A Novel Dynamic Multiobjective Optimization Algorithm With Hierarchical Response System
In this article, a novel dynamic multiobjective optimization algorithm (DMOA) is proposed based on a designed hierarchical response system (HRS). Named HRS-DMOA, the proposed algorithm mainly aims at integrating merits from the mainstream ideas of dynamic behavior handling (i.e., the diversity-, mem...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on computational social systems Jg. 11; H. 2; S. 2494 - 2512 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2329-924X, 2373-7476 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this article, a novel dynamic multiobjective optimization algorithm (DMOA) is proposed based on a designed hierarchical response system (HRS). Named HRS-DMOA, the proposed algorithm mainly aims at integrating merits from the mainstream ideas of dynamic behavior handling (i.e., the diversity-, memory-, and prediction-based methods) in order to make flexible responses to environmental changes. In particular, by two predefined thresholds, the environmental changes are quantified as three levels. In case of a slight environmental change, the previous Pareto set-based refinement strategy is recommended, while the diversity-based reinitialization method is applied in case of a dramatic environmental change. For changes occurring at a medium level, the transfer-learning-based response is adopted to make full use of the historical searching experiences. The proposed HRS-DMOA is comprehensively evaluated on a series of benchmark functions, and the results show an improved comprehensive performance as compared with four popular baseline DMOAs in terms of both convergence and diversity, which also outperforms other two state-of-the-art DMOAs in ten out of 14 testing cases, exhibiting the competitiveness and superiority of the algorithm. Finally, extensive ablation studies are carried out, and from the results, it is found that as compared with randomly selecting the response methods, the proposed HRS enables more reasonable and efficient responses in most cases. In addition, the generalization ability of the proposed HRS as a flexible plug-and-play module to handle dynamic behaviors is proven as well. |
|---|---|
| AbstractList | In this article, a novel dynamic multiobjective optimization algorithm (DMOA) is proposed based on a designed hierarchical response system (HRS). Named HRS-DMOA, the proposed algorithm mainly aims at integrating merits from the mainstream ideas of dynamic behavior handling (i.e., the diversity-, memory-, and prediction-based methods) in order to make flexible responses to environmental changes. In particular, by two predefined thresholds, the environmental changes are quantified as three levels. In case of a slight environmental change, the previous Pareto set-based refinement strategy is recommended, while the diversity-based reinitialization method is applied in case of a dramatic environmental change. For changes occurring at a medium level, the transfer-learning-based response is adopted to make full use of the historical searching experiences. The proposed HRS-DMOA is comprehensively evaluated on a series of benchmark functions, and the results show an improved comprehensive performance as compared with four popular baseline DMOAs in terms of both convergence and diversity, which also outperforms other two state-of-the-art DMOAs in ten out of 14 testing cases, exhibiting the competitiveness and superiority of the algorithm. Finally, extensive ablation studies are carried out, and from the results, it is found that as compared with randomly selecting the response methods, the proposed HRS enables more reasonable and efficient responses in most cases. In addition, the generalization ability of the proposed HRS as a flexible plug-and-play module to handle dynamic behaviors is proven as well. |
| Author | Zeng, Nianyin Lan, Chengbo Wu, Peishu Li, Han Wang, Zidong |
| Author_xml | – sequence: 1 givenname: Han orcidid: 0000-0003-0276-9756 surname: Li fullname: Li, Han organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong email: zidong.wang@brunel.ac.uk organization: Department of Computer Science, Brunel University London, Uxbridge, U.K – sequence: 3 givenname: Chengbo surname: Lan fullname: Lan, Chengbo organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China – sequence: 4 givenname: Peishu orcidid: 0000-0001-9891-3809 surname: Wu fullname: Wu, Peishu organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China – sequence: 5 givenname: Nianyin orcidid: 0000-0002-6957-2942 surname: Zeng fullname: Zeng, Nianyin email: zny@xmu.edu.cn organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China |
| BookMark | eNp9kE1LAzEQhoNUsNb-AMFDwPPWfHQ3m2OpHxWqBVuotyWbnbUp-2WSFuqvd9f2IB7MYTLMvM8M816iXlVXgNA1JSNKibxbTZfLESOMjziTnHN6hvqMCx6IsYh6Xc5kINn4_QINndsSQigLQ8FIH60n-LXeQ4HvD5UqjcYvu8KbOt2C9mYPeNF4U5ov1dYqPCk-amv8psTrNuKZAaus3hitCvwGrqkrB3h5cB7KK3Seq8LB8PQP0OrxYTWdBfPF0_N0Mg8058IHgozjkEkQKoqyLMxiKnKI26cilWqpNeM5JW0nhDyUqWBhRjOSpirXLI01H6Db49jG1p87cD7Z1jtbtRsTTjjlUhJGW5U4qrStnbOQJ9r4n5O8VaZIKEk6H5POx6TzMTn52JL0D9lYUyp7-Je5OTIGAH7paSwpifk31SWBaQ |
| CODEN | ITCSGL |
| CitedBy_id | crossref_primary_10_1093_jcde_qwaf087 crossref_primary_10_1007_s12065_024_00939_2 crossref_primary_10_1002_advs_202409130 crossref_primary_10_1038_s41598_024_77275_z crossref_primary_10_1007_s42524_025_4170_7 crossref_primary_10_1080_00207721_2024_2425952 crossref_primary_10_1007_s11227_025_07471_9 crossref_primary_10_1016_j_eswa_2025_129304 crossref_primary_10_1016_j_aei_2025_103402 crossref_primary_10_1016_j_neucom_2025_130181 crossref_primary_10_1016_j_swevo_2025_101883 |
| Cites_doi | 10.1007/s40747-022-00824-4 10.1109/TCYB.2020.3017017 10.1109/TCYB.2019.2933499 10.1016/j.neucom.2022.04.117 10.1016/j.swevo.2011.02.002 10.1145/1273496.1273521 10.1016/j.knosys.2020.106612 10.1007/s00500-017-2660-1 10.1016/j.swevo.2018.05.001 10.1007/s40815-023-01477-2 10.1109/TCYB.2019.2909806 10.53941/ijndi0101007 10.1080/21642583.2020.1837691 10.1016/j.ins.2022.09.022 10.1109/tevc.2023.3253850 10.1016/j.swevo.2023.101284 10.1109/TITS.2019.2902927 10.1109/TNNLS.2019.2920887 10.1109/SSCI.2016.7849963 10.1109/TEVC.2017.2771451 10.1016/j.ejor.2017.03.048 10.1109/TCYB.2015.2510698 10.1109/TCYB.2020.2988896 10.1109/TEVC.2007.892759 10.1016/j.knosys.2022.109173 10.1109/icaci.2018.8377567 10.1109/TCYB.2020.3029748 10.1007/978-3-319-31153-1_20 10.1109/TCYB.2020.3009582 10.1109/tetci.2021.3136643 10.1109/TCYB.2013.2245892 10.1016/j.swevo.2019.03.015 10.1080/21642583.2021.1901158 10.1016/j.asoc.2017.08.004 10.1109/TEVC.2020.3004027 10.53941/ijndi0101006 10.1109/tcss.2022.3140862 10.1162/evco_a_00300 10.1109/TCSS.2019.2914935 10.1016/j.asoc.2015.05.012 10.1016/j.ins.2021.08.027 10.1109/tevc.2023.3234113 10.1007/978-3-540-70928-2_60 10.1016/j.asoc.2020.106592 10.3390/math10122117 10.1109/TCYB.2020.2986600 10.1016/j.ins.2022.08.072 10.1109/MCI.2020.3039066 10.3390/app13084795 10.1080/00207721.2022.2083262 10.1093/jcde/qwac124 10.1016/j.swevo.2023.101281 10.1109/TEVC.2021.3101697 10.1109/TCYB.2020.2969025 10.1109/CEC.2014.6900569 10.1109/TCYB.2021.3128584 10.1007/s00500-018-3033-0 10.1109/TEVC.2021.3115036 10.1016/j.asoc.2019.105783 10.1080/00207721.2021.1995528 10.1007/s10489-022-03353-2 10.3390/app8091673 10.1109/TEVC.2020.2991040 10.1016/j.ins.2019.01.066 10.1109/TCSS.2020.2964027 10.1109/TEVC.2021.3111209 10.1016/j.neucom.2022.01.006 10.1109/TITS.2017.2665042 10.1007/BF00994018 10.1016/j.ins.2013.06.051 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCSS.2023.3293331 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Social Sciences (General) |
| EISSN | 2373-7476 |
| EndPage | 2512 |
| ExternalDocumentID | 10_1109_TCSS_2023_3293331 10189108 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Korea Foundation for Advanced Studies funderid: 10.13039/501100007633 – fundername: Science Foundation for Distinguished Young Scholars of the Fujian Province grantid: 2023J06010 – fundername: National Science and Technology Major Project of China grantid: J2019-I-0013-0013 – fundername: Natural Science Foundation of China grantid: 62073271 funderid: 10.13039/501100001809 – fundername: Independent Innovation Foundation of Aero Engine Corporation of China (AECC) of China grantid: ZZCX-2018-017 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c337t-7048529e7a66dd5d817fe8888a6abc9cc23f10dd55ef59b725d1d0bbafc2b8c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035846500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2329-924X |
| IngestDate | Mon Jun 30 14:05:59 EDT 2025 Sat Nov 29 01:37:12 EST 2025 Tue Nov 18 20:59:39 EST 2025 Wed Aug 27 03:00:16 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-7048529e7a66dd5d817fe8888a6abc9cc23f10dd55ef59b725d1d0bbafc2b8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9891-3809 0000-0002-9576-7401 0000-0002-6957-2942 0000-0003-0276-9756 |
| OpenAccessLink | http://bura.brunel.ac.uk/bitstream/2438/27101/3/FullText.pdf |
| PQID | 3031399021 |
| PQPubID | 2040411 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_3031399021 crossref_primary_10_1109_TCSS_2023_3293331 ieee_primary_10189108 crossref_citationtrail_10_1109_TCSS_2023_3293331 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on computational social systems |
| PublicationTitleAbbrev | TCSS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 Zheng (ref68) 2015; 43 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Jiang (ref27) ref71 ref70 ref72 ref24 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref8 doi: 10.1007/s40747-022-00824-4 – ident: ref15 doi: 10.1109/TCYB.2020.3017017 – ident: ref56 doi: 10.1109/TCYB.2019.2933499 – ident: ref29 doi: 10.1016/j.neucom.2022.04.117 – ident: ref13 doi: 10.1016/j.swevo.2011.02.002 – ident: ref11 doi: 10.1145/1273496.1273521 – ident: ref36 doi: 10.1016/j.knosys.2020.106612 – ident: ref1 doi: 10.1007/s00500-017-2660-1 – ident: ref6 doi: 10.1016/j.swevo.2018.05.001 – ident: ref17 doi: 10.1007/s40815-023-01477-2 – ident: ref43 doi: 10.1109/TCYB.2019.2909806 – ident: ref62 doi: 10.53941/ijndi0101007 – ident: ref65 doi: 10.1080/21642583.2020.1837691 – ident: ref42 doi: 10.1016/j.ins.2022.09.022 – volume: 43 start-page: 1816 issue: 9 year: 2015 ident: ref68 article-title: A prediction strategy based on guide-individual for dynamic multi-objective optimization publication-title: Acta Electronica Sinica – ident: ref22 doi: 10.1109/tevc.2023.3253850 – ident: ref69 doi: 10.1016/j.swevo.2023.101284 – ident: ref20 doi: 10.1109/TITS.2019.2902927 – ident: ref39 doi: 10.1109/TNNLS.2019.2920887 – ident: ref44 doi: 10.1109/SSCI.2016.7849963 – ident: ref25 doi: 10.1109/TEVC.2017.2771451 – ident: ref35 doi: 10.1016/j.ejor.2017.03.048 – ident: ref23 doi: 10.1109/TCYB.2015.2510698 – ident: ref40 doi: 10.1109/TCYB.2020.2988896 – ident: ref64 doi: 10.1109/TEVC.2007.892759 – ident: ref61 doi: 10.1016/j.knosys.2022.109173 – ident: ref24 doi: 10.1109/icaci.2018.8377567 – ident: ref63 doi: 10.1109/TCYB.2020.3029748 – ident: ref45 doi: 10.1007/978-3-319-31153-1_20 – ident: ref9 doi: 10.1109/TCYB.2020.3009582 – ident: ref41 doi: 10.1109/tetci.2021.3136643 – ident: ref71 doi: 10.1109/TCYB.2013.2245892 – ident: ref16 doi: 10.1016/j.swevo.2019.03.015 – ident: ref47 doi: 10.1080/21642583.2021.1901158 – ident: ref72 doi: 10.1016/j.asoc.2017.08.004 – ident: ref26 doi: 10.1109/TEVC.2020.3004027 – ident: ref66 doi: 10.53941/ijndi0101006 – ident: ref2 doi: 10.1109/tcss.2022.3140862 – ident: ref55 doi: 10.1162/evco_a_00300 – ident: ref7 doi: 10.1109/TCSS.2019.2914935 – ident: ref67 doi: 10.1016/j.asoc.2015.05.012 – ident: ref48 doi: 10.1016/j.ins.2021.08.027 – ident: ref37 doi: 10.1109/tevc.2023.3234113 – ident: ref12 doi: 10.1007/978-3-540-70928-2_60 – ident: ref52 doi: 10.1016/j.asoc.2020.106592 – ident: ref53 doi: 10.3390/math10122117 – ident: ref32 doi: 10.1109/TCYB.2020.2986600 – ident: ref50 doi: 10.1016/j.ins.2022.08.072 – ident: ref51 doi: 10.1109/MCI.2020.3039066 – ident: ref60 doi: 10.3390/app13084795 – ident: ref30 doi: 10.1080/00207721.2022.2083262 – ident: ref57 doi: 10.1093/jcde/qwac124 – ident: ref70 doi: 10.1016/j.swevo.2023.101281 – ident: ref33 doi: 10.1109/TEVC.2021.3101697 – start-page: 1 volume-title: Proc. CEC Competition ident: ref27 article-title: Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation – ident: ref34 doi: 10.1109/TCYB.2020.2969025 – ident: ref3 doi: 10.1109/CEC.2014.6900569 – ident: ref21 doi: 10.1109/TCYB.2021.3128584 – ident: ref28 doi: 10.1007/s00500-018-3033-0 – ident: ref58 doi: 10.1109/TEVC.2021.3115036 – ident: ref46 doi: 10.1016/j.asoc.2019.105783 – ident: ref19 doi: 10.1080/00207721.2021.1995528 – ident: ref49 doi: 10.1007/s10489-022-03353-2 – ident: ref59 doi: 10.3390/app8091673 – ident: ref4 doi: 10.1109/TEVC.2020.2991040 – ident: ref31 doi: 10.1016/j.ins.2019.01.066 – ident: ref38 doi: 10.1109/TCSS.2020.2964027 – ident: ref54 doi: 10.1109/TEVC.2021.3111209 – ident: ref5 doi: 10.1016/j.neucom.2022.01.006 – ident: ref14 doi: 10.1109/TITS.2017.2665042 – ident: ref10 doi: 10.1007/BF00994018 – ident: ref18 doi: 10.1016/j.ins.2013.06.051 |
| SSID | ssj0001255720 |
| Score | 2.4416807 |
| Snippet | In this article, a novel dynamic multiobjective optimization algorithm (DMOA) is proposed based on a designed hierarchical response system (HRS). Named... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2494 |
| SubjectTerms | Ablation Algorithms Behavioral sciences Convergence Dynamic multiobjective optimization algorithm (DMOA) evolutionary algorithm Heuristic algorithms hierarchical response system (HRS) Multiple objective analysis Optimization Optimization algorithms Pareto optimization Prediction algorithms Social factors Statistics transfer learning (TL) |
| Title | A Novel Dynamic Multiobjective Optimization Algorithm With Hierarchical Response System |
| URI | https://ieeexplore.ieee.org/document/10189108 https://www.proquest.com/docview/3031399021 |
| Volume | 11 |
| WOSCitedRecordID | wos001035846500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2373-7476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001255720 issn: 2329-924X databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAGP0ixAMXF8SIopmDBzUpdKHMzJGghINBIyRwa9pZFAPUsP1-Z0NJjCZemqadaZq-znzfLO89gOumylJV3A89LfXhNTklHpEp9QSWIiM-8wNmXEsecb9PxmP67MjqhgsjhDCbz0Rdn5q1fJ6ztZ4qa2h1KRXeSAEKGLcsWWtnQiWOcbhduQx82hh2BoO6tgevRyqoWR-579hjzFR-9MAmrHQP__lCR3Dg8kfUtoAfw56Yl6FqSbbINdQlunFq0rdlKOl00qoxn8Cojfr5RkzRvTWiR4Z_m2fvtttDT6oDmTlmJmpPX_PFZPU2QyN1RL2J5iob65QperFbawWyiucVGHYfhp2e56wVPBZFeOVh1XDjkAqctlqcx5wEChs1GCZpK80YZSyMZOCrO7GQMc1wGPOA-1mWShZmhEWnUJznc3EGSHJ1QVIWBixtBjxOKZVcMr2iQ1KVvVTB337zhDnZce1-MU3M8MOniYYp0TAlDqYq3H1V-bCaG38VrmhcdgpaSKpQ2yKbuGa5TCKtVKnibxic_1LtAkrq6W5vTg2Kq8VaXMI-2yikFlfmj_sE_nvVWA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAGP3QKtiLS60Y1zl4UCFtlqaZORYXKtYoWrC3kMyilbSRWv39zlYtiIKXEJIZEvIy832zvPcAjloyS5VxP3CV1IfbYgS7WGTE5bHgOfao51PtWtKLkwQPBuTOktU1F4Zzrjef8YY61Wv5rKTvaqqsqdSlZHjDi7CkrLMsXWtuSiWK4mC2dul7pNk_e3hoKIPwRijDmnGS-44-2k7lRx-sA8vl2j9faR1WbQaJOgbyDVjg4xo4hmaLbFN9Q8dWT_qkBlWVUBo95k147KCk_OAFOjdW9EgzcMv8xXR86FZ2ISPLzUSd4qmcDKfPI_Qoj6g7VGxlbZ5SoHuzuZYjo3leh_7lRf-s61pzBZeGYTx1Y9l0o4DwOGu3GYsY9iU6cjiMs3aWU0JpEArfk3ciLiKSx0HEfObleSZokGMabkFlXI75NiDB5AVBaODTrOWzKCNEMEHVmg7OZP7igDf75im1wuPK_6JI9QDEI6mCKVUwpRYmB06_qrwa1Y2_CtcVLnMFDSQO7M2QTW3DfEtDpVUpI3Dg7_xS7RBWuv2bXtq7Sq53oSqfZHfq7EFlOnnn-7BMPyRqkwP9930CQVzYoQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Dynamic+Multiobjective+Optimization+Algorithm+With+Hierarchical+Response+System&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Li%2C+Han&rft.au=Wang%2C+Zidong&rft.au=Lan%2C+Chengbo&rft.au=Wu%2C+Peishu&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2373-7476&rft.volume=11&rft.issue=2&rft.spage=2494&rft_id=info:doi/10.1109%2FTCSS.2023.3293331&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon |