Frame Duplication Forgery Detection and Localization Algorithm Based on the Improved Levenshtein Distance

In this digital era of technology and software development tools, low-cost digital cameras and powerful video editing software (such as Adobe Premiere, Microsoft Movie Maker, and Magix Vegas) have become available for any common user. Through these softwares, editing the contents of digital videos b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific programming Ročník 2021; s. 1 - 10
Hlavní autori: Ren, Honge, Atwa, Walid, Zhang, Haosu, Muhammad, Shafiq, Emam, Mahmoud
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Hindawi 2021
John Wiley & Sons, Inc
Predmet:
ISSN:1058-9244, 1875-919X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this digital era of technology and software development tools, low-cost digital cameras and powerful video editing software (such as Adobe Premiere, Microsoft Movie Maker, and Magix Vegas) have become available for any common user. Through these softwares, editing the contents of digital videos became very easy. Frame duplication is a common video forgery attack which can be done by copying and pasting a sequence of frames within the same video in order to hide or replicate some events from the video. Many algorithms have been proposed in the literature to detect such forgeries from the video sequences through analyzing the spatial and temporal correlations. However, most of them are suffering from low efficiency and accuracy rates and high computational complexity. In this paper, we are proposing an efficient and robust frame duplication detection algorithm to detect duplicated frames from the video sequence based on the improved Levenshtein distance. Extensive experiments were performed on some selected video sequences captured by stationary and moving cameras. In the experimental results, the proposed algorithm showed efficacy compared with the state-of-the-art techniques.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1058-9244
1875-919X
DOI:10.1155/2021/5595850