A Novel Dynamic Multiobjective Optimization Algorithm With Hierarchical Response System

In this article, a novel dynamic multiobjective optimization algorithm (DMOA) is proposed based on a designed hierarchical response system (HRS). Named HRS-DMOA, the proposed algorithm mainly aims at integrating merits from the mainstream ideas of dynamic behavior handling (i.e., the diversity-, mem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational social systems Jg. 11; H. 2; S. 2494 - 2512
Hauptverfasser: Li, Han, Wang, Zidong, Lan, Chengbo, Wu, Peishu, Zeng, Nianyin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2329-924X, 2373-7476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, a novel dynamic multiobjective optimization algorithm (DMOA) is proposed based on a designed hierarchical response system (HRS). Named HRS-DMOA, the proposed algorithm mainly aims at integrating merits from the mainstream ideas of dynamic behavior handling (i.e., the diversity-, memory-, and prediction-based methods) in order to make flexible responses to environmental changes. In particular, by two predefined thresholds, the environmental changes are quantified as three levels. In case of a slight environmental change, the previous Pareto set-based refinement strategy is recommended, while the diversity-based reinitialization method is applied in case of a dramatic environmental change. For changes occurring at a medium level, the transfer-learning-based response is adopted to make full use of the historical searching experiences. The proposed HRS-DMOA is comprehensively evaluated on a series of benchmark functions, and the results show an improved comprehensive performance as compared with four popular baseline DMOAs in terms of both convergence and diversity, which also outperforms other two state-of-the-art DMOAs in ten out of 14 testing cases, exhibiting the competitiveness and superiority of the algorithm. Finally, extensive ablation studies are carried out, and from the results, it is found that as compared with randomly selecting the response methods, the proposed HRS enables more reasonable and efficient responses in most cases. In addition, the generalization ability of the proposed HRS as a flexible plug-and-play module to handle dynamic behaviors is proven as well.
AbstractList In this article, a novel dynamic multiobjective optimization algorithm (DMOA) is proposed based on a designed hierarchical response system (HRS). Named HRS-DMOA, the proposed algorithm mainly aims at integrating merits from the mainstream ideas of dynamic behavior handling (i.e., the diversity-, memory-, and prediction-based methods) in order to make flexible responses to environmental changes. In particular, by two predefined thresholds, the environmental changes are quantified as three levels. In case of a slight environmental change, the previous Pareto set-based refinement strategy is recommended, while the diversity-based reinitialization method is applied in case of a dramatic environmental change. For changes occurring at a medium level, the transfer-learning-based response is adopted to make full use of the historical searching experiences. The proposed HRS-DMOA is comprehensively evaluated on a series of benchmark functions, and the results show an improved comprehensive performance as compared with four popular baseline DMOAs in terms of both convergence and diversity, which also outperforms other two state-of-the-art DMOAs in ten out of 14 testing cases, exhibiting the competitiveness and superiority of the algorithm. Finally, extensive ablation studies are carried out, and from the results, it is found that as compared with randomly selecting the response methods, the proposed HRS enables more reasonable and efficient responses in most cases. In addition, the generalization ability of the proposed HRS as a flexible plug-and-play module to handle dynamic behaviors is proven as well.
Author Zeng, Nianyin
Lan, Chengbo
Wu, Peishu
Li, Han
Wang, Zidong
Author_xml – sequence: 1
  givenname: Han
  orcidid: 0000-0003-0276-9756
  surname: Li
  fullname: Li, Han
  organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: zidong.wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
– sequence: 3
  givenname: Chengbo
  surname: Lan
  fullname: Lan, Chengbo
  organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China
– sequence: 4
  givenname: Peishu
  orcidid: 0000-0001-9891-3809
  surname: Wu
  fullname: Wu, Peishu
  organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China
– sequence: 5
  givenname: Nianyin
  orcidid: 0000-0002-6957-2942
  surname: Zeng
  fullname: Zeng, Nianyin
  email: zny@xmu.edu.cn
  organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China
BookMark eNp9kE1LAzEQhoNUsNb-AMFDwPPWfHQ3m2OpHxWqBVuotyWbnbUp-2WSFuqvd9f2IB7MYTLMvM8M816iXlVXgNA1JSNKibxbTZfLESOMjziTnHN6hvqMCx6IsYh6Xc5kINn4_QINndsSQigLQ8FIH60n-LXeQ4HvD5UqjcYvu8KbOt2C9mYPeNF4U5ov1dYqPCk-amv8psTrNuKZAaus3hitCvwGrqkrB3h5cB7KK3Seq8LB8PQP0OrxYTWdBfPF0_N0Mg8058IHgozjkEkQKoqyLMxiKnKI26cilWqpNeM5JW0nhDyUqWBhRjOSpirXLI01H6Db49jG1p87cD7Z1jtbtRsTTjjlUhJGW5U4qrStnbOQJ9r4n5O8VaZIKEk6H5POx6TzMTn52JL0D9lYUyp7-Je5OTIGAH7paSwpifk31SWBaQ
CODEN ITCSGL
CitedBy_id crossref_primary_10_1093_jcde_qwaf087
crossref_primary_10_1007_s12065_024_00939_2
crossref_primary_10_1002_advs_202409130
crossref_primary_10_1038_s41598_024_77275_z
crossref_primary_10_1007_s42524_025_4170_7
crossref_primary_10_1080_00207721_2024_2425952
crossref_primary_10_1007_s11227_025_07471_9
crossref_primary_10_1016_j_eswa_2025_129304
crossref_primary_10_1016_j_aei_2025_103402
crossref_primary_10_1016_j_neucom_2025_130181
crossref_primary_10_1016_j_swevo_2025_101883
Cites_doi 10.1007/s40747-022-00824-4
10.1109/TCYB.2020.3017017
10.1109/TCYB.2019.2933499
10.1016/j.neucom.2022.04.117
10.1016/j.swevo.2011.02.002
10.1145/1273496.1273521
10.1016/j.knosys.2020.106612
10.1007/s00500-017-2660-1
10.1016/j.swevo.2018.05.001
10.1007/s40815-023-01477-2
10.1109/TCYB.2019.2909806
10.53941/ijndi0101007
10.1080/21642583.2020.1837691
10.1016/j.ins.2022.09.022
10.1109/tevc.2023.3253850
10.1016/j.swevo.2023.101284
10.1109/TITS.2019.2902927
10.1109/TNNLS.2019.2920887
10.1109/SSCI.2016.7849963
10.1109/TEVC.2017.2771451
10.1016/j.ejor.2017.03.048
10.1109/TCYB.2015.2510698
10.1109/TCYB.2020.2988896
10.1109/TEVC.2007.892759
10.1016/j.knosys.2022.109173
10.1109/icaci.2018.8377567
10.1109/TCYB.2020.3029748
10.1007/978-3-319-31153-1_20
10.1109/TCYB.2020.3009582
10.1109/tetci.2021.3136643
10.1109/TCYB.2013.2245892
10.1016/j.swevo.2019.03.015
10.1080/21642583.2021.1901158
10.1016/j.asoc.2017.08.004
10.1109/TEVC.2020.3004027
10.53941/ijndi0101006
10.1109/tcss.2022.3140862
10.1162/evco_a_00300
10.1109/TCSS.2019.2914935
10.1016/j.asoc.2015.05.012
10.1016/j.ins.2021.08.027
10.1109/tevc.2023.3234113
10.1007/978-3-540-70928-2_60
10.1016/j.asoc.2020.106592
10.3390/math10122117
10.1109/TCYB.2020.2986600
10.1016/j.ins.2022.08.072
10.1109/MCI.2020.3039066
10.3390/app13084795
10.1080/00207721.2022.2083262
10.1093/jcde/qwac124
10.1016/j.swevo.2023.101281
10.1109/TEVC.2021.3101697
10.1109/TCYB.2020.2969025
10.1109/CEC.2014.6900569
10.1109/TCYB.2021.3128584
10.1007/s00500-018-3033-0
10.1109/TEVC.2021.3115036
10.1016/j.asoc.2019.105783
10.1080/00207721.2021.1995528
10.1007/s10489-022-03353-2
10.3390/app8091673
10.1109/TEVC.2020.2991040
10.1016/j.ins.2019.01.066
10.1109/TCSS.2020.2964027
10.1109/TEVC.2021.3111209
10.1016/j.neucom.2022.01.006
10.1109/TITS.2017.2665042
10.1007/BF00994018
10.1016/j.ins.2013.06.051
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSS.2023.3293331
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Social Sciences (General)
EISSN 2373-7476
EndPage 2512
ExternalDocumentID 10_1109_TCSS_2023_3293331
10189108
Genre orig-research
GrantInformation_xml – fundername: Korea Foundation for Advanced Studies
  funderid: 10.13039/501100007633
– fundername: Science Foundation for Distinguished Young Scholars of the Fujian Province
  grantid: 2023J06010
– fundername: National Science and Technology Major Project of China
  grantid: J2019-I-0013-0013
– fundername: Natural Science Foundation of China
  grantid: 62073271
  funderid: 10.13039/501100001809
– fundername: Independent Innovation Foundation of Aero Engine Corporation of China (AECC) of China
  grantid: ZZCX-2018-017
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-7048529e7a66dd5d817fe8888a6abc9cc23f10dd55ef59b725d1d0bbafc2b8c3
IEDL.DBID RIE
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035846500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-924X
IngestDate Mon Jun 30 14:05:59 EDT 2025
Sat Nov 29 01:37:12 EST 2025
Tue Nov 18 20:59:39 EST 2025
Wed Aug 27 03:00:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-7048529e7a66dd5d817fe8888a6abc9cc23f10dd55ef59b725d1d0bbafc2b8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9891-3809
0000-0002-9576-7401
0000-0002-6957-2942
0000-0003-0276-9756
OpenAccessLink http://bura.brunel.ac.uk/bitstream/2438/27101/3/FullText.pdf
PQID 3031399021
PQPubID 2040411
PageCount 19
ParticipantIDs proquest_journals_3031399021
crossref_primary_10_1109_TCSS_2023_3293331
ieee_primary_10189108
crossref_citationtrail_10_1109_TCSS_2023_3293331
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on computational social systems
PublicationTitleAbbrev TCSS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
Zheng (ref68) 2015; 43
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Jiang (ref27)
ref71
ref70
ref72
ref24
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref29
ref60
ref62
ref61
References_xml – ident: ref8
  doi: 10.1007/s40747-022-00824-4
– ident: ref15
  doi: 10.1109/TCYB.2020.3017017
– ident: ref56
  doi: 10.1109/TCYB.2019.2933499
– ident: ref29
  doi: 10.1016/j.neucom.2022.04.117
– ident: ref13
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref11
  doi: 10.1145/1273496.1273521
– ident: ref36
  doi: 10.1016/j.knosys.2020.106612
– ident: ref1
  doi: 10.1007/s00500-017-2660-1
– ident: ref6
  doi: 10.1016/j.swevo.2018.05.001
– ident: ref17
  doi: 10.1007/s40815-023-01477-2
– ident: ref43
  doi: 10.1109/TCYB.2019.2909806
– ident: ref62
  doi: 10.53941/ijndi0101007
– ident: ref65
  doi: 10.1080/21642583.2020.1837691
– ident: ref42
  doi: 10.1016/j.ins.2022.09.022
– volume: 43
  start-page: 1816
  issue: 9
  year: 2015
  ident: ref68
  article-title: A prediction strategy based on guide-individual for dynamic multi-objective optimization
  publication-title: Acta Electronica Sinica
– ident: ref22
  doi: 10.1109/tevc.2023.3253850
– ident: ref69
  doi: 10.1016/j.swevo.2023.101284
– ident: ref20
  doi: 10.1109/TITS.2019.2902927
– ident: ref39
  doi: 10.1109/TNNLS.2019.2920887
– ident: ref44
  doi: 10.1109/SSCI.2016.7849963
– ident: ref25
  doi: 10.1109/TEVC.2017.2771451
– ident: ref35
  doi: 10.1016/j.ejor.2017.03.048
– ident: ref23
  doi: 10.1109/TCYB.2015.2510698
– ident: ref40
  doi: 10.1109/TCYB.2020.2988896
– ident: ref64
  doi: 10.1109/TEVC.2007.892759
– ident: ref61
  doi: 10.1016/j.knosys.2022.109173
– ident: ref24
  doi: 10.1109/icaci.2018.8377567
– ident: ref63
  doi: 10.1109/TCYB.2020.3029748
– ident: ref45
  doi: 10.1007/978-3-319-31153-1_20
– ident: ref9
  doi: 10.1109/TCYB.2020.3009582
– ident: ref41
  doi: 10.1109/tetci.2021.3136643
– ident: ref71
  doi: 10.1109/TCYB.2013.2245892
– ident: ref16
  doi: 10.1016/j.swevo.2019.03.015
– ident: ref47
  doi: 10.1080/21642583.2021.1901158
– ident: ref72
  doi: 10.1016/j.asoc.2017.08.004
– ident: ref26
  doi: 10.1109/TEVC.2020.3004027
– ident: ref66
  doi: 10.53941/ijndi0101006
– ident: ref2
  doi: 10.1109/tcss.2022.3140862
– ident: ref55
  doi: 10.1162/evco_a_00300
– ident: ref7
  doi: 10.1109/TCSS.2019.2914935
– ident: ref67
  doi: 10.1016/j.asoc.2015.05.012
– ident: ref48
  doi: 10.1016/j.ins.2021.08.027
– ident: ref37
  doi: 10.1109/tevc.2023.3234113
– ident: ref12
  doi: 10.1007/978-3-540-70928-2_60
– ident: ref52
  doi: 10.1016/j.asoc.2020.106592
– ident: ref53
  doi: 10.3390/math10122117
– ident: ref32
  doi: 10.1109/TCYB.2020.2986600
– ident: ref50
  doi: 10.1016/j.ins.2022.08.072
– ident: ref51
  doi: 10.1109/MCI.2020.3039066
– ident: ref60
  doi: 10.3390/app13084795
– ident: ref30
  doi: 10.1080/00207721.2022.2083262
– ident: ref57
  doi: 10.1093/jcde/qwac124
– ident: ref70
  doi: 10.1016/j.swevo.2023.101281
– ident: ref33
  doi: 10.1109/TEVC.2021.3101697
– start-page: 1
  volume-title: Proc. CEC Competition
  ident: ref27
  article-title: Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation
– ident: ref34
  doi: 10.1109/TCYB.2020.2969025
– ident: ref3
  doi: 10.1109/CEC.2014.6900569
– ident: ref21
  doi: 10.1109/TCYB.2021.3128584
– ident: ref28
  doi: 10.1007/s00500-018-3033-0
– ident: ref58
  doi: 10.1109/TEVC.2021.3115036
– ident: ref46
  doi: 10.1016/j.asoc.2019.105783
– ident: ref19
  doi: 10.1080/00207721.2021.1995528
– ident: ref49
  doi: 10.1007/s10489-022-03353-2
– ident: ref59
  doi: 10.3390/app8091673
– ident: ref4
  doi: 10.1109/TEVC.2020.2991040
– ident: ref31
  doi: 10.1016/j.ins.2019.01.066
– ident: ref38
  doi: 10.1109/TCSS.2020.2964027
– ident: ref54
  doi: 10.1109/TEVC.2021.3111209
– ident: ref5
  doi: 10.1016/j.neucom.2022.01.006
– ident: ref14
  doi: 10.1109/TITS.2017.2665042
– ident: ref10
  doi: 10.1007/BF00994018
– ident: ref18
  doi: 10.1016/j.ins.2013.06.051
SSID ssj0001255720
Score 2.4416807
Snippet In this article, a novel dynamic multiobjective optimization algorithm (DMOA) is proposed based on a designed hierarchical response system (HRS). Named...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2494
SubjectTerms Ablation
Algorithms
Behavioral sciences
Convergence
Dynamic multiobjective optimization algorithm (DMOA)
evolutionary algorithm
Heuristic algorithms
hierarchical response system (HRS)
Multiple objective analysis
Optimization
Optimization algorithms
Pareto optimization
Prediction algorithms
Social factors
Statistics
transfer learning (TL)
Title A Novel Dynamic Multiobjective Optimization Algorithm With Hierarchical Response System
URI https://ieeexplore.ieee.org/document/10189108
https://www.proquest.com/docview/3031399021
Volume 11
WOSCitedRecordID wos001035846500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2373-7476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255720
  issn: 2329-924X
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAGP0ixAMXF8SIopmDBzUpdKHMzJGghINBIyRwa9pZFAPUsP1-Z0NJjCZemqadaZq-znzfLO89gOumylJV3A89LfXhNTklHpEp9QSWIiM-8wNmXEsecb9PxmP67MjqhgsjhDCbz0Rdn5q1fJ6ztZ4qa2h1KRXeSAEKGLcsWWtnQiWOcbhduQx82hh2BoO6tgevRyqoWR-579hjzFR-9MAmrHQP__lCR3Dg8kfUtoAfw56Yl6FqSbbINdQlunFq0rdlKOl00qoxn8Cojfr5RkzRvTWiR4Z_m2fvtttDT6oDmTlmJmpPX_PFZPU2QyN1RL2J5iob65QperFbawWyiucVGHYfhp2e56wVPBZFeOVh1XDjkAqctlqcx5wEChs1GCZpK80YZSyMZOCrO7GQMc1wGPOA-1mWShZmhEWnUJznc3EGSHJ1QVIWBixtBjxOKZVcMr2iQ1KVvVTB337zhDnZce1-MU3M8MOniYYp0TAlDqYq3H1V-bCaG38VrmhcdgpaSKpQ2yKbuGa5TCKtVKnibxic_1LtAkrq6W5vTg2Kq8VaXMI-2yikFlfmj_sE_nvVWA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAGP3QKtiLS60Y1zl4UCFtlqaZORYXKtYoWrC3kMyilbSRWv39zlYtiIKXEJIZEvIy832zvPcAjloyS5VxP3CV1IfbYgS7WGTE5bHgOfao51PtWtKLkwQPBuTOktU1F4Zzrjef8YY61Wv5rKTvaqqsqdSlZHjDi7CkrLMsXWtuSiWK4mC2dul7pNk_e3hoKIPwRijDmnGS-44-2k7lRx-sA8vl2j9faR1WbQaJOgbyDVjg4xo4hmaLbFN9Q8dWT_qkBlWVUBo95k147KCk_OAFOjdW9EgzcMv8xXR86FZ2ISPLzUSd4qmcDKfPI_Qoj6g7VGxlbZ5SoHuzuZYjo3leh_7lRf-s61pzBZeGYTx1Y9l0o4DwOGu3GYsY9iU6cjiMs3aWU0JpEArfk3ciLiKSx0HEfObleSZokGMabkFlXI75NiDB5AVBaODTrOWzKCNEMEHVmg7OZP7igDf75im1wuPK_6JI9QDEI6mCKVUwpRYmB06_qrwa1Y2_CtcVLnMFDSQO7M2QTW3DfEtDpVUpI3Dg7_xS7RBWuv2bXtq7Sq53oSqfZHfq7EFlOnnn-7BMPyRqkwP9930CQVzYoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Dynamic+Multiobjective+Optimization+Algorithm+With+Hierarchical+Response+System&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Li%2C+Han&rft.au=Wang%2C+Zidong&rft.au=Lan%2C+Chengbo&rft.au=Wu%2C+Peishu&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2373-7476&rft.volume=11&rft.issue=2&rft.spage=2494&rft_id=info:doi/10.1109%2FTCSS.2023.3293331&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon