Gaspar (ref_4) 2015; 10 ref_26 Wang (ref_42) 2005; 35 Carrasqueira (ref_29) 2017; 418 Zhongping (ref_38) 2013; 8 Sinha (ref_28) 2020; 26 Jie (ref_12) 2016; 346 Zhan (ref_10) 2018; 50 Zhao (ref_39) 2005; 3 Tavazoei (ref_47) 2007; 187 Aihong (ref_5) 2017; 2017 Hosseini (ref_15) 2017; 10 Mousa (ref_51) 2011; 81 Shiha (ref_22) 2004; 48 Jampour (ref_32) 2013; 5 Wang (ref_13) 2008; 56 Bard (ref_25) 1990; 11 ref_37 Lu (ref_49) 2014; 62 Sinha (ref_23) 2017; 22 Islam (ref_57) 2016; 25 Wang (ref_58) 2017; 138 Liu (ref_33) 2005; 25 Nasr (ref_44) 2015; 7 Shuang (ref_3) 2016; 5 Genlin (ref_53) 2004; 2 Zhenyuan (ref_17) 2017; 64 Ruusk (ref_2) 2012; 153 Birla (ref_6) 2017; 7 Nasr (ref_14) 2016; 3 Kalashnikov (ref_1) 2015; 2015 Khan (ref_21) 2017; 55 ref_41 Sinha (ref_27) 2016; 275 ref_48 ref_9 ref_8 |
| References_xml | – volume: 2019 start-page: 1 year: 2019 ident: ref_35 article-title: Improved Bat Algorithm Based on Multipopulation Strategy of Island Model for Solving Global Function Optimization Problem publication-title: Comput. Intell. Neurosc. doi: 10.1155/2019/6068743 – volume: 138 start-page: 113 year: 2017 ident: ref_58 article-title: A bilevel improved fruit fly optimization algorithm for the nonlinear bilevel programming problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.09.038 – volume: 24 start-page: 1565 year: 2020 ident: ref_31 article-title: Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems publication-title: Soft Comput. doi: 10.1007/s00500-019-03988-3 – volume: 35 start-page: 221 year: 2005 ident: ref_42 article-title: An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme publication-title: IEEE Transp. Syst. Man Cybern. Part C doi: 10.1109/TSMCC.2004.841908 – volume: 11 start-page: 281 year: 1990 ident: ref_25 article-title: A branch and bound algorithm for the bilevel programming problem publication-title: Siam J. Sci. Stat. Comp. doi: 10.1137/0911017 – volume: 275 start-page: 395 year: 2016 ident: ref_27 article-title: Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping publication-title: Eur. J. Oper. Res. – volume: 81 start-page: 11 year: 2014 ident: ref_52 article-title: Hybrid ant optimization system for multiobjective economic emission load dispatch problem under fuzziness publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.06.002 – volume: 7 start-page: 239 year: 2017 ident: ref_6 article-title: An alternative approach for solving bilevel programming problems publication-title: Am. J. Oper. Res. – volume: 20 start-page: 880 year: 2007 ident: ref_30 article-title: A hybrid neural network approach to bilevel programming problems publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2006.07.013 – volume: 22 start-page: 439 year: 2014 ident: ref_40 article-title: Test problem construction for single-objective bilevel optimization publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00116 – volume: 5 start-page: 1 year: 2016 ident: ref_3 article-title: A nonlinear bi-level programming approach for product portfolio management publication-title: SpringerPlus – volume: 55 start-page: 462 year: 2017 ident: ref_21 article-title: Ant colony optimization based hierarchical multi-label classification algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.02.021 – volume: 62 start-page: 130 year: 2014 ident: ref_49 article-title: Chaotic differential bee colony optimization algorithm for dynamic economic dispatch problem with valve-point effects publication-title: Int. J. Electr. Power doi: 10.1016/j.ijepes.2014.04.028 – volume: 81 start-page: 1014 year: 2011 ident: ref_51 article-title: A hybrid ant optimization approach based local search scheme for multiobjective design optimizations publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2010.12.005 – volume: 2015 start-page: 1 year: 2015 ident: ref_1 article-title: Bilevel programming and applications publication-title: Math. Probl. Eng. – volume: 7 start-page: 466 year: 2015 ident: ref_44 article-title: Hybrid genetic algorithm for constrained nonlinear optimization problems publication-title: Brit. J. Math. Comput. Sci. doi: 10.9734/BJMCS/2015/16193 – volume: 25 start-page: 1261 year: 2005 ident: ref_33 article-title: Improved particle swarm optimization combined with chaos publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2004.11.095 – ident: ref_37 doi: 10.1007/978-3-319-99010-1 – volume: 2 start-page: 69 year: 2004 ident: ref_53 article-title: Survey on genetic algorithm publication-title: Comput. Appl. Soft – ident: ref_8 – volume: 50 start-page: 720 year: 2018 ident: ref_10 article-title: A multistage decision-dependent stochastic bilevel programming approach for power generation investment expansion 525 planning publication-title: IISE Trans. doi: 10.1080/24725854.2018.1442032 – volume: 25 start-page: 607 year: 2016 ident: ref_57 article-title: An enhanced memetic algorithm for single-objective bilevel optimization problem publication-title: Evol. Comput. doi: 10.1162/evco_a_00198 – ident: ref_9 doi: 10.1007/978-3-030-21803-4_54 – volume: 40 start-page: 1715 year: 2009 ident: ref_36 article-title: Chaos embedded particle swarm optimization algorithms publication-title: Chaos Soliton Fract. doi: 10.1016/j.chaos.2007.09.063 – volume: 346 start-page: 463 year: 2016 ident: ref_12 article-title: Multilevel decision-making: A survey publication-title: Inf. Sci. – volume: 2017 start-page: 1 year: 2017 ident: ref_24 article-title: The artificial neural networks based on scalarization method for a class of bilevel biobjective programming problem publication-title: Comput. Intell. Neurosci. – ident: ref_48 – volume: 10 start-page: 227 year: 2017 ident: ref_15 article-title: Solving linear tri-level programming problem using heuristic method based on bi-section algorithm publication-title: Asian J. Sci. Res. doi: 10.3923/ajsr.2017.227.235 – volume: 187 start-page: 76 year: 2007 ident: ref_47 article-title: Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms publication-title: Appl. Math. Comput. – volume: 190 start-page: 1637 year: 2007 ident: ref_34 article-title: An improved particle swarm optimization algorithm combined with piecewise linear chaotic map publication-title: Appl. Math. Comput. – volume: 153 start-page: 60 year: 2012 ident: ref_2 article-title: Connections between single-level and bilevel multiobjective optimization publication-title: J. Optimiz. Theory App. doi: 10.1007/s10957-011-9943-y – volume: 153 start-page: 235 year: 2007 ident: ref_43 article-title: An overview of bilevel optimization publication-title: Ann. Oper. Res. doi: 10.1007/s10479-007-0176-2 – volume: 26 start-page: 151 year: 2020 ident: ref_28 article-title: Bilevel optimization based on iterative approximation of multiple mappings publication-title: J. Heuristics doi: 10.1007/s10732-019-09426-9 – ident: ref_55 doi: 10.1007/978-3-030-12127-3_5 – volume: 56 start-page: 2550 year: 2008 ident: ref_13 article-title: Genetic algorithm based on simplex method for solving linear-quadratic bilevel programming problem publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.05.006 – volume: 2017 start-page: 1 year: 2017 ident: ref_5 article-title: A novel approach based on preference-based index for interval bilevel linear programming problem publication-title: J. Inequal. Appl. – volume: 8 start-page: 26 year: 2013 ident: ref_38 article-title: A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.08.001 – volume: 418 start-page: 405 year: 2017 ident: ref_29 article-title: Bi-level particle swarm optimization and evolutionary algorithm approaches for residential demand response with different user profiles publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.08.019 – ident: ref_19 doi: 10.1007/978-981-10-3325-4_34 – ident: ref_11 – volume: 155 start-page: 391 year: 2004 ident: ref_54 article-title: A solution to the optimal power flow using genetic algorithm publication-title: Appl. Math. Comput. – ident: ref_41 doi: 10.1109/CEC.2012.6256557 – volume: 7 start-page: 139 year: 2018 ident: ref_7 article-title: Interactive approach for multi-level multi-objective fractional programming problems with fuzzy parameters publication-title: J. Basic Appl. Sci. – volume: 5 start-page: 19 year: 2013 ident: ref_32 article-title: Chaotic genetic algorithm based on lorenz chaotic system for optimization problems publication-title: Intell. Syst. Appl. – ident: ref_18 – volume: 68 start-page: 255 year: 2017 ident: ref_16 article-title: Solving discrete linear bilevel optimization problems using the optimal value reformulation publication-title: Glob. Optim. doi: 10.1007/s10898-016-0478-5 – volume: 2017 start-page: 1 year: 2017 ident: ref_20 article-title: The improved ant colony optimization algorithm for mlp considering the advantage from relationship publication-title: Math. Probl. Eng. – ident: ref_26 doi: 10.1109/CEC.2014.6900391 – volume: 48 start-page: 95 year: 2004 ident: ref_22 article-title: A neural network approach to multiobjective and multilevel programming problems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2003.12.003 – volume: 3 start-page: 6 year: 2016 ident: ref_14 article-title: A Hybrid Genetic Algorithm for Job Shop Scheduling Problem publication-title: Int. J. Adv. Eng. Technol. Comput. Sci. – volume: 3 start-page: 553 year: 2005 ident: ref_39 article-title: Chaos Search Method for Bilevl Programming publication-title: J. Syst. Sci. Inf. – volume: 64 start-page: 148 year: 2017 ident: ref_17 article-title: Simulated annealing for a multi-level nurse rostering problem in hemodialysis service publication-title: Appl. Soft Comput. – volume: 22 start-page: 276 year: 2017 ident: ref_23 article-title: A Review on bilevel optimization: From classical to evolutionary approaches and applications publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2017.2712906 – volume: 10 start-page: 423 year: 2015 ident: ref_4 article-title: A bilevel mathematical programming model to optimize the design of cycle paths publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2015.09.092 – volume: 3 start-page: 1 year: 2012 ident: ref_50 article-title: Local search-based hybrid particle swarm optimization algorithm for multiobjective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.11.005 – volume: 23 start-page: 618 year: 2011 ident: ref_56 article-title: A new evolutionary algorithm for a class of nonlinear bilevel programming problems and its global convergence publication-title: Inf. J. Comput. doi: 10.1287/ijoc.1100.0430 – volume: 235 start-page: 1446 year: 2011 ident: ref_45 article-title: Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2010.08.030 – volume: 85 start-page: 8 year: 2016 ident: ref_46 article-title: A chaos-based evolutionary algorithm for general nonlinear programming problems publication-title: Chaos Soliton Fract. doi: 10.1016/j.chaos.2016.01.007 |
| SSID | ssj0000505460 |
| Score | 2.2603726 |
| Snippet | Bi-level programming problem (BLPP) is an optimization problem consists of two interconnected hierarchical optimization problems. Solving BLPP is one of the... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 767 |
| SubjectTerms | Applied research Chaos theory Convergence Decision making Evolutionary algorithms Genetic algorithms Mathematical programming Optimization Optimization theory Searching |
| Title | Modified Evolutionary Algorithm and Chaotic Search for Bilevel Programming Problems |
| URI | https://www.proquest.com/docview/2400552984 |
| Volume | 12 |
| WOSCitedRecordID | wos000540226400085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUK9MCFQgti6YJ8QGqpFBHHSZyc0IIWtQdWUSkSPUXO2Aak_YDNstJe-ts7k3iBA-LCJYoSy7LyxuMZ53keY4cSEhVmxgTW5ZigZMoFVS405jwgEWUTKogbsQk1GGTX13nhN9xqT6tc-sTGUZsJ0B75MXEdkyTKs_jk_iEg1Sj6u-olNFbYGlVJEA117_Jpj4VU2uI0bI_lSczuj-vFSET4WDW68s8L0evuuFljzj-9d3SbbMNHl7zXmsMW-2DHn9mWn781_-6LTB99YZcXE3PnMP7k_bm3Pj1d8N7wBrud3Y64Hht-dqsn2BNvOckc41t-il5kboe8aHldI1z56J5EaeptdnXe_3P2M_ACCwFIqWaBgjQKU5DOCAWickLaNK0oZqqccqHOrcOEJrFxBrnAxAZCl6SVikGZxIbayR22Op6M7S4xpMBoKwxYAXGutMawJ0u0tDFaCaLeYT-WX7sEX32cRDCGJWYhBE35ApoOO3xqfN8W3Xi92TeCraSpiH2B9icKcERU1KrspQiIFEkWdVh3CVvp52hdPmO29_brr2w9oiy7oTl22eps-mj32UeYz-7q6QFbO-0Pit8HjenR9V8fnxW_Loq__wEyIuXj |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQGov5dFW3ZZSH0B9SBFxnMTxAaEtBYGAFRJU4pY6Y7sg7YNutlvtn-pvZJwHcEC9ceAWJZYVx5_H30zG8wFsCExkmBkTWKfIQcmkCwrFNfk8KGiWTSgxrsQmZK-XXVyo0zn4156F8WmVrU2sDLUZoY-Rb_lcxySJVBbvXP8OvGqU_7vaSmjUsDiys7_kspXbh99pfjejaH_vfPcgaFQFAhRCTgKJaRSmKJzhEnnhuLBpWniiUDjpQq2sIxaf2DhDxYnNY-iStJAxSpPYUDtB_T6DBaIRkapSBc9uYzpeFS5Ow_oYoBAq3CpnAx7RbVnp2N9tfA-b_2pP2196al9jGV427Jl1a7ivwJwdrsJKY59K9rkpov3lFZydjMyVI37N9qbN6tLjGev2f9EwJpcDpoeG7V7qEfXE6pxrRvydfSMrObV9dlrnrQ1oZ_fXXnSnfA0_HmVwb2B-OBratz4DDI223KDlGCupNdG6LNHCxrQKCNUd-NrObo5NdXUv8tHPycvyUMjvQaEDG7eNr-uiIg83--RhkntTQ32hbk5M0Bv5ol15NyUACJ5kUQfWWpjkjQ0q8zuMvPv_44_w_OD85Dg_PuwdvYcXkY8oVCmdazA_Gf-xH2ARp5OrcrxewZ3Bz8dG1A1byz7q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7Rpap64dEWsZRSH0B9SNHGcRInB1Qtj1VXwCpSW4meguNHQdoH3Wy32r_Gr2OcOMAB9cahtyixrDj-PPONM54PYJfJiPuJUp42KQYoCTdekVKBMY9kOMvK5zKsxCb4YJCcn6fZEtw0Z2FsWmVjEytDrSbS7pF3bK5jFAVpEnaMS4vIjnpfrn97VkHK_mlt5DRqiJzoxV8M38r9_hHO9V4Q9I6_H371nMKAJxnjM4_LOPBjyYyiXNLCUKbjuLCkoTDc-CLVBhl9pMNEphSZvfRNFBc8lFxF2heGYb_PYBkpeRi0YDnrn2U_73Z4rEZcGPv1oUDGUr9TLkY0wNu8UrW_d4OPO4PKw_VW_-dvswYrjleTbr0Q1mFJj1_BurNcJfnoymt_eg3fzibqyiDzJsdzt-7EdEG6w184jNnliIixIoeXYoI9kTobmyCzJwdoP-d6SLI6o22EPt9eWzme8g38eJLBbUBrPBnrTZsbJpXQVElNZZhyIZDwJZFgOsT1gXhvw-dmpnPp6q5b-Y9hjvGXhUX-ABZt2L1rfF2XG3m82QcLmdwaIexLCneWAt_IlvPKuzGCgdEoCdqw3UAmd9apzO_xsvXvx-_hBQIpP-0PTt7Cy8BuNVS5ntvQmk3_6HfwXM5nV-V0x2GfwMVTQ-oW4eFJIA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+Evolutionary+Algorithm+and+Chaotic+Search+for+Bilevel+Programming+Problems&rft.jtitle=Symmetry+%28Basel%29&rft.au=Abo-Elnaga%2C+Yousria&rft.au=Nasr%2C+Sarah&rft.date=2020-05-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=12&rft.issue=5&rft.spage=767&rft_id=info:doi/10.3390%2Fsym12050767&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym12050767 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |