Interpenetrating polymer networks: So happy together?

A typical description of interpenetrating polymer networks (IPN) can be surprisingly simple, systems that consist of two crosslinked polymer networks that are physically entangled but not chemically linked. That simplistic description, however, successfully encompasses a wide range of synthesis proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) Jg. 207; S. 122929
1. Verfasser: Silverstein, Michael S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 20.10.2020
Elsevier BV
Schlagworte:
ISSN:0032-3861, 1873-2291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A typical description of interpenetrating polymer networks (IPN) can be surprisingly simple, systems that consist of two crosslinked polymer networks that are physically entangled but not chemically linked. That simplistic description, however, successfully encompasses a wide range of synthesis processes and macromolecular architectures that can include “semi-IPN” (IPN-like systems containing only one crosslinked polymer) and interconnected polymer networks (IPN-like systems that also include a limited amount of inter-network chemical links). The macromolecular topologies of these systems combine kinetically entrapped molecular-level mixing with limited phase separation into a continuous range of nanodomain compositions. This perspective-review presents the family of IPN systems, describes the synthesis parameters used to generate a variety of macromolecular topologies, and discusses the damping properties, the ability to process latex IPN, the mechanical robustness of double network hydrogels, and IPN as templates for porous polymers, as well as recent innovations and cutting-edge applications. The wide gamut of macromolecular topological options described herein will serve as a guide to realizing synergistic behaviors by combining polymers in IPN-like structures. [Display omitted] •IPN macromolecular topology: two interpenetrating, but not linked, polymer networks.•IPN: entrapped molecular mixing + nanodomains with a continuous range of compositions.•IPN, semi-IPN, latex IPN, interconnected and double networks, IPN-templated porosity.•LIPN processability: phase-separated, strength-forming interparticle nanodomains.•Tuning: sequence, reaction, crosslinking, compatibility, composition, hydrophilicity.
AbstractList A typical description of interpenetrating polymer networks (IPN) can be surprisingly simple, systems that consist of two crosslinked polymer networks that are physically entangled but not chemically linked. That simplistic description, however, successfully encompasses a wide range of synthesis processes and macromolecular architectures that can include “semi-IPN” (IPN-like systems containing only one crosslinked polymer) and interconnected polymer networks (IPN-like systems that also include a limited amount of inter-network chemical links). The macromolecular topologies of these systems combine kinetically entrapped molecular-level mixing with limited phase separation into a continuous range of nanodomain compositions. This perspective-review presents the family of IPN systems, describes the synthesis parameters used to generate a variety of macromolecular topologies, and discusses the damping properties, the ability to process latex IPN, the mechanical robustness of double network hydrogels, and IPN as templates for porous polymers, as well as recent innovations and cutting-edge applications. The wide gamut of macromolecular topological options described herein will serve as a guide to realizing synergistic behaviors by combining polymers in IPN-like structures. [Display omitted] •IPN macromolecular topology: two interpenetrating, but not linked, polymer networks.•IPN: entrapped molecular mixing + nanodomains with a continuous range of compositions.•IPN, semi-IPN, latex IPN, interconnected and double networks, IPN-templated porosity.•LIPN processability: phase-separated, strength-forming interparticle nanodomains.•Tuning: sequence, reaction, crosslinking, compatibility, composition, hydrophilicity.
A typical description of interpenetrating polymer networks (IPN) can be surprisingly simple, systems that consist of two crosslinked polymer networks that are physically entangled but not chemically linked. That simplistic description, however, successfully encompasses a wide range of synthesis processes and macromolecular architectures that can include "semi-IPN" (IPN-like systems containing only one crosslinked polymer) and interconnected polymer networks (IPN-like systems that also include a limited amount of inter-network chemical links). The macromolecular topologies of these systems combine kinetically entrapped molecular-level mixing with limited phase separation into a continuous range of nanodomain compositions. This perspective-review presents the family of IPN systems, describes the synthesis parameters used to generate a variety of macromolecular topologies, and discusses the damping properties, the ability to process latex IPN, the mechanical robustness of double network hydrogels, and IPN as templates for porous polymers, as well as recent innovations and cutting-edge applications. The wide gamut of macromolecular topological options described herein will serve as a guide to realizing synergistic behaviors by combining polymers in IPN-like structures.
ArticleNumber 122929
Author Silverstein, Michael S.
Author_xml – sequence: 1
  givenname: Michael S.
  surname: Silverstein
  fullname: Silverstein, Michael S.
  email: michaels@technion.ac.il
  organization: Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa, 32000, Israel
BookMark eNqFkE1LAzEQhoMo2FZ_grDgeWuS3XzpoUjxo1DwoJ7Dkp1ts7abNUmV_ntTticvPQ3zzrzvMM8YnXeuA4RuCJ4STPhdO-3dZr8FP6WYJo1SRdUZGhEpijw15ByNMC5oXkhOLtE4hBZjTBktR4gtugi-hw6ir6LtVtkxK0vKr_Nf4T57d9m66vt9Ft0K4hr87ApdNNUmwPWxTtDn89PH_DVfvr0s5o_L3BSFiDmXpKy5lFSABCwaWTIqGWFNAaAIrSsKRjRE1cbwSjFWMyEaIUXSpcKGFxN0O-T23n3vIETdup3v0klNS065oEoVaYsNW8a7EDw0uvd2W_m9JlgfCOlWH7_SB0J6IJR8D_98xsYEwXWJhd2cdM8GNyQAPzZNg7HQGaitBxN17eyJhD-wz4bw
CitedBy_id crossref_primary_10_1002_marc_202100457
crossref_primary_10_1016_j_eurpolymj_2022_111098
crossref_primary_10_1039_D4SM01448K
crossref_primary_10_1002_mame_202200354
crossref_primary_10_1016_j_porgcoat_2022_107385
crossref_primary_10_1002_app_54058
crossref_primary_10_1016_j_envres_2024_118953
crossref_primary_10_1002_slct_202503363
crossref_primary_10_1016_j_polymer_2025_128158
crossref_primary_10_1016_j_polymer_2024_127130
crossref_primary_10_1039_D3PY00217A
crossref_primary_10_1016_j_ijpharm_2024_125039
crossref_primary_10_1016_j_jelechem_2024_118885
crossref_primary_10_1016_j_addr_2021_05_001
crossref_primary_10_1016_j_jmbbm_2023_105876
crossref_primary_10_3390_c9020038
crossref_primary_10_1002_macp_202300311
crossref_primary_10_1016_j_polymertesting_2023_108028
crossref_primary_10_1016_j_addma_2024_104359
crossref_primary_10_1002_pol_20210260
crossref_primary_10_1016_j_polymer_2021_123409
crossref_primary_10_3390_nano13020268
crossref_primary_10_1051_e3sconf_202340105095
crossref_primary_10_1016_j_cis_2024_103113
crossref_primary_10_1016_j_cis_2024_103278
crossref_primary_10_1002_adma_202402282
crossref_primary_10_3390_gels10070444
crossref_primary_10_3390_polym14122427
crossref_primary_10_1016_j_dyepig_2025_113063
crossref_primary_10_1007_s13726_025_01513_y
crossref_primary_10_1038_s41467_023_39446_w
crossref_primary_10_1039_D3EW00712J
crossref_primary_10_1002_adma_202301504
crossref_primary_10_1080_10601325_2024_2328733
crossref_primary_10_1039_D5MH00588D
crossref_primary_10_1002_smm2_1160
crossref_primary_10_1016_j_orgel_2024_107040
crossref_primary_10_1002_ange_202106733
crossref_primary_10_1016_j_mser_2025_101098
crossref_primary_10_3390_gels9020161
crossref_primary_10_1016_j_jelechem_2024_118435
crossref_primary_10_1002_adfm_202313255
crossref_primary_10_1016_j_ijbiomac_2021_09_115
crossref_primary_10_1016_j_matdes_2024_112970
crossref_primary_10_1021_acsmacrolett_5c00512
crossref_primary_10_1016_j_cej_2025_164243
crossref_primary_10_1016_j_cej_2022_138071
crossref_primary_10_1016_j_polymer_2022_124886
crossref_primary_10_1002_macp_202400177
crossref_primary_10_1039_D4PY01456A
crossref_primary_10_1016_j_eurpolymj_2024_113376
crossref_primary_10_1016_j_jece_2025_117367
crossref_primary_10_1016_j_polymer_2023_126542
crossref_primary_10_1016_j_colsurfa_2022_129979
crossref_primary_10_1016_j_eurpolymj_2023_112524
crossref_primary_10_3390_gels9030221
crossref_primary_10_1007_s13369_025_10595_y
crossref_primary_10_1021_acsbiomaterials_5c00980
crossref_primary_10_3390_polym16142050
crossref_primary_10_1002_anie_202106733
crossref_primary_10_1016_j_colsurfb_2024_114431
crossref_primary_10_1039_D1BM01540K
crossref_primary_10_1016_j_foodchem_2023_137483
crossref_primary_10_1016_j_polymdegradstab_2025_111368
crossref_primary_10_1007_s11837_024_06770_5
crossref_primary_10_1016_j_tifs_2025_105242
crossref_primary_10_1002_macp_202300211
crossref_primary_10_1039_D3PY00914A
crossref_primary_10_3390_buildings15060984
crossref_primary_10_1016_j_jpowsour_2023_232933
crossref_primary_10_1002_pat_6409
crossref_primary_10_1039_D2RA07843K
crossref_primary_10_1080_17452759_2025_2505992
crossref_primary_10_1002_pen_25628
crossref_primary_10_1080_00914037_2024_2330420
crossref_primary_10_3390_gels11090761
crossref_primary_10_1016_j_eurpolymj_2025_113761
crossref_primary_10_1016_j_arabjc_2021_103455
crossref_primary_10_1016_j_polymer_2022_125562
crossref_primary_10_1002_pen_27200
crossref_primary_10_1016_j_foodhyd_2021_107097
crossref_primary_10_1039_D5BM00210A
crossref_primary_10_3390_polym13193234
crossref_primary_10_1134_S1811238222200012
crossref_primary_10_1039_D5MH00700C
crossref_primary_10_1016_j_mtchem_2022_100937
crossref_primary_10_1002_cplu_202300074
crossref_primary_10_1021_acsmacrolett_5c00417
crossref_primary_10_1016_j_cej_2024_155008
crossref_primary_10_1038_s41428_024_01011_7
crossref_primary_10_1007_s13346_022_01254_y
crossref_primary_10_1016_j_fuel_2025_136269
crossref_primary_10_1039_D3PY00507K
crossref_primary_10_1016_j_cis_2023_103026
Cites_doi 10.1021/acs.chemmater.8b03860
10.1002/(SICI)1099-1581(1998100)9:10/11<746::AID-PAT847>3.0.CO;2-X
10.1002/anie.201902900
10.1002/anie.201913297
10.1002/adom.202000516
10.1002/pen.760291211
10.1016/S0032-3861(98)00757-5
10.1002/pol.1973.170110120
10.1002/(SICI)1097-4628(19960103)59:1<45::AID-APP7>3.0.CO;2-M
10.1002/macp.201000519
10.1088/1758-5090/ab8708
10.1002/ijch.202000003
10.1002/app.42076
10.5254/1.3547244
10.1021/acs.chemmater.9b00871
10.1002/pol.1980.170181108
10.1016/j.memsci.2019.117511
10.1021/cm0718062
10.1039/C5TB00123D
10.1002/adma.201300817
10.1021/acs.biomac.9b01541
10.1021/acs.biomac.0c00454
10.1016/j.msec.2019.110495
10.1016/j.polymer.2017.07.044
10.1039/C9SC01297D
10.1002/(SICI)1099-1581(199604)7:4<247::AID-PAT527>3.0.CO;2-X
10.1002/adfm.201404357
10.1016/j.polymer.2007.09.044
10.1002/app.29572
10.1039/C7TB01780D
10.1021/acs.chemmater.6b01920
10.1021/acs.chemmater.0c01307
10.1002/pol.1982.130200107
10.1021/acs.macromol.9b01686
10.1021/ie201593h
10.1016/j.polymer.2007.09.009
10.1002/pi.5052
10.1039/C8CS00834E
10.1021/ma402542r
10.1002/app.1979.070240504
10.1021/acs.macromol.5b01979
10.1021/acs.macromol.8b01923
10.1007/12_2007_116
10.1080/0144235X.2013.797277
10.1016/j.progpolymsci.2012.08.002
10.1002/app.1973.070170811
10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
10.1039/D0TB00833H
10.1002/adma.200304907
10.1007/s42250-019-00044-3
10.1002/pola.23744
10.1039/b711610a
10.1063/1.1699711
10.1002/marc.1995.030160905
10.1021/ma047353t
10.1080/00914037.2018.1455680
10.1021/ma047431c
10.1016/j.colsurfb.2015.12.011
10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T
10.1002/jemt.1060020610
10.1016/j.eurpolymj.2016.06.021
10.1002/cber.19350680841
10.1002/pen.10853
10.1021/acsami.0c00325
10.5254/1.3547779
10.1021/acsami.6b02264
10.1016/j.progpolymsci.2009.12.002
10.1039/JR9600001311
10.1080/03602559.2015.1050520
10.1039/C1SM06489D
10.1002/1099-0518(20010101)39:1<8::AID-POLA20>3.0.CO;2-Q
10.1021/ma802461m
10.1021/ma071417t
10.1016/j.progpolymsci.2009.01.001
10.1002/mame.201600367
10.1021/acs.macromol.0c00477
10.1002/pol.1974.170120930
10.1002/aic.14077
10.1016/j.polymer.2019.02.010
10.1039/C6SM02567F
10.5254/1.3539061
10.1016/j.cej.2014.01.065
10.1002/apmc.1973.050290101
10.1021/ma0501390
10.1002/cber.19200530627
10.1016/j.synthmet.2003.10.005
10.1007/s00396-013-3021-y
10.1021/bk-1976-0024.ch020
10.1016/j.memsci.2010.11.020
10.1016/j.eurpolymj.2014.11.024
10.1002/app.1985.070300510
10.1002/macp.200800133
10.1016/0014-3057(93)90245-B
10.1021/acs.chemmater.9b04725
10.1016/j.polymer.2012.03.013
10.1021/ma034366i
10.1002/pen.760180305
10.1002/pola.22570
10.1021/ma000145q
10.1002/pol.1973.170110126
10.1021/ma7027177
10.1021/acs.macromol.8b01676
10.1039/C9PY90161B
10.1002/adfm.201504536
10.1002/pol.1969.110071104
10.1039/C9MH00715F
10.1002/pol.1983.170211001
10.1021/ma062924y
10.1002/adma.201706441
10.1016/j.jpowsour.2014.10.059
10.5254/1.3547874
10.1002/macp.201600038
10.1016/j.msec.2016.09.081
10.1016/j.cej.2012.07.126
10.1016/0032-3861(85)90312-X
10.1002/app.1987.070330721
10.1016/j.mser.2015.04.001
10.1002/pen.760250502
10.1002/pol.1973.170110112
10.1039/C7PY01305A
10.1039/b924290b
10.1016/S0079-6700(99)00030-1
10.1021/acs.macromol.7b01698
10.1002/marc.201600249
10.1038/s41428-019-0224-1
10.1070/RC1976v045n01ABEH002596
10.1016/j.polymer.2005.05.022
10.1039/C9SM01468C
10.1002/pol.1970.150080927
10.1016/0032-3861(89)90006-2
10.1016/j.progpolymsci.2017.09.001
10.1002/app.1975.070190814
10.1016/0304-3991(84)90236-5
10.1002/adfm.202000754
10.1021/ma991398q
10.1021/ma049506i
10.1002/mame.200700004
10.1021/ma500972y
10.1002/cber.19340670709
10.1021/ma201662h
10.1016/j.progpolymsci.2014.07.006
10.1016/j.addr.2013.04.002
10.1016/j.eurpolymj.2015.07.053
10.1073/pnas.1807750115
10.1021/ma60069a002
10.1016/j.progpolymsci.2004.11.003
10.1002/pol.1984.170220617
10.1016/j.jpowsour.2011.09.052
10.1515/pac-2014-0713
10.1002/app.1973.070170613
10.1002/pi.4980160109
10.1016/j.biomaterials.2004.11.021
10.1021/ma052395i
10.1002/pola.23522
10.1021/acs.chemmater.8b00063
10.1021/cr200440z
10.1002/pola.27066
10.1021/ma00230a081
10.1002/hlca.19220050517
10.1021/jp052419n
10.1080/00914037208075293
10.1002/app.1975.070190623
10.1039/C9TB01398A
10.1016/S0032-3861(00)00820-X
10.1002/app.1995.070550610
10.1007/s00396-008-1949-0
10.1115/1.4037881
10.1016/j.polymer.2010.10.032
10.1002/app.12414
10.1021/ma071089x
10.1002/mabi.201200234
10.1007/BF02086053
10.1002/adfm.200305197
10.1002/adfm.201703086
10.1088/0964-1726/16/2/S12
10.1038/185117a0
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Oct 20, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 20, 2020
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.polymer.2020.122929
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2291
ExternalDocumentID 10_1016_j_polymer_2020_122929
S0032386120307540
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSK
SSM
SSZ
T5K
TN5
WH7
XPP
ZMT
~G-
.-4
29O
6TJ
6TU
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABDPE
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SCB
SEW
T9H
WUQ
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c337t-6814d68827e8e07f84528515f3ee912da2ec7f19dcc6a955d577f787a2e890c63
ISICitedReferencesCount 121
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579904200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0032-3861
IngestDate Wed Aug 13 11:07:35 EDT 2025
Sat Nov 29 07:27:57 EST 2025
Tue Nov 18 21:44:06 EST 2025
Fri Feb 23 02:48:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Porous polymers
Interpenetrating polymer networks
Emulsion polymerization
Double networks
Macromolecular architecture
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-6814d68827e8e07f84528515f3ee912da2ec7f19dcc6a955d577f787a2e890c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2462672993
PQPubID 2045419
ParticipantIDs proquest_journals_2462672993
crossref_primary_10_1016_j_polymer_2020_122929
crossref_citationtrail_10_1016_j_polymer_2020_122929
elsevier_sciencedirect_doi_10_1016_j_polymer_2020_122929
PublicationCentury 2000
PublicationDate 2020-10-20
PublicationDateYYYYMMDD 2020-10-20
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-20
  day: 20
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Polymer (Guilford)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Williams (bib88) 1973; 11
Chapman, Pounder, Murphy, Owen (bib110) 1929
Peak, Nagar, Watts, Schmidt (bib31) 2014; 47
Rohman, Grande, Lauprêtre, Boileau, Guérin (bib117) 2005; 38
Keusch, Williams (bib87) 1973; 11
Widmaier, Sperling (bib115) 1982; 15
Young, Riahinezhad, Amsden (bib133) 2019; 7
H. Hopff, Patent 623,351, Germany, 1935.
Owens, Jian, Fang, Slaughter, Chen, Peppas (bib98) 2007; 40
Ducrot, Montes, Creton (bib44) 2015; 48
Lumelsky, Lalush-Michael, Levenberg, Silverstein (bib64) 2009; 47
Wu, Ohtani, Tamesue, Ishida, Aida (bib142) 2014; 52
Kato (bib95) 1967; 220
Schexnailder, Schmidt (bib141) 2009; 287
Chikh, Delhorbe, Fichet (bib7) 2011; 368
Millar (bib54) 1960
Yang, Yeom, Hwang, Hoffman, Hahn (bib128) 2014; 39
Singhal, Gupta (bib146) 2016; 55
Tsukeshiba, Huang, Na, Kurokawa, Kuwabara, Tanaka, Furukawa, Osada, Gong (bib73) 2005; 109
Salehi Dashtebayaz, Nourbakhsh (bib132) 2019; 68
Tai, Sergienko, Silverstein (bib34) 2001; 42
Dragan, Cocarta, Gierszewska (bib59) 2016; 139
Eklund, Zhang, Zeng, Priimagi, Ikkala (bib194) 2020; 30
Chen, Le, Lai, Fernandes-Cunha, Myung (bib190) 2020; 32
Matsuda, Nakajima, Gong (bib176) 2019; 31
Chen, Chen, Zhu, Zheng (bib13) 2016; 217
Okubo, Yamada, Matsumoto (bib91) 1980; 18
Chen, Zhu, Zhao, Wang, Zheng (bib174) 2013; 25
Bombonnel, Vancaeyzeele, Guérin, Vidal (bib195) 2020; 109
Staudinger, Heuer (bib4) 1934; 67
Grates, Thomas, Hickey, Sperling (bib102) 1975; 19
Peak, Wilker, Schmidt (bib145) 2013; 291
Yan, Chen, Zhu, Chen, Wei, Chen, Tang, Yang, Zheng (bib168) 2017; 5
Silverstein, Talmon, Narkis (bib99) 1989; 30
Gong, Katsuyama, Kurokawa, Osada (bib69) 2003; 15
Rohman, Lauprêtre, Boileau, Guérin, Grande (bib118) 2007; 48
Okumura, Ito (bib144) 2001; 13
Kulygin, Silverstein (bib153) 2007; 3
Alam, Zhang, Kuan, Lee, Ma (bib143) 2018; 77
Devia-Manjarres, Manson, Sperling, Conde (bib27) 1978; 18
Mott, Roland (bib66) 2000; 33
Okubo, Katsuta, Matsumoto (bib93) 1982; 20
Roland (bib11) 2015
Johnson, Turro, Koberstein, Mark (bib136) 2010; 35
Schoener, Hutson, Peppas (bib151) 2013; 59
Sperling, Chiu, Hartman, Thomas (bib75) 1972; 1
Ducrot, Creton (bib47) 2016; 26
Lumelsky, Zoldan, Levenberg, Silverstein (bib63) 2008; 41
Lav, Carbonnier, Guerrouache, Grande (bib119) 2010; 51
Ko, Shinde, Yeon, Jeong (bib127) 2013; 38
Paranhos, Soares, Oliveira, Pessan (bib140) 2007; 292
Staudinger (bib1) 1920; 53
Normatov, Silverstein (bib37) 2007; 40
Haraguchi, Li, Matsuda, Takehisa, Elliott (bib139) 2005; 38
Kovačič, Silverstein (bib154) 2016; 37
Matricardi, Di Meo, Coviello, Hennink, Alhaique (bib8) 2013; 65
Sun, Lu, Yu, Su, Gao, Zheng (bib198) 2020; 12
Rudin (bib16) 1982
Haque, Kurokawa, Gong (bib178) 2012; 53
Wang, Wang, Gu, Sourakov, Olsen, Johnson (bib22) 2019; 10
Santangelo, Roland (bib68) 2003; 76
Frisch, Klempner, Frisch (bib55) 1969; 7
Stabenow, Haaf (bib97) 1973; 29
Chen, Chen, Zhu, Tang, Li, Qin, Yang, Zhang, Ren, Zheng (bib170) 2018; 30
Talmon, Narkis, Silverstein (bib81) 1985; 2
Pfau, McKinzey, Roth, Grunlan (bib189) 2020; 21
Williams (bib89) 1974; 12
Sperling, Hu (bib10) 2014
Toledo, Urbano (bib160) 2016; 81
Arens, Barther, Landsgesell, Holm, Wilhelm (bib187) 2019; 15
Fukao, Tanaka, Kiyama, Nonoyama, Gong (bib188) 2020; 8
Costa, Mano (bib131) 2015; 72
Livshin, Silverstein (bib186) 2009; 47
Lipatov, Sergeeva (bib57) 1976; 45
Hu, Schulze, Pionteck (bib124) 1999; 40
Silverstein, Shach-Caplan, Bauer, Hedden, Lee, Landes (bib113) 2005; 38
Vidal, Plesse, Teyssié, Chevrot (bib179) 2004; 142
Sperling, Chiu, Thomas (bib76) 1973; 17
Silverstein, Narkis (bib104) 1985; 25
Sperling (bib49) 1994
Zhang, Guo, Yang, Tan, Li, Dai, Yu, Zhang, Weng, Jian, Xu (bib175) 2009; 112
Odian (bib14) 2004
Ishikawa, Iijima, Matsukuma, Asawa, Hoshi, Osawa, Otsuka (bib191) 2020; 32
Zhang, Desai, Wang, Lee (bib196) 2020; 21
Fox, Flory (bib43) 1950; 21
Gu, Zhao, Johnson (bib21) 2020; 59
Staudinger, Hutchinson (bib52) 1951
Grande (bib121) 2016
Lipatov, Alekseeva (bib41) 2007; 208
Bovey, Kolthoff, Medalia, Meehan (bib83) 1955
Ying, Wu, Li, Liu (bib192) 2020; 7
Kamath, Kincaid, Mandal (bib29) 1996; 59
Bacca, Creton, McMeeking (bib46) 2017; 84
Hu, Sun, Lin, Jackson, Terlier, Owolabi, Mei, Li, Wang, Sidhik, Hao, Yao, Mohite, Verduzco (bib197) 2020
Chan, Wippich, Wu, Sivasankar, Schmidt (bib32) 2012; 12
Shibayama, Suzuki (bib56) 1967; 40
Devia, Manson, Sperling, Conde (bib26) 1979; 12
Matyjaszewski (bib17) 2018; 30
Haraguchi, Takehisa (bib137) 2002; 14
Wang, Hamed, Umetsu, Roland (bib67) 2005; 78
Dragan, Lazar, Dinu, Doroftei (bib60) 2012; 204–206
Ghamouss, Mallouki, Bertolotti, Chikh, Vancaeyzeele, Alfonsi, Fichet (bib184) 2012; 197
Caló, Khutoryanskiy (bib129) 2015; 65
Kovacic, Silverstein (bib156) 2017; 8
Chen, Liu, Ren, Zhang, Ma, Xu, Chen, Zheng (bib167) 2017; 27
Millereau, Ducrot, Clough, Wiseman, Brown, Sijbesma, Creton (bib45) 2018; 115
Frey, Johann (bib2) 2020; 11
Gudeman, Peppas (bib152) 1995; 55
Qiu, Gurr, Qiao (bib200) 2020; 53
Grande, Rohman (bib122) 2019; 2
Silverstein, Tai, Sergienko, Lumelsky, Pavlovsky (bib36) 2005; 46
Webber, Creton, Brown, Gong (bib163) 2007; 40
Sperling (bib5) 1981
Rosen (bib15) 1993
Pionteck, Hu, Schulze (bib125) 2003; 89
Zhang, Peppas (bib150) 2000; 33
Gong (bib164) 2010; 6
Goujon, Khaldi, Maziz, Plesse, Nguyen, Aubert, Vidal, Chevrot, Teyssié (bib180) 2011; 44
Dinu, Perju, Drăgan (bib61) 2011; 212
France, Xu, Hoare (bib158) 2018; 7
Qiu, Ben (bib108) 2016
Chen, Yan, Zhu, Chen, Jiang, Wei, Huang, Yang, Liu, Zheng (bib171) 2016; 28
Zhang, Silverstein (bib157) 2017; 126
Aylsworth (bib51) 1914
Hentze, Antonietti (bib105) 2008
Chen, Zhu, Chen, Yan, Huang, Yang, Zheng (bib172) 2015; 25
Sperling, Thomas, Lorenz, Nagel (bib77) 1975; 19
Widmaier, Sperling (bib116) 1984; 16
Normatov, Silverstein (bib40) 2008; 20
Grancio, Williams (bib86) 1970; 8
Gardon (bib85) 1973; 11
Solt (bib53) 1955
Silverstein, Narkis (bib48) 1989; 29
Nakayama, Kakugo, Gong, Osada, Takai, Erata, Kawano (bib71) 2004; 14
Nemirovski, Silverstein, Narkis (bib100) 1996; 7
Noble, Coote (bib20) 2013; 32
Chen, Zhu, Huang, Chen, Xu, Tan, Wang, Zheng (bib173) 2014; 47
Creton (bib134) 2017; 50
P. Giusti, L. Callegaro, Biomaterial Comprising Hyaluronic Acid and Derivatives Thereof in Interpenetrating Polymer Networks (IPN), US Patent 5,644,049, 1997.
Gardon (bib84) 1970; 43
Slaughter, Blanchard, Maass, Peppas (bib148) 2015; 132
Oldenhuis, Qin, Wang, Ye, Alt, Willard, Van Voorhis, Craig, Johnson (bib33) 2020; 59
Wu, Xu, Sun, Fu, He, Matyjaszewski (bib107) 2012; 112
Tan (bib24) 1994
Normatov, Silverstein (bib38) 2007; 48
Tai, Sergienko, Silverstein (bib62) 2001; 41
Dragan, Cocarta (bib58) 2016; 8
Ha, Yuan, Pei, Pelrine, Stanford (bib182) 2007; 16
Xie, Guo, Wang (bib25) 1993; 29
Hu, Han, Chen, Zou, Ouyang, Zhou, Yang, Wang (bib161) 2017; 302
Sionakidis, Sperling, Thomas (bib78) 1979; 24
Ube (bib183) 2019; 51
Gao, Matyjaszewski (bib18) 2009; 34
Dragan (bib12) 2014; 86
Chen, Chen, Zhu, Zheng (bib177) 2015; 3
Li, Liu, Wang, Yang, Wang, He (bib199) 2020; 595
Hu, Pompe, Schulze, Pionteck (bib123) 1998; 9
Ma, Chou, Xie, Pei (bib181) 2019; 48
Silverstein (bib109) 2020; 60
Normatov, Silverstein (bib39) 2008; 46
Lumelsky, Silverstein (bib65) 2009; 42
Staudinger, Fritschi (bib3) 1922; 5
Tang, Zhang, Gong, Zhang, Xie, Ren, Liu, Yang, Zhou, Chang, Tang, Zheng (bib165) 2019; 52
Na, Kurokawa, Katsuyama, Tsukeshiba, Gong, Osada, Okabe, Karino, Shibayama (bib70) 2004; 37
Lorenz, Thomas, Sperling (bib103) 1976; 24
Rosen (bib96) 1973; 17
Dragan (bib9) 2014; 243
Kurisawa, Terano, Yui (bib28) 1995; 16
Bertolotti, Messaoudi, Chikh, Vancaeyzeele, Alfonsi, Fichet (bib185) 2015; 274
Coote, Davis (bib19) 1999; 24
Haraguchi, Farnworth, Ohbayashi, Takehisa (bib138) 2003; 36
Song, Zhu, Chen, Haraguchi (bib162) 2008; 209
Tang, Chen, Chen, Zhu, Lu, Ren, Zhang, Yang, Zheng (bib166) 2019; 31
Talmon, Narkis, Silverstein (bib79) 1984; 14
Silverstein, Bauer, Hedden, Lee, Landes (bib114) 2006; 39
Schoener, Hutson, Fletcher, Peppas (bib147) 2011; 50
Ovadia, Silverstein (bib155) 2016; 65
Wichterle, Lím (bib126) 1960; 185
Todd, Hillmyer (bib112) 2011
Li, Yang, Zhao, Long, Zheng (bib169) 2017; 13
Min, Klein, El-Aasser, Vanderhoff (bib92) 1983; 21
Schipani, Scheurer, Florentin, Critchley, Kelly (bib193) 2020; 12
Sluszny, Silverstein, Kababya, Schmidt, Narkis (bib35) 2001; 39
Sperling (bib42) 1985
Sperling (bib50) 2011
Staudinger, Husemann (bib111) 1935; 68
Tanaka, Gong, Osada (bib72) 2005; 30
Koetting, Peters, Steichen, Peppas (bib130) 2015; 93
Muroi, Hashimoto, Hosoi (bib90) 1984; 22
Haq, Su, Wang (bib135) 2017; 70
Utroša, Žagar, Kovačič, Pahovnik (bib120) 2019; 52
Cho, Lee (bib94) 1985; 30
Echeverria, Peppas, Mijangos (bib149) 2012; 8
Silverstein, Narkis (bib82) 1987; 33
Narkis, Talmon, Silverstein (bib80) 1985; 26
Sperling (bib6) 2004
Silverstein, Cameron, Hillmyer (bib106) 2011
Zhang, Silverstein (bib159) 2019; 168
Yasuda, Ping Gong, Katsuyama, Nakayama, Tanabe, Kondo, Ueno, Osada (bib74) 2005; 26
Lin, Wang, Johnson, Olsen (bib23) 2019; 52
Widmaier (10.1016/j.polymer.2020.122929_bib116) 1984; 16
Bombonnel (10.1016/j.polymer.2020.122929_bib195) 2020; 109
Schoener (10.1016/j.polymer.2020.122929_bib147) 2011; 50
Staudinger (10.1016/j.polymer.2020.122929_bib1) 1920; 53
Dragan (10.1016/j.polymer.2020.122929_bib59) 2016; 139
Zhang (10.1016/j.polymer.2020.122929_bib196) 2020; 21
Chan (10.1016/j.polymer.2020.122929_bib32) 2012; 12
Silverstein (10.1016/j.polymer.2020.122929_bib104) 1985; 25
Kovacic (10.1016/j.polymer.2020.122929_bib156) 2017; 8
Santangelo (10.1016/j.polymer.2020.122929_bib68) 2003; 76
Bacca (10.1016/j.polymer.2020.122929_bib46) 2017; 84
Nakayama (10.1016/j.polymer.2020.122929_bib71) 2004; 14
Ovadia (10.1016/j.polymer.2020.122929_bib155) 2016; 65
Sun (10.1016/j.polymer.2020.122929_bib198) 2020; 12
Lipatov (10.1016/j.polymer.2020.122929_bib41) 2007; 208
Echeverria (10.1016/j.polymer.2020.122929_bib149) 2012; 8
Young (10.1016/j.polymer.2020.122929_bib133) 2019; 7
Gudeman (10.1016/j.polymer.2020.122929_bib152) 1995; 55
Haq (10.1016/j.polymer.2020.122929_bib135) 2017; 70
Livshin (10.1016/j.polymer.2020.122929_bib186) 2009; 47
Frey (10.1016/j.polymer.2020.122929_bib2) 2020; 11
Oldenhuis (10.1016/j.polymer.2020.122929_bib33) 2020; 59
Tang (10.1016/j.polymer.2020.122929_bib166) 2019; 31
Tanaka (10.1016/j.polymer.2020.122929_bib72) 2005; 30
Hu (10.1016/j.polymer.2020.122929_bib124) 1999; 40
Pfau (10.1016/j.polymer.2020.122929_bib189) 2020; 21
Noble (10.1016/j.polymer.2020.122929_bib20) 2013; 32
Webber (10.1016/j.polymer.2020.122929_bib163) 2007; 40
Gong (10.1016/j.polymer.2020.122929_bib69) 2003; 15
Kovačič (10.1016/j.polymer.2020.122929_bib154) 2016; 37
Rohman (10.1016/j.polymer.2020.122929_bib117) 2005; 38
Haque (10.1016/j.polymer.2020.122929_bib178) 2012; 53
Frisch (10.1016/j.polymer.2020.122929_bib55) 1969; 7
Wu (10.1016/j.polymer.2020.122929_bib142) 2014; 52
Tsukeshiba (10.1016/j.polymer.2020.122929_bib73) 2005; 109
Gardon (10.1016/j.polymer.2020.122929_bib85) 1973; 11
Ying (10.1016/j.polymer.2020.122929_bib192) 2020; 7
Muroi (10.1016/j.polymer.2020.122929_bib90) 1984; 22
Grande (10.1016/j.polymer.2020.122929_bib121) 2016
Grates (10.1016/j.polymer.2020.122929_bib102) 1975; 19
Kulygin (10.1016/j.polymer.2020.122929_bib153) 2007; 3
Todd (10.1016/j.polymer.2020.122929_bib112) 2011
Yasuda (10.1016/j.polymer.2020.122929_bib74) 2005; 26
Tai (10.1016/j.polymer.2020.122929_bib34) 2001; 42
Haraguchi (10.1016/j.polymer.2020.122929_bib138) 2003; 36
Ghamouss (10.1016/j.polymer.2020.122929_bib184) 2012; 197
Normatov (10.1016/j.polymer.2020.122929_bib39) 2008; 46
Sionakidis (10.1016/j.polymer.2020.122929_bib78) 1979; 24
Chen (10.1016/j.polymer.2020.122929_bib171) 2016; 28
Silverstein (10.1016/j.polymer.2020.122929_bib36) 2005; 46
Chen (10.1016/j.polymer.2020.122929_bib172) 2015; 25
Sperling (10.1016/j.polymer.2020.122929_bib49) 1994
Kato (10.1016/j.polymer.2020.122929_bib95) 1967; 220
Rosen (10.1016/j.polymer.2020.122929_bib96) 1973; 17
Hu (10.1016/j.polymer.2020.122929_bib197) 2020
France (10.1016/j.polymer.2020.122929_bib158) 2018; 7
Chen (10.1016/j.polymer.2020.122929_bib190) 2020; 32
Eklund (10.1016/j.polymer.2020.122929_bib194) 2020; 30
Kurisawa (10.1016/j.polymer.2020.122929_bib28) 1995; 16
Min (10.1016/j.polymer.2020.122929_bib92) 1983; 21
Tai (10.1016/j.polymer.2020.122929_bib62) 2001; 41
Grancio (10.1016/j.polymer.2020.122929_bib86) 1970; 8
Staudinger (10.1016/j.polymer.2020.122929_bib4) 1934; 67
Sperling (10.1016/j.polymer.2020.122929_bib77) 1975; 19
Zhang (10.1016/j.polymer.2020.122929_bib157) 2017; 126
Keusch (10.1016/j.polymer.2020.122929_bib87) 1973; 11
Zhang (10.1016/j.polymer.2020.122929_bib175) 2009; 112
Dinu (10.1016/j.polymer.2020.122929_bib61) 2011; 212
Devia-Manjarres (10.1016/j.polymer.2020.122929_bib27) 1978; 18
Na (10.1016/j.polymer.2020.122929_bib70) 2004; 37
Hu (10.1016/j.polymer.2020.122929_bib161) 2017; 302
Normatov (10.1016/j.polymer.2020.122929_bib38) 2007; 48
Okubo (10.1016/j.polymer.2020.122929_bib91) 1980; 18
Lumelsky (10.1016/j.polymer.2020.122929_bib63) 2008; 41
Alam (10.1016/j.polymer.2020.122929_bib143) 2018; 77
Coote (10.1016/j.polymer.2020.122929_bib19) 1999; 24
Peak (10.1016/j.polymer.2020.122929_bib145) 2013; 291
Sperling (10.1016/j.polymer.2020.122929_bib6) 2004
Slaughter (10.1016/j.polymer.2020.122929_bib148) 2015; 132
Yan (10.1016/j.polymer.2020.122929_bib168) 2017; 5
Aylsworth (10.1016/j.polymer.2020.122929_bib51) 1914
Williams (10.1016/j.polymer.2020.122929_bib89) 1974; 12
Shibayama (10.1016/j.polymer.2020.122929_bib56) 1967; 40
Toledo (10.1016/j.polymer.2020.122929_bib160) 2016; 81
Talmon (10.1016/j.polymer.2020.122929_bib79) 1984; 14
Utroša (10.1016/j.polymer.2020.122929_bib120) 2019; 52
Gu (10.1016/j.polymer.2020.122929_bib21) 2020; 59
Ma (10.1016/j.polymer.2020.122929_bib181) 2019; 48
Staudinger (10.1016/j.polymer.2020.122929_bib111) 1935; 68
Ko (10.1016/j.polymer.2020.122929_bib127) 2013; 38
Dragan (10.1016/j.polymer.2020.122929_bib58) 2016; 8
Li (10.1016/j.polymer.2020.122929_bib169) 2017; 13
Silverstein (10.1016/j.polymer.2020.122929_bib48) 1989; 29
Gao (10.1016/j.polymer.2020.122929_bib18) 2009; 34
Odian (10.1016/j.polymer.2020.122929_bib14) 2004
Li (10.1016/j.polymer.2020.122929_bib199) 2020; 595
Silverstein (10.1016/j.polymer.2020.122929_bib114) 2006; 39
Peak (10.1016/j.polymer.2020.122929_bib31) 2014; 47
Millereau (10.1016/j.polymer.2020.122929_bib45) 2018; 115
Talmon (10.1016/j.polymer.2020.122929_bib81) 1985; 2
Wang (10.1016/j.polymer.2020.122929_bib67) 2005; 78
Tan (10.1016/j.polymer.2020.122929_bib24) 1994
Fox (10.1016/j.polymer.2020.122929_bib43) 1950; 21
Chapman (10.1016/j.polymer.2020.122929_bib110) 1929
Haraguchi (10.1016/j.polymer.2020.122929_bib137) 2002; 14
Chen (10.1016/j.polymer.2020.122929_bib170) 2018; 30
Hu (10.1016/j.polymer.2020.122929_bib123) 1998; 9
Ube (10.1016/j.polymer.2020.122929_bib183) 2019; 51
Creton (10.1016/j.polymer.2020.122929_bib134) 2017; 50
Roland (10.1016/j.polymer.2020.122929_bib11) 2015
Lumelsky (10.1016/j.polymer.2020.122929_bib64) 2009; 47
Paranhos (10.1016/j.polymer.2020.122929_bib140) 2007; 292
Grande (10.1016/j.polymer.2020.122929_bib122) 2019; 2
Rosen (10.1016/j.polymer.2020.122929_bib15) 1993
Hentze (10.1016/j.polymer.2020.122929_bib105) 2008
Rudin (10.1016/j.polymer.2020.122929_bib16) 1982
10.1016/j.polymer.2020.122929_bib101
Salehi Dashtebayaz (10.1016/j.polymer.2020.122929_bib132) 2019; 68
Arens (10.1016/j.polymer.2020.122929_bib187) 2019; 15
Wang (10.1016/j.polymer.2020.122929_bib22) 2019; 10
Caló (10.1016/j.polymer.2020.122929_bib129) 2015; 65
Koetting (10.1016/j.polymer.2020.122929_bib130) 2015; 93
Pionteck (10.1016/j.polymer.2020.122929_bib125) 2003; 89
Nemirovski (10.1016/j.polymer.2020.122929_bib100) 1996; 7
Bertolotti (10.1016/j.polymer.2020.122929_bib185) 2015; 274
Matyjaszewski (10.1016/j.polymer.2020.122929_bib17) 2018; 30
Dragan (10.1016/j.polymer.2020.122929_bib12) 2014; 86
Okubo (10.1016/j.polymer.2020.122929_bib93) 1982; 20
Chen (10.1016/j.polymer.2020.122929_bib174) 2013; 25
Dragan (10.1016/j.polymer.2020.122929_bib60) 2012; 204–206
Fukao (10.1016/j.polymer.2020.122929_bib188) 2020; 8
Sperling (10.1016/j.polymer.2020.122929_bib42) 1985
Haraguchi (10.1016/j.polymer.2020.122929_bib139) 2005; 38
Staudinger (10.1016/j.polymer.2020.122929_bib52) 1951
Wichterle (10.1016/j.polymer.2020.122929_bib126) 1960; 185
Widmaier (10.1016/j.polymer.2020.122929_bib115) 1982; 15
Sperling (10.1016/j.polymer.2020.122929_bib75) 1972; 1
Normatov (10.1016/j.polymer.2020.122929_bib37) 2007; 40
Lumelsky (10.1016/j.polymer.2020.122929_bib65) 2009; 42
Xie (10.1016/j.polymer.2020.122929_bib25) 1993; 29
Chikh (10.1016/j.polymer.2020.122929_bib7) 2011; 368
Goujon (10.1016/j.polymer.2020.122929_bib180) 2011; 44
Vidal (10.1016/j.polymer.2020.122929_bib179) 2004; 142
Rohman (10.1016/j.polymer.2020.122929_bib118) 2007; 48
Staudinger (10.1016/j.polymer.2020.122929_bib3) 1922; 5
Sperling (10.1016/j.polymer.2020.122929_bib10) 2014
Lorenz (10.1016/j.polymer.2020.122929_bib103) 1976; 24
Schexnailder (10.1016/j.polymer.2020.122929_bib141) 2009; 287
Bovey (10.1016/j.polymer.2020.122929_bib83) 1955
Sperling (10.1016/j.polymer.2020.122929_bib50) 2011
Millar (10.1016/j.polymer.2020.122929_bib54) 1960
Matsuda (10.1016/j.polymer.2020.122929_bib176) 2019; 31
Kamath (10.1016/j.polymer.2020.122929_bib29) 1996; 59
Williams (10.1016/j.polymer.2020.122929_bib88) 1973; 11
Lav (10.1016/j.polymer.2020.122929_bib119) 2010; 51
Ducrot (10.1016/j.polymer.2020.122929_bib47) 2016; 26
Silverstein (10.1016/j.polymer.2020.122929_bib82) 1987; 33
Silverstein (10.1016/j.polymer.2020.122929_bib106) 2011
Sperling (10.1016/j.polymer.2020.122929_bib5) 1981
Silverstein (10.1016/j.polymer.2020.122929_bib99) 1989; 30
Chen (10.1016/j.polymer.2020.122929_bib13) 2016; 217
Song (10.1016/j.polymer.2020.122929_bib162) 2008; 209
Normatov (10.1016/j.polymer.2020.122929_bib40) 2008; 20
Tang (10.1016/j.polymer.2020.122929_bib165) 2019; 52
Narkis (10.1016/j.polymer.2020.122929_bib80) 1985; 26
Yang (10.1016/j.polymer.2020.122929_bib128) 2014; 39
Qiu (10.1016/j.polymer.2020.122929_bib108) 2016
Schoener (10.1016/j.polymer.2020.122929_bib151) 2013; 59
Owens (10.1016/j.polymer.2020.122929_bib98) 2007; 40
Gardon (10.1016/j.polymer.2020.122929_bib84) 1970; 43
Dragan (10.1016/j.polymer.2020.122929_bib9) 2014; 243
Chen (10.1016/j.polymer.2020.122929_bib167) 2017; 27
Cho (10.1016/j.polymer.2020.122929_bib94) 1985; 30
Matricardi (10.1016/j.polymer.2020.122929_bib8) 2013; 65
Gong (10.1016/j.polymer.2020.122929_bib164) 2010; 6
Stabenow (10.1016/j.polymer.2020.122929_bib97) 1973; 29
Zhang (10.1016/j.polymer.2020.122929_bib150) 2000; 33
Devia (10.1016/j.polymer.2020.122929_bib26) 1979; 12
Ducrot (10.1016/j.polymer.2020.122929_bib44) 2015; 48
Sluszny (10.1016/j.polymer.2020.122929_bib35) 2001; 39
Lipatov (10.1016/j.polymer.2020.122929_bib57) 1976; 45
Silverstein (10.1016/j.polymer.2020.122929_bib109) 2020; 60
Chen (10.1016/j.polymer.2020.122929_bib173) 2014; 47
Chen (10.1016/j.polymer.2020.122929_bib177) 2015; 3
10.1016/j.polymer.2020.122929_bib30
Ishikawa (10.1016/j.polymer.2020.122929_bib191) 2020; 32
Qiu (10.1016/j.polymer.2020.122929_bib200) 2020; 53
Lin (10.1016/j.polymer.2020.122929_bib23) 2019; 52
Costa (10.1016/j.p
References_xml – reference: H. Hopff, Patent 623,351, Germany, 1935.
– volume: 24
  start-page: 1217
  year: 1999
  end-page: 1251
  ident: bib19
  article-title: The mechanism of the propagation step in free-radical copolymerisation
  publication-title: Prog. Polym. Sci.
– volume: 32
  start-page: 2353
  year: 2020
  end-page: 2364
  ident: bib191
  article-title: Interpenetrating polymer network hydrogels via a one-pot and in situ gelation system based on peptide self-assembly and orthogonal cross-linking for tissue regeneration
  publication-title: Chem. Mater.
– volume: 2
  start-page: 253
  year: 2019
  end-page: 265
  ident: bib122
  article-title: Oligoester-derivatized (Semi-)Interpenetrating polymer networks as nanostructured precursors to porous materials with tunable porosity
  publication-title: Chem. Afr.
– volume: 28
  start-page: 5710
  year: 2016
  end-page: 5720
  ident: bib171
  article-title: Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions
  publication-title: Chem. Mater.
– volume: 39
  start-page: 8
  year: 2001
  end-page: 22
  ident: bib35
  article-title: Novel semi-IPN through vinyl silane polymerization and crosslinking within PVC films
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 48
  start-page: 6648
  year: 2007
  end-page: 6655
  ident: bib38
  article-title: Porous interpenetrating network hybrids synthesized within high internal phase emulsions
  publication-title: Polymer
– volume: 1
  start-page: 331
  year: 1972
  end-page: 341
  ident: bib75
  article-title: Latex interpenetrating polymer networks
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
– start-page: 31
  year: 2011
  end-page: 78
  ident: bib112
  article-title: Porous polymers from self-assembled structures
  publication-title: Porous Polymers
– year: 1929
  ident: bib110
  article-title: Manufacture of Goods of Rubber or Similar Material, BP 332,525
– volume: 197
  start-page: 267
  year: 2012
  end-page: 275
  ident: bib184
  article-title: Long lifetime in concentrated LiOH aqueous solution of air electrode protected with interpenetrating polymer network membrane
  publication-title: J. Power Sources
– volume: 109
  start-page: 16304
  year: 2005
  end-page: 16309
  ident: bib73
  article-title: Effect of polymer entanglement on the toughening of double network hydrogels
  publication-title: J. Phys. Chem. B
– volume: 17
  start-page: 2443
  year: 1973
  end-page: 2455
  ident: bib76
  article-title: Glass transition behavior of latex interpenetrating polymer networks based on methacrylic/acrylic pairs
  publication-title: J. Appl. Polym. Sci.
– volume: 10
  start-page: 5332
  year: 2019
  end-page: 5337
  ident: bib22
  article-title: Counting loops in sidechain-crosslinked polymers from elastic solids to single-chain nanoparticles
  publication-title: Chem. Sci.
– volume: 26
  start-page: 4468
  year: 2005
  end-page: 4475
  ident: bib74
  article-title: Biomechanical properties of high-toughness double network hydrogels
  publication-title: Biomaterials
– volume: 7
  start-page: 5742
  year: 2019
  end-page: 5761
  ident: bib133
  article-title: In situ-forming, mechanically resilient hydrogels for cell delivery
  publication-title: J. Mater. Chem. B
– volume: 30
  start-page: 1
  year: 2005
  end-page: 9
  ident: bib72
  article-title: Novel hydrogels with excellent mechanical performance
  publication-title: Prog. Polym. Sci.
– volume: 13
  start-page: 911
  year: 2017
  end-page: 920
  ident: bib169
  article-title: Dual physically crosslinked double network hydrogels with high toughness and self-healing properties
  publication-title: Soft Matter
– volume: 212
  start-page: 240
  year: 2011
  end-page: 251
  ident: bib61
  article-title: Porous semi-interpenetrating hydrogel networks based on dextran and polyacrylamide with superfast responsiveness
  publication-title: Macromol. Chem. Phys.
– volume: 52
  start-page: 819
  year: 2019
  end-page: 826
  ident: bib120
  article-title: Porous polystyrene monoliths prepared from in situ simultaneous interpenetrating polymer networks: modulation of morphology by polymerization kinetics
  publication-title: Macromolecules
– year: 2011
  ident: bib106
  article-title: Porous Polymers
– start-page: 1004
  year: 2015
  end-page: 1011
  ident: bib11
  article-title: Interpenetrating polymer networks (IPN): structure and mechanical behavior
  publication-title: Encyclopedia of Polymeric Nanomaterials
– volume: 76
  start-page: 892
  year: 2003
  end-page: 898
  ident: bib68
  article-title: Role of strain crystallization in the fatigue resistance of double network elastomers
  publication-title: Rubber Chem. Technol.
– volume: 81
  start-page: 316
  year: 2016
  end-page: 326
  ident: bib160
  article-title: Poly(2-hydroxyethyl methacrylate)-based porous hydrogel: influence of surfactant and SiO2 nanoparticles on the morphology, swelling and thermal properties
  publication-title: Eur. Polym. J.
– year: 1951
  ident: bib52
  article-title: Process for the Production of Strain-free Masses from Crosslinked Styrene-type Polymers
– volume: 21
  start-page: 2493
  year: 2020
  end-page: 2501
  ident: bib189
  article-title: PCL-based shape memory polymer semi-IPNs: the role of miscibility in tuning the degradation rate
  publication-title: Biomacromolecules
– start-page: 272
  year: 2004
  end-page: 311
  ident: bib6
  article-title: Interpenetrating Polymer Networks, Encyclopedia of Polymer Science and Technology
– volume: 274
  start-page: 488
  year: 2015
  end-page: 495
  ident: bib185
  article-title: Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane
  publication-title: J. Power Sources
– volume: 52
  start-page: 9512
  year: 2019
  end-page: 9525
  ident: bib165
  article-title: Double-network physical cross-linking strategy to promote bulk mechanical and surface adhesive properties of hydrogels
  publication-title: Macromolecules
– volume: 2
  start-page: 589
  year: 1985
  end-page: 596
  ident: bib81
  article-title: Electron-beam radiation-damage to organic inclusions in ice as an analytical tool for polymer science
  publication-title: J. Electron. Microsc. Tech.
– volume: 33
  start-page: 4132
  year: 2000
  end-page: 4137
  ident: bib66
  article-title: Mechanical and optical behavior of double network rubbers
  publication-title: Macromolecules
– volume: 13
  start-page: 485
  year: 2001
  end-page: 487
  ident: bib144
  article-title: The polyrotaxane gel: a topological gel by figure-of-eight cross-links
  publication-title: Adv. Mater.
– volume: 15
  start-page: 9949
  year: 2019
  end-page: 9964
  ident: bib187
  article-title: Poly(sodium acrylate) hydrogels: synthesis of various network architectures, local molecular dynamics, salt partitioning, desalination and simulation
  publication-title: Soft Matter
– volume: 21
  start-page: 1149
  year: 2020
  end-page: 1156
  ident: bib196
  article-title: Elastin-based thermoresponsive shape-memory hydrogels
  publication-title: Biomacromolecules
– volume: 8
  start-page: 6319
  year: 2017
  end-page: 6328
  ident: bib156
  article-title: Hydrogels through emulsion templating: sequential polymerization and double networks
  publication-title: Polym. Chem.
– volume: 29
  start-page: 824
  year: 1989
  end-page: 834
  ident: bib48
  article-title: Elastomeric latex domain-interpenetrating polymer networks - physical and rheological properties
  publication-title: Polym. Eng. Sci.
– volume: 77
  start-page: 1
  year: 2018
  end-page: 18
  ident: bib143
  article-title: Polymer composite hydrogels containing carbon nanomaterials—morphology and mechanical and functional performance
  publication-title: Prog. Polym. Sci.
– volume: 368
  start-page: 1
  year: 2011
  end-page: 17
  ident: bib7
  article-title: (Semi-)Interpenetrating polymer networks as fuel cell membranes
  publication-title: J. Membr. Sci.
– volume: 65
  start-page: 252
  year: 2015
  end-page: 267
  ident: bib129
  article-title: Biomedical applications of hydrogels: a review of patents and commercial products
  publication-title: Eur. Polym. J.
– volume: 47
  start-page: 4840
  year: 2009
  end-page: 4845
  ident: bib186
  article-title: Enhancing hydrophilicity in a hydrophobic porous emulsion-templated polyacrylate
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 7
  start-page: 477
  year: 2020
  end-page: 488
  ident: bib192
  article-title: An ambient-stable and stretchable ionic skin with multimodal sensation
  publication-title: Mater. Horiz.
– volume: 243
  start-page: 572
  year: 2014
  end-page: 590
  ident: bib9
  article-title: Design and applications of interpenetrating polymer network hydrogels. A review
  publication-title: Chem. Eng. J.
– volume: 26
  start-page: 1359
  year: 1985
  end-page: 1364
  ident: bib80
  article-title: Properties and structure of elastomeric 2-stage emulsion interpenetrating networks
  publication-title: Polymer
– volume: 220
  start-page: 24
  year: 1967
  end-page: 31
  ident: bib95
  article-title: Die elektronenmikroskopischen Darstellungen von ABS-Kunststoffen
  publication-title: Kolloid-Z. Z. Polym.
– volume: 53
  start-page: 1073
  year: 1920
  end-page: 1085
  ident: bib1
  article-title: Über polymerisation
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 55
  start-page: 54
  year: 2016
  end-page: 70
  ident: bib146
  article-title: A review: tailor-made hydrogel structures (classifications and synthesis parameters)
  publication-title: Polym. Plast. Technol. Eng.
– volume: 33
  start-page: 102
  year: 2000
  end-page: 107
  ident: bib150
  article-title: Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks
  publication-title: Macromolecules
– volume: 59
  start-page: 45
  year: 1996
  end-page: 50
  ident: bib29
  article-title: Interpenetrating polymer networks of photocrosslinkable cellulose derivatives
  publication-title: J. Appl. Polym. Sci.
– volume: 59
  start-page: 1472
  year: 2013
  end-page: 1478
  ident: bib151
  article-title: Amphiphilic interpenetrating polymer networks for the oral delivery of chemotherapeutics
  publication-title: AIChE J.
– volume: 19
  start-page: 1731
  year: 1975
  end-page: 1743
  ident: bib102
  article-title: Noise and vibration damping with latex interpenetrating polymer networks
  publication-title: J. Appl. Polym. Sci.
– year: 1981
  ident: bib5
  article-title: Interpenetrating Polymer Networks and Related Material
– volume: 22
  start-page: 1365
  year: 1984
  end-page: 1372
  ident: bib90
  article-title: Morphology of core-shell latex particles
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
– volume: 5
  start-page: 785
  year: 1922
  end-page: 806
  ident: bib3
  article-title: Über Isopren und Kautschuk. 5. Mitteilung. Über die Hydrierung des Kautschuks und über seine Konstitution
  publication-title: Helv. Chim. Acta
– volume: 93
  start-page: 1
  year: 2015
  end-page: 49
  ident: bib130
  article-title: Stimulus-responsive hydrogels: theory, modern advances, and applications
  publication-title: Mater. Sci. Eng. R Rep.
– volume: 45
  start-page: 63
  year: 1976
  end-page: 74
  ident: bib57
  article-title: Synthesis and properties of interpenetrating networks
  publication-title: Russ. Chem. Rev.
– volume: 36
  start-page: 5732
  year: 2003
  end-page: 5741
  ident: bib138
  article-title: Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(
  publication-title: Macromolecules
– volume: 8
  start-page: 337
  year: 2012
  end-page: 346
  ident: bib149
  article-title: Novel strategy for the determination of UCST-like microgels network structure: effect on swelling behavior and rheology
  publication-title: Soft Matter
– volume: 25
  start-page: 4171
  year: 2013
  end-page: 4176
  ident: bib174
  article-title: A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide
  publication-title: Adv. Mater.
– volume: 21
  start-page: 2845
  year: 1983
  end-page: 2861
  ident: bib92
  article-title: Morphology and grafting in polybutylacrylate-polystyrene core-shell emulsion polymerization
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
– volume: 40
  start-page: 5279
  year: 1999
  end-page: 5284
  ident: bib124
  article-title: Degradation of interpenetrating polymer networks based on PE and polymethacrylates by electron beam irradiation
  publication-title: Polymer
– volume: 89
  start-page: 1976
  year: 2003
  end-page: 1982
  ident: bib125
  article-title: Membrane properties of microporous structures prepared from polyethylene/polymethacrylate IPN
  publication-title: J. Appl. Polym. Sci.
– volume: 47
  start-page: 7043
  year: 2009
  end-page: 7053
  ident: bib64
  article-title: A degradable, porous, emulsion-templated polyacrylate
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 86
  start-page: 1707
  year: 2014
  ident: bib12
  article-title: Advances in interpenetrating polymer network hydrogels and their applications
  publication-title: Pure Appl. Chem.
– volume: 15
  start-page: 1155
  year: 2003
  end-page: 1158
  ident: bib69
  article-title: Double-network hydrogels with extremely high mechanical strength
  publication-title: Adv. Mater.
– volume: 60
  start-page: 140
  year: 2020
  end-page: 150
  ident: bib109
  article-title: The Chemistry of porous polymers: the holey grail
  publication-title: Isr. J. Chem.
– volume: 59
  start-page: 2784
  year: 2020
  end-page: 2792
  ident: bib33
  article-title: Photoswitchable sol–gel transitions and catalysis mediated by polymer networks with coumarin-decorated Cu
  publication-title: Angew. Chem. Int. Ed.
– volume: 291
  start-page: 2031
  year: 2013
  end-page: 2047
  ident: bib145
  article-title: A review on tough and sticky hydrogels
  publication-title: Colloid Polym. Sci.
– volume: 29
  start-page: 1547
  year: 1993
  end-page: 1551
  ident: bib25
  article-title: Properties of two kinds of room temperature cured interpenetrating polymer networks based on castor oil polyurethane
  publication-title: Eur. Polym. J.
– volume: 30
  start-page: 1706441
  year: 2018
  ident: bib17
  article-title: Advanced materials by atom transfer radical polymerization
  publication-title: Adv. Mater.
– volume: 41
  start-page: 1540
  year: 2001
  end-page: 1552
  ident: bib62
  article-title: High, internal phase emulsion foams: copolymers, and interpenetrating polymer networks
  publication-title: Polym. Eng. Sci.
– start-page: 127
  year: 2016
  end-page: 143
  ident: bib121
  article-title: Macro-, meso-, and nanoporous systems designed from IPNs
  publication-title: Micro‐ and Nano‐structured Interpenetrating Polymer Networks: from Design to Applications
– volume: 84
  year: 2017
  ident: bib46
  article-title: A model for the mullins effect in multinetwork elastomers
  publication-title: J. Appl. Mech.
– volume: 132
  year: 2015
  ident: bib148
  article-title: Dynamic swelling behavior of interpenetrating polymer networks in response to temperature and pH
  publication-title: J. Appl. Polym. Sci.
– volume: 25
  start-page: 1598
  year: 2015
  end-page: 1607
  ident: bib172
  article-title: A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties
  publication-title: Adv. Funct. Mater.
– volume: 217
  start-page: 1022
  year: 2016
  end-page: 1036
  ident: bib13
  article-title: Engineering of tough double network hydrogels
  publication-title: Macromol. Chem. Phys.
– volume: 11
  start-page: 241
  year: 1973
  end-page: 251
  ident: bib85
  article-title: Evidence for and against concentration gradients in polymerizing latex particles
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
– year: 2016
  ident: bib108
  article-title: Porous Polymers: Design, Synthesis and Applications, Porous Polymers: Design, Synthesis and Applications
– volume: 168
  start-page: 146
  year: 2019
  end-page: 154
  ident: bib159
  article-title: Robust, highly porous hydrogels templated within emulsions stabilized using a reactive, crosslinking triblock copolymer
  publication-title: Polymer
– volume: 142
  start-page: 287
  year: 2004
  end-page: 291
  ident: bib179
  article-title: Long-life air working conducting semi-IPN/ionic liquid based actuator
  publication-title: Synth. Met.
– volume: 42
  start-page: 4473
  year: 2001
  end-page: 4482
  ident: bib34
  article-title: Organic-inorganic networks in foams from high internal phase emulsion polymerizations
  publication-title: Polymer
– volume: 30
  start-page: 2000754
  year: 2020
  ident: bib194
  article-title: Fast switching of bright whiteness in channeled hydrogel networks
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 1685
  year: 2019
  end-page: 1694
  ident: bib23
  article-title: Revisiting the elasticity theory for real Gaussian phantom networks
  publication-title: Macromolecules
– volume: 46
  start-page: 2357
  year: 2008
  end-page: 2366
  ident: bib39
  article-title: Highly porous elastomer-silsesquioxane nanocomposites synthesized within high internal phase emulsions
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 204–206
  start-page: 198
  year: 2012
  end-page: 209
  ident: bib60
  article-title: Macroporous composite IPN hydrogels based on poly(acrylamide) and chitosan with tuned swelling and sorption of cationic dyes
  publication-title: Chem. Eng. J.
– volume: 53
  start-page: 1805
  year: 2012
  end-page: 1822
  ident: bib178
  article-title: Super tough double network hydrogels and their application as biomaterials
  publication-title: Polymer
– volume: 6
  start-page: 2583
  year: 2010
  end-page: 2590
  ident: bib164
  article-title: Why are double network hydrogels so tough?
  publication-title: Soft Matter
– volume: 5
  start-page: 7683
  year: 2017
  end-page: 7691
  ident: bib168
  article-title: High strength and self-healable gelatin/polyacrylamide double network hydrogels
  publication-title: J. Mater. Chem. B
– volume: 67
  start-page: 1164
  year: 1934
  end-page: 1172
  ident: bib4
  article-title: Über hochpolymere Verbindungen, 94. Mitteil.: Über ein unlösliches Poly‐styrol
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 20
  start-page: 1571
  year: 2008
  end-page: 1577
  ident: bib40
  article-title: Interconnected silsesquioxane-organic networks in porous nanocomposites synthesized within high internal phase emulsions
  publication-title: Chem. Mater.
– volume: 21
  start-page: 581
  year: 1950
  end-page: 591
  ident: bib43
  article-title: Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight
  publication-title: J. Appl. Phys.
– volume: 50
  start-page: 8297
  year: 2017
  end-page: 8316
  ident: bib134
  article-title: 50th anniversary perspective: networks and gels: soft but dynamic and tough
  publication-title: Macromolecules
– start-page: 1964
  year: 2008
  end-page: 2013
  ident: bib105
  article-title: Porous polymers and resins
  publication-title: Handbook of Porous Solids
– volume: 209
  start-page: 1564
  year: 2008
  end-page: 1575
  ident: bib162
  article-title: Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks
  publication-title: Macromol. Chem. Phys.
– volume: 12
  year: 2020
  ident: bib193
  article-title: Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites
  publication-title: Biofabrication
– volume: 12
  start-page: 1490
  year: 2012
  end-page: 1501
  ident: bib32
  article-title: Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds
  publication-title: Macromol. Biosci.
– year: 1914
  ident: bib51
  article-title: Plastic Composition
– start-page: 262
  year: 1982
  end-page: 302
  ident: bib16
  article-title: The Elements of Polymer Science and Engineering
– volume: 40
  start-page: 7306
  year: 2007
  end-page: 7310
  ident: bib98
  article-title: Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles
  publication-title: Macromolecules
– volume: 17
  start-page: 1805
  year: 1973
  end-page: 1811
  ident: bib96
  article-title: The physical limits of grafting in two-phase polymerization reactions
  publication-title: J. Appl. Polym. Sci.
– volume: 115
  start-page: 9110
  year: 2018
  ident: bib45
  article-title: Mechanics of elastomeric molecular composites
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 46
  start-page: 6682
  year: 2005
  end-page: 6694
  ident: bib36
  article-title: PolyHIPE: IPNs, hybrids, nanoscale porosity, silica monoliths and ICP-based sensors
  publication-title: Polymer
– start-page: 69
  year: 2011
  end-page: 82
  ident: bib50
  article-title: History of interpenetrating polymer networks starting with bakelite-based compositions
  publication-title: 100+ Years of Plastics. Leo Baekeland and beyond
– volume: 40
  start-page: 8329
  year: 2007
  end-page: 8335
  ident: bib37
  article-title: Silsesquioxane-cross-linked porous nanocomposites synthesized within high internal phase emulsions
  publication-title: Macromolecules
– start-page: 1311
  year: 1960
  end-page: 1317
  ident: bib54
  article-title: 263. Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates
  publication-title: J. Chem. Soc.
– volume: 33
  start-page: 2529
  year: 1987
  end-page: 2547
  ident: bib82
  article-title: Elastomeric domain-type interpenetrating polymer networks
  publication-title: J. Appl. Polym. Sci.
– start-page: 2000516
  year: 2020
  ident: bib197
  article-title: Improved mechanical durability of high-performance OPVs using semi-interpenetrating networks
  publication-title: Adv. Opt. Mater.
– volume: 42
  start-page: 1627
  year: 2009
  end-page: 1633
  ident: bib65
  article-title: Biodegradable porous polymers through emulsion templating
  publication-title: Macromolecules
– volume: 32
  start-page: 467
  year: 2013
  end-page: 513
  ident: bib20
  article-title: First principles modelling of free-radical polymerisation kinetics
  publication-title: Int. Rev. Phys. Chem.
– volume: 26
  start-page: 2482
  year: 2016
  end-page: 2492
  ident: bib47
  article-title: Characterizing large strain elasticity of brittle elastomeric networks by embedding them in a soft extensible matrix
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 1124
  year: 2004
  end-page: 1128
  ident: bib71
  article-title: High mechanical strength double‐network hydrogel with bacterial cellulose
  publication-title: Adv. Funct. Mater.
– volume: 112
  start-page: 3063
  year: 2009
  end-page: 3070
  ident: bib175
  article-title: Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers
  publication-title: J. Appl. Polym. Sci.
– volume: 50
  start-page: 12556
  year: 2011
  end-page: 12561
  ident: bib147
  article-title: Amphiphilic interpenetrating networks for the delivery of hydrophobic, low molecular weight therapeutic agents
  publication-title: Ind. Eng. Chem. Res.
– year: 1955
  ident: bib53
  article-title: Improvements Relating to the Production of Ion-Exchange Resins
– volume: 12
  start-page: 2123
  year: 1974
  end-page: 2132
  ident: bib89
  article-title: Latex particle morphology during polymerization and at saturation equilibrium
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
– volume: 59
  start-page: 5022
  year: 2020
  end-page: 5049
  ident: bib21
  article-title: Polymer networks: from plastics and gels to porous frameworks
  publication-title: Angew. Chem. Int. Ed.
– start-page: 677
  year: 2014
  end-page: 724
  ident: bib10
  article-title: Interpenetrating polymer networks
  publication-title: Polymer Blends Handbook
– volume: 7
  start-page: 247
  year: 1996
  end-page: 256
  ident: bib100
  article-title: Latex interpenetrating polymer networks: from structure to properties
  publication-title: Polym. Adv. Technol.
– start-page: 464
  year: 2004
  end-page: 543
  ident: bib14
  article-title: Principles of Polymerization
– volume: 48
  start-page: 7945
  year: 2015
  end-page: 7952
  ident: bib44
  article-title: Structure of tough multiple network elastomers by small angle neutron scattering
  publication-title: Macromolecules
– volume: 7
  year: 2018
  ident: bib158
  article-title: Structured macroporous hydrogels: progress, challenges, and opportunities
  publication-title: Adv. Healthc. Mater.
– volume: 9
  start-page: 746
  year: 1998
  end-page: 751
  ident: bib123
  article-title: Synthesis, electron irradiation modification and characterization of polyethylene/poly(butyl methacrylate-co-methyl methacrylate) interpenetrating polymer network
  publication-title: Polym. Adv. Technol.
– volume: 16
  start-page: 663
  year: 1995
  end-page: 666
  ident: bib28
  article-title: Doublestimuli‐responsive degradable hydrogels for drug delivery: interpenetrating polymer networks composed of oligopeptide‐terminated poly(ethylene glycol) and dextran
  publication-title: Macromol. Rapid Commun.
– volume: 52
  start-page: 839
  year: 2014
  end-page: 847
  ident: bib142
  article-title: High water content clay–nanocomposite hydrogels incorporating guanidinium-pendant methacrylamide: tuning of mechanical and swelling properties by supramolecular approach
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 24
  start-page: 306
  year: 1976
  end-page: 329
  ident: bib103
  article-title: Viscoelastic properties of acrylic latex interpenetrating polymer networks as broad temperature span vibration damping materials
  publication-title: ACS Symp. Ser.
– volume: 302
  start-page: 1600367
  year: 2017
  ident: bib161
  article-title: One‐pot fabrication of poly(ε‐caprolactone)‐incorporated bovine serum albumin/calcium alginate/hydroxyapatite nanocomposite scaffolds by high internal phase emulsion templates
  publication-title: Macromol. Mater. Eng.
– volume: 208
  start-page: 1
  year: 2007
  end-page: 227
  ident: bib41
  article-title: Phase-separated interpenetrating polymer networks
  publication-title: Adv. Polym. Sci.
– volume: 38
  start-page: 4301
  year: 2005
  end-page: 4310
  ident: bib113
  article-title: Nanopore formation in a polyphenylene low-k dielectric
  publication-title: Macromolecules
– volume: 14
  year: 1984
  ident: bib79
  article-title: Radiation-damage to latex-particles as an analytical tool in polymer science
  publication-title: Ultramicroscopy
– volume: 292
  start-page: 620
  year: 2007
  end-page: 626
  ident: bib140
  article-title: Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization
  publication-title: Macromol. Mater. Eng.
– volume: 35
  start-page: 332
  year: 2010
  end-page: 337
  ident: bib136
  article-title: Some hydrogels having novel molecular structures
  publication-title: Prog. Polym. Sci.
– volume: 37
  start-page: 1814
  year: 2016
  end-page: 1819
  ident: bib154
  article-title: Superabsorbent, high porosity, PAMPS‐based hydrogels through emulsion templating
  publication-title: Macromol. Rapid Commun.
– volume: 51
  start-page: 983
  year: 2019
  end-page: 988
  ident: bib183
  article-title: Development of novel network structures in crosslinked liquid-crystalline polymers
  publication-title: Polym. J.
– volume: 72
  start-page: 344
  year: 2015
  end-page: 364
  ident: bib131
  article-title: Extremely strong and tough hydrogels as prospective candidates for tissue repair – a review
  publication-title: Eur. Polym. J.
– volume: 30
  start-page: 1903
  year: 1985
  end-page: 1926
  ident: bib94
  article-title: Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene
  publication-title: J. Appl. Polym. Sci.
– volume: 24
  start-page: 1179
  year: 1979
  end-page: 1190
  ident: bib78
  article-title: Morphology and mechanical-behavior of polyvinyl chloride)-poly(butadiene-co-acrylonitrile) latex interpenetrating polymer networks
  publication-title: J. Appl. Polym. Sci.
– volume: 47
  start-page: 2140
  year: 2014
  end-page: 2148
  ident: bib173
  article-title: Fracture of the physically cross-linked first network in hybrid double network hydrogels
  publication-title: Macromolecules
– start-page: 595
  year: 1994
  end-page: 614
  ident: bib24
  article-title: Interpenetrating Polymer Networks from Castor Oil Polyurethane and Vinyl Copolymers, Interpenetrating Polymer Networks
– volume: 70
  start-page: 842
  year: 2017
  end-page: 855
  ident: bib135
  article-title: Mechanical properties of PNIPAM based hydrogels: a review
  publication-title: Mater. Sci. Eng. C
– start-page: 21
  year: 1985
  end-page: 56
  ident: bib42
  article-title: Recent developments in interpenetrating polymer networks and related materials
  publication-title: Multicomponent Polymer Materials
– volume: 48
  start-page: 1741
  year: 2019
  end-page: 1786
  ident: bib181
  article-title: Morphological/nanostructural control toward intrinsically stretchable organic electronics
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1
  year: 1973
  end-page: 23
  ident: bib97
  article-title: Morphologie von ABS-Pfropfkautschuken
  publication-title: Die Angewandte Makromolekulare Chemie
– volume: 16
  start-page: 46
  year: 1984
  end-page: 48
  ident: bib116
  article-title: The use of labile crosslinker for morphological studies in interpenetrating polymer networks
  publication-title: Br. Polym. J.
– volume: 109
  start-page: 110495
  year: 2020
  ident: bib195
  article-title: Fabrication of bicontinuous double networks as thermal and pH stimuli responsive drug carriers for on-demand release
  publication-title: Mater. Sci. Eng. C
– volume: 12
  start-page: 360
  year: 1979
  end-page: 369
  ident: bib26
  article-title: Simultaneous interpenetrating networks based on Castor oil elastomers and polystyrene. 2. Synthesis and systems characteristics
  publication-title: Macromolecules
– volume: 31
  start-page: 3766
  year: 2019
  end-page: 3776
  ident: bib176
  article-title: Fabrication of tough and stretchable hybrid double-network elastomers using ionic dissociation of polyelectrolyte in nonaqueous media
  publication-title: Chem. Mater.
– volume: 30
  start-page: 1743
  year: 2018
  end-page: 1754
  ident: bib170
  article-title: General strategy to fabricate strong and tough low-molecular-weight gelator-based supramolecular hydrogels with double network structure
  publication-title: Chem. Mater.
– volume: 19
  start-page: 2225
  year: 1975
  end-page: 2233
  ident: bib77
  article-title: Synthesis and behavior of polyvinyl chloride based latex interpenetrating polymer networks
  publication-title: J. Appl. Polym. Sci.
– volume: 15
  start-page: 625
  year: 1982
  end-page: 631
  ident: bib115
  article-title: Phase continuity in sequential poly(n-butyl acrylate)/polystyrene interpenetrating polymer networks
  publication-title: Macromolecules
– volume: 44
  start-page: 9683
  year: 2011
  end-page: 9691
  ident: bib180
  article-title: Flexible solid polymer electrolytes based on nitrile butadiene rubber/poly(ethylene oxide) interpenetrating polymer networks containing either LiTFSI or EMITFSI
  publication-title: Macromolecules
– volume: 11
  start-page: 8
  year: 2020
  end-page: 14
  ident: bib2
  article-title: Celebrating 100 years of “polymer science”: Hermann Staudinger's 1920 manifesto
  publication-title: Polym. Chem.
– volume: 30
  start-page: 416
  year: 1989
  end-page: 424
  ident: bib99
  article-title: Microstructure of polyacrylate polystyrene 2-stage lattices
  publication-title: Polymer
– volume: 8
  start-page: 12018
  year: 2016
  end-page: 12030
  ident: bib58
  article-title: Smart macroporous IPN hydrogels responsive to pH, temperature, and ionic strength: synthesis, characterization, and evaluation of controlled release of drugs
  publication-title: ACS Appl. Mater. Interfaces
– volume: 41
  start-page: 1469
  year: 2008
  end-page: 1474
  ident: bib63
  article-title: Porous polycaprolactone-polystyrene semi-interpenetrating polymer networks synthesized within high internal phase emulsions
  publication-title: Macromolecules
– volume: 18
  start-page: 3219
  year: 1980
  end-page: 3228
  ident: bib91
  article-title: Estimation of morphology of composite polymer emulsion particles by the soap titration method
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
– volume: 185
  start-page: 117
  year: 1960
  end-page: 118
  ident: bib126
  article-title: Hydrophilic gels for biological use
  publication-title: Nature
– volume: 55
  start-page: 919
  year: 1995
  end-page: 928
  ident: bib152
  article-title: Preparation and characterization of pH-sensitive, interpenetrating networks of poly(vinyl alcohol) and poly(acrylic acid)
  publication-title: J. Appl. Polym. Sci.
– volume: 139
  start-page: 33
  year: 2016
  end-page: 41
  ident: bib59
  article-title: Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery
  publication-title: Colloids Surf. B Biointerfaces
– volume: 11
  start-page: 143
  year: 1973
  end-page: 162
  ident: bib87
  article-title: Equilibrium encapsulation of polystyrene latex particles
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
– volume: 14
  start-page: 1120
  year: 2002
  end-page: 1124
  ident: bib137
  article-title: Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties
  publication-title: Adv. Mater.
– volume: 112
  start-page: 3959
  year: 2012
  end-page: 4015
  ident: bib107
  article-title: Design and preparation of porous polymers
  publication-title: Chem. Rev.
– volume: 34
  start-page: 317
  year: 2009
  end-page: 350
  ident: bib18
  article-title: Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels
  publication-title: Prog. Polym. Sci.
– volume: 43
  start-page: 74
  year: 1970
  end-page: 94
  ident: bib84
  article-title: Mechanism of emulsion polymerization
  publication-title: Rubber Chem. Technol.
– volume: 595
  start-page: 117511
  year: 2020
  ident: bib199
  article-title: Proton exchange membranes with cross-linked interpenetrating network of sulfonated polyvinyl alcohol and poly(2-acrylamido-2-methyl-1-propanesulfonic acid): excellent relative selectivity
  publication-title: J. Membr. Sci.
– volume: 12
  start-page: 11778
  year: 2020
  end-page: 11788
  ident: bib198
  article-title: Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc–air batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 4090
  year: 2020
  end-page: 4098
  ident: bib200
  article-title: Regulating color activation energy of mechanophore-linked multinetwork elastomers
  publication-title: Macromolecules
– volume: 27
  start-page: 1703086
  year: 2017
  ident: bib167
  article-title: Super bulk and interfacial toughness of physically crosslinked double-network hydrogels
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 6408
  year: 2014
  end-page: 6417
  ident: bib31
  article-title: Robust and degradable hydrogels from poly(ethylene glycol) and semi-interpenetrating collagen
  publication-title: Macromolecules
– volume: 3
  start-page: 1525
  year: 2007
  end-page: 1529
  ident: bib153
  article-title: Porous poly(2-hydroxyethyl methacrylate) hydrogels synthesized within high internal phase emulsions
  publication-title: Soft Matter
– start-page: 200
  year: 1993
  end-page: 213
  ident: bib15
  article-title: Fundamental Principles of Polymer Materials
– volume: 31
  start-page: 179
  year: 2019
  end-page: 189
  ident: bib166
  article-title: General principle for fabricating natural globular protein-based double-network hydrogels with integrated highly mechanical properties and surface adhesion on solid surfaces
  publication-title: Chem. Mater.
– volume: 39
  start-page: 1973
  year: 2014
  end-page: 1986
  ident: bib128
  article-title: In situ-forming injectable hydrogels for regenerative medicine
  publication-title: Prog. Polym. Sci.
– volume: 8
  start-page: 2617
  year: 1970
  end-page: 2629
  ident: bib86
  article-title: The morphology of the monomer–polymer particle in styrene emulsion polymerization
  publication-title: J. Polym. Sci. 1 Polym. Chem.
– volume: 37
  start-page: 5370
  year: 2004
  end-page: 5374
  ident: bib70
  article-title: Structural characteristics of double network gels with extremely high mechanical strength
  publication-title: Macromolecules
– volume: 287
  start-page: 1
  year: 2009
  end-page: 11
  ident: bib141
  article-title: Nanocomposite polymer hydrogels
  publication-title: Colloid Polym. Sci.
– volume: 48
  start-page: 7017
  year: 2007
  end-page: 7028
  ident: bib118
  article-title: Poly(d,l-lactide)/poly(methyl methacrylate) interpenetrating polymer networks: synthesis, characterization, and use as precursors to porous polymeric materials
  publication-title: Polymer
– year: 1955
  ident: bib83
  article-title: Emulsion Polymerization
– volume: 18
  start-page: 200
  year: 1978
  end-page: 203
  ident: bib27
  article-title: Simultaneous interpenetrating networks based on castor oil polyesters and polystyrene
  publication-title: Polym. Eng. Sci.
– volume: 40
  start-page: 2919
  year: 2007
  end-page: 2927
  ident: bib163
  article-title: Large strain hysteresis and mullins effect of tough double-network hydrogels
  publication-title: Macromolecules
– volume: 32
  start-page: 5208
  year: 2020
  end-page: 5216
  ident: bib190
  article-title: Simultaneous interpenetrating polymer network of collagen and hyaluronic acid as an in situ-forming corneal defect filler
  publication-title: Chem. Mater.
– volume: 38
  start-page: 672
  year: 2013
  end-page: 701
  ident: bib127
  article-title: Recent progress of in situ formed gels for biomedical applications
  publication-title: Prog. Polym. Sci.
– volume: 51
  start-page: 5890
  year: 2010
  end-page: 5894
  ident: bib119
  article-title: Porous polystyrene-based monolithic materials templated by semi-interpenetrating polymer networks for capillary electrochromatography
  publication-title: Polymer
– volume: 68
  start-page: 442
  year: 2019
  end-page: 451
  ident: bib132
  article-title: Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
– volume: 3
  start-page: 3654
  year: 2015
  end-page: 3676
  ident: bib177
  article-title: Fundamentals of double network hydrogels
  publication-title: J. Mater. Chem. B
– volume: 38
  start-page: 3482
  year: 2005
  end-page: 3490
  ident: bib139
  article-title: Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels
  publication-title: Macromolecules
– start-page: 3
  year: 1994
  end-page: 38
  ident: bib49
  article-title: Interpenetrating polymer networks: an overview
  publication-title: Interpenetrating Polymer Networks
– volume: 38
  start-page: 7274
  year: 2005
  end-page: 7285
  ident: bib117
  article-title: Design of porous polymeric materials from interpenetrating polymer networks (IPNs): poly(dl-lactide)/poly(methyl methacrylate)-based semi-IPN systems
  publication-title: Macromolecules
– volume: 8
  start-page: 5184
  year: 2020
  end-page: 5188
  ident: bib188
  article-title: Hydrogels toughened by biominerals providing energy-dissipative sacrificial bonds
  publication-title: J. Mater. Chem. B
– volume: 40
  start-page: 476
  year: 1967
  end-page: 483
  ident: bib56
  article-title: Viscoelastic properties of multiple network polymers. IV. Copolymers of styrene and divinylbenzene
  publication-title: Rubber Chem. Technol.
– volume: 68
  start-page: 1618
  year: 1935
  end-page: 1634
  ident: bib111
  article-title: Über hochpolymere Verbindungen, 116. Mitteil.: Über das begrenzt quellbare Poly-styrol
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 39
  start-page: 2998
  year: 2006
  end-page: 3006
  ident: bib114
  article-title: SANS and XRR porosimetry of a polyphenylene low-
  publication-title: Macromolecules
– volume: 65
  start-page: 1172
  year: 2013
  end-page: 1187
  ident: bib8
  article-title: Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
– volume: 25
  start-page: 257
  year: 1985
  end-page: 263
  ident: bib104
  article-title: Capillary extrusion of elastomeric emulsion crosslinked interpenetrating networks
  publication-title: Polym. Eng. Sci.
– volume: 126
  start-page: 386
  year: 2017
  end-page: 394
  ident: bib157
  article-title: Doubly-crosslinked, emulsion-templated hydrogels through reversible metal coordination
  publication-title: Polymer
– volume: 20
  start-page: 45
  year: 1982
  end-page: 51
  ident: bib93
  article-title: Studies on suspension and emulsion. li. peculiar morphology of composite polymer particles produced by seeded emulsion polymerization
  publication-title: J. Polym. Sci., Polym. Lett. Ed.
– volume: 16
  start-page: S280
  year: 2007
  end-page: S287
  ident: bib182
  article-title: Interpenetrating networks of elastomers exhibiting 300% electrically-induced area strain
  publication-title: Smart Mater. Struct.
– volume: 65
  start-page: 280
  year: 2016
  end-page: 289
  ident: bib155
  article-title: High porosity, responsive hydrogel copolymers from emulsion templating
  publication-title: Polym. Int.
– reference: P. Giusti, L. Callegaro, Biomaterial Comprising Hyaluronic Acid and Derivatives Thereof in Interpenetrating Polymer Networks (IPN), US Patent 5,644,049, 1997.
– volume: 78
  start-page: 76
  year: 2005
  end-page: 83
  ident: bib67
  article-title: The payne effect in double network elastomers
  publication-title: Rubber Chem. Technol.
– volume: 11
  start-page: 301
  year: 1973
  end-page: 303
  ident: bib88
  article-title: Particle morphology in emulsion polymerization
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
– volume: 7
  start-page: 775
  year: 1969
  end-page: 779
  ident: bib55
  article-title: A topologically interpenetrating elastomeric network
  publication-title: J. Polym. Sci. B Polym. Lett.
– year: 2016
  ident: 10.1016/j.polymer.2020.122929_bib108
– volume: 31
  start-page: 179
  issue: 1
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib166
  article-title: General principle for fabricating natural globular protein-based double-network hydrogels with integrated highly mechanical properties and surface adhesion on solid surfaces
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03860
– volume: 9
  start-page: 746
  issue: 10‐11
  year: 1998
  ident: 10.1016/j.polymer.2020.122929_bib123
  article-title: Synthesis, electron irradiation modification and characterization of polyethylene/poly(butyl methacrylate-co-methyl methacrylate) interpenetrating polymer network
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/(SICI)1099-1581(1998100)9:10/11<746::AID-PAT847>3.0.CO;2-X
– volume: 59
  start-page: 5022
  issue: 13
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib21
  article-title: Polymer networks: from plastics and gels to porous frameworks
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201902900
– volume: 59
  start-page: 2784
  issue: 7
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib33
  article-title: Photoswitchable sol–gel transitions and catalysis mediated by polymer networks with coumarin-decorated Cu24L24 metal–organic cages as junctions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913297
– start-page: 677
  year: 2014
  ident: 10.1016/j.polymer.2020.122929_bib10
  article-title: Interpenetrating polymer networks
– year: 1951
  ident: 10.1016/j.polymer.2020.122929_bib52
– start-page: 2000516
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib197
  article-title: Improved mechanical durability of high-performance OPVs using semi-interpenetrating networks
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000516
– volume: 29
  start-page: 824
  issue: 12
  year: 1989
  ident: 10.1016/j.polymer.2020.122929_bib48
  article-title: Elastomeric latex domain-interpenetrating polymer networks - physical and rheological properties
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760291211
– volume: 40
  start-page: 5279
  issue: 19
  year: 1999
  ident: 10.1016/j.polymer.2020.122929_bib124
  article-title: Degradation of interpenetrating polymer networks based on PE and polymethacrylates by electron beam irradiation
  publication-title: Polymer
  doi: 10.1016/S0032-3861(98)00757-5
– volume: 11
  start-page: 241
  issue: 1
  year: 1973
  ident: 10.1016/j.polymer.2020.122929_bib85
  article-title: Evidence for and against concentration gradients in polymerizing latex particles
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
  doi: 10.1002/pol.1973.170110120
– volume: 59
  start-page: 45
  issue: 1
  year: 1996
  ident: 10.1016/j.polymer.2020.122929_bib29
  article-title: Interpenetrating polymer networks of photocrosslinkable cellulose derivatives
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19960103)59:1<45::AID-APP7>3.0.CO;2-M
– start-page: 127
  year: 2016
  ident: 10.1016/j.polymer.2020.122929_bib121
  article-title: Macro-, meso-, and nanoporous systems designed from IPNs
– volume: 212
  start-page: 240
  issue: 3
  year: 2011
  ident: 10.1016/j.polymer.2020.122929_bib61
  article-title: Porous semi-interpenetrating hydrogel networks based on dextran and polyacrylamide with superfast responsiveness
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201000519
– volume: 12
  issue: 3
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib193
  article-title: Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab8708
– volume: 60
  start-page: 140
  issue: 1–2
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib109
  article-title: The Chemistry of porous polymers: the holey grail
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.202000003
– volume: 132
  issue: 24
  year: 2015
  ident: 10.1016/j.polymer.2020.122929_bib148
  article-title: Dynamic swelling behavior of interpenetrating polymer networks in response to temperature and pH
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.42076
– start-page: 595
  year: 1994
  ident: 10.1016/j.polymer.2020.122929_bib24
– volume: 43
  start-page: 74
  issue: 1
  year: 1970
  ident: 10.1016/j.polymer.2020.122929_bib84
  article-title: Mechanism of emulsion polymerization
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3547244
– volume: 31
  start-page: 3766
  issue: 10
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib176
  article-title: Fabrication of tough and stretchable hybrid double-network elastomers using ionic dissociation of polyelectrolyte in nonaqueous media
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b00871
– volume: 18
  start-page: 3219
  issue: 11
  year: 1980
  ident: 10.1016/j.polymer.2020.122929_bib91
  article-title: Estimation of morphology of composite polymer emulsion particles by the soap titration method
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
  doi: 10.1002/pol.1980.170181108
– volume: 595
  start-page: 117511
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib199
  article-title: Proton exchange membranes with cross-linked interpenetrating network of sulfonated polyvinyl alcohol and poly(2-acrylamido-2-methyl-1-propanesulfonic acid): excellent relative selectivity
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117511
– volume: 20
  start-page: 1571
  issue: 4
  year: 2008
  ident: 10.1016/j.polymer.2020.122929_bib40
  article-title: Interconnected silsesquioxane-organic networks in porous nanocomposites synthesized within high internal phase emulsions
  publication-title: Chem. Mater.
  doi: 10.1021/cm0718062
– volume: 3
  start-page: 3654
  issue: 18
  year: 2015
  ident: 10.1016/j.polymer.2020.122929_bib177
  article-title: Fundamentals of double network hydrogels
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00123D
– volume: 25
  start-page: 4171
  issue: 30
  year: 2013
  ident: 10.1016/j.polymer.2020.122929_bib174
  article-title: A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300817
– volume: 21
  start-page: 1149
  issue: 3
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib196
  article-title: Elastin-based thermoresponsive shape-memory hydrogels
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b01541
– volume: 21
  start-page: 2493
  issue: 6
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib189
  article-title: PCL-based shape memory polymer semi-IPNs: the role of miscibility in tuning the degradation rate
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c00454
– volume: 109
  start-page: 110495
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib195
  article-title: Fabrication of bicontinuous double networks as thermal and pH stimuli responsive drug carriers for on-demand release
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110495
– volume: 126
  start-page: 386
  year: 2017
  ident: 10.1016/j.polymer.2020.122929_bib157
  article-title: Doubly-crosslinked, emulsion-templated hydrogels through reversible metal coordination
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.07.044
– volume: 10
  start-page: 5332
  issue: 20
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib22
  article-title: Counting loops in sidechain-crosslinked polymers from elastic solids to single-chain nanoparticles
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC01297D
– start-page: 272
  year: 2004
  ident: 10.1016/j.polymer.2020.122929_bib6
– volume: 7
  start-page: 247
  issue: 4
  year: 1996
  ident: 10.1016/j.polymer.2020.122929_bib100
  article-title: Latex interpenetrating polymer networks: from structure to properties
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/(SICI)1099-1581(199604)7:4<247::AID-PAT527>3.0.CO;2-X
– volume: 25
  start-page: 1598
  issue: 10
  year: 2015
  ident: 10.1016/j.polymer.2020.122929_bib172
  article-title: A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201404357
– volume: 48
  start-page: 7017
  issue: 24
  year: 2007
  ident: 10.1016/j.polymer.2020.122929_bib118
  article-title: Poly(d,l-lactide)/poly(methyl methacrylate) interpenetrating polymer networks: synthesis, characterization, and use as precursors to porous polymeric materials
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.09.044
– volume: 112
  start-page: 3063
  issue: 5
  year: 2009
  ident: 10.1016/j.polymer.2020.122929_bib175
  article-title: Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.29572
– volume: 5
  start-page: 7683
  issue: 37
  year: 2017
  ident: 10.1016/j.polymer.2020.122929_bib168
  article-title: High strength and self-healable gelatin/polyacrylamide double network hydrogels
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB01780D
– volume: 28
  start-page: 5710
  issue: 16
  year: 2016
  ident: 10.1016/j.polymer.2020.122929_bib171
  article-title: Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01920
– volume: 32
  start-page: 5208
  issue: 12
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib190
  article-title: Simultaneous interpenetrating polymer network of collagen and hyaluronic acid as an in situ-forming corneal defect filler
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c01307
– volume: 20
  start-page: 45
  issue: 1
  year: 1982
  ident: 10.1016/j.polymer.2020.122929_bib93
  article-title: Studies on suspension and emulsion. li. peculiar morphology of composite polymer particles produced by seeded emulsion polymerization
  publication-title: J. Polym. Sci., Polym. Lett. Ed.
  doi: 10.1002/pol.1982.130200107
– volume: 52
  start-page: 9512
  issue: 24
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib165
  article-title: Double-network physical cross-linking strategy to promote bulk mechanical and surface adhesive properties of hydrogels
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01686
– volume: 50
  start-page: 12556
  issue: 22
  year: 2011
  ident: 10.1016/j.polymer.2020.122929_bib147
  article-title: Amphiphilic interpenetrating networks for the delivery of hydrophobic, low molecular weight therapeutic agents
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201593h
– volume: 48
  start-page: 6648
  issue: 22
  year: 2007
  ident: 10.1016/j.polymer.2020.122929_bib38
  article-title: Porous interpenetrating network hybrids synthesized within high internal phase emulsions
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.09.009
– volume: 65
  start-page: 280
  issue: 3
  year: 2016
  ident: 10.1016/j.polymer.2020.122929_bib155
  article-title: High porosity, responsive hydrogel copolymers from emulsion templating
  publication-title: Polym. Int.
  doi: 10.1002/pi.5052
– volume: 48
  start-page: 1741
  issue: 6
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib181
  article-title: Morphological/nanostructural control toward intrinsically stretchable organic electronics
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00834E
– volume: 47
  start-page: 2140
  issue: 6
  year: 2014
  ident: 10.1016/j.polymer.2020.122929_bib173
  article-title: Fracture of the physically cross-linked first network in hybrid double network hydrogels
  publication-title: Macromolecules
  doi: 10.1021/ma402542r
– volume: 24
  start-page: 1179
  issue: 5
  year: 1979
  ident: 10.1016/j.polymer.2020.122929_bib78
  article-title: Morphology and mechanical-behavior of polyvinyl chloride)-poly(butadiene-co-acrylonitrile) latex interpenetrating polymer networks
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1979.070240504
– volume: 48
  start-page: 7945
  issue: 21
  year: 2015
  ident: 10.1016/j.polymer.2020.122929_bib44
  article-title: Structure of tough multiple network elastomers by small angle neutron scattering
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01979
– volume: 52
  start-page: 819
  issue: 3
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib120
  article-title: Porous polystyrene monoliths prepared from in situ simultaneous interpenetrating polymer networks: modulation of morphology by polymerization kinetics
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01923
– ident: 10.1016/j.polymer.2020.122929_bib101
– volume: 208
  start-page: 1
  year: 2007
  ident: 10.1016/j.polymer.2020.122929_bib41
  article-title: Phase-separated interpenetrating polymer networks
  publication-title: Adv. Polym. Sci.
  doi: 10.1007/12_2007_116
– volume: 32
  start-page: 467
  issue: 3
  year: 2013
  ident: 10.1016/j.polymer.2020.122929_bib20
  article-title: First principles modelling of free-radical polymerisation kinetics
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2013.797277
– volume: 38
  start-page: 672
  issue: 3–4
  year: 2013
  ident: 10.1016/j.polymer.2020.122929_bib127
  article-title: Recent progress of in situ formed gels for biomedical applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2012.08.002
– year: 1914
  ident: 10.1016/j.polymer.2020.122929_bib51
– volume: 17
  start-page: 2443
  issue: 8
  year: 1973
  ident: 10.1016/j.polymer.2020.122929_bib76
  article-title: Glass transition behavior of latex interpenetrating polymer networks based on methacrylic/acrylic pairs
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1973.070170811
– volume: 14
  start-page: 1120
  issue: 16
  year: 2002
  ident: 10.1016/j.polymer.2020.122929_bib137
  article-title: Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
– volume: 8
  start-page: 5184
  issue: 24
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib188
  article-title: Hydrogels toughened by biominerals providing energy-dissipative sacrificial bonds
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB00833H
– volume: 15
  start-page: 1155
  issue: 14
  year: 2003
  ident: 10.1016/j.polymer.2020.122929_bib69
  article-title: Double-network hydrogels with extremely high mechanical strength
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200304907
– volume: 2
  start-page: 253
  issue: 2
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib122
  article-title: Oligoester-derivatized (Semi-)Interpenetrating polymer networks as nanostructured precursors to porous materials with tunable porosity
  publication-title: Chem. Afr.
  doi: 10.1007/s42250-019-00044-3
– volume: 47
  start-page: 7043
  issue: 24
  year: 2009
  ident: 10.1016/j.polymer.2020.122929_bib64
  article-title: A degradable, porous, emulsion-templated polyacrylate
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.23744
– volume: 3
  start-page: 1525
  issue: 12
  year: 2007
  ident: 10.1016/j.polymer.2020.122929_bib153
  article-title: Porous poly(2-hydroxyethyl methacrylate) hydrogels synthesized within high internal phase emulsions
  publication-title: Soft Matter
  doi: 10.1039/b711610a
– start-page: 464
  year: 2004
  ident: 10.1016/j.polymer.2020.122929_bib14
– volume: 21
  start-page: 581
  issue: 6
  year: 1950
  ident: 10.1016/j.polymer.2020.122929_bib43
  article-title: Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1699711
– volume: 16
  start-page: 663
  issue: 9
  year: 1995
  ident: 10.1016/j.polymer.2020.122929_bib28
  article-title: Doublestimuli‐responsive degradable hydrogels for drug delivery: interpenetrating polymer networks composed of oligopeptide‐terminated poly(ethylene glycol) and dextran
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.1995.030160905
– volume: 38
  start-page: 4301
  issue: 10
  year: 2005
  ident: 10.1016/j.polymer.2020.122929_bib113
  article-title: Nanopore formation in a polyphenylene low-k dielectric
  publication-title: Macromolecules
  doi: 10.1021/ma047353t
– volume: 68
  start-page: 442
  issue: 8
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib132
  article-title: Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  doi: 10.1080/00914037.2018.1455680
– volume: 38
  start-page: 3482
  issue: 8
  year: 2005
  ident: 10.1016/j.polymer.2020.122929_bib139
  article-title: Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels
  publication-title: Macromolecules
  doi: 10.1021/ma047431c
– year: 2011
  ident: 10.1016/j.polymer.2020.122929_bib106
– volume: 139
  start-page: 33
  year: 2016
  ident: 10.1016/j.polymer.2020.122929_bib59
  article-title: Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2015.12.011
– volume: 13
  start-page: 485
  issue: 7
  year: 2001
  ident: 10.1016/j.polymer.2020.122929_bib144
  article-title: The polyrotaxane gel: a topological gel by figure-of-eight cross-links
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T
– start-page: 69
  year: 2011
  ident: 10.1016/j.polymer.2020.122929_bib50
  article-title: History of interpenetrating polymer networks starting with bakelite-based compositions
– volume: 2
  start-page: 589
  issue: 6
  year: 1985
  ident: 10.1016/j.polymer.2020.122929_bib81
  article-title: Electron-beam radiation-damage to organic inclusions in ice as an analytical tool for polymer science
  publication-title: J. Electron. Microsc. Tech.
  doi: 10.1002/jemt.1060020610
– volume: 81
  start-page: 316
  year: 2016
  ident: 10.1016/j.polymer.2020.122929_bib160
  article-title: Poly(2-hydroxyethyl methacrylate)-based porous hydrogel: influence of surfactant and SiO2 nanoparticles on the morphology, swelling and thermal properties
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2016.06.021
– volume: 68
  start-page: 1618
  issue: 8
  year: 1935
  ident: 10.1016/j.polymer.2020.122929_bib111
  article-title: Über hochpolymere Verbindungen, 116. Mitteil.: Über das begrenzt quellbare Poly-styrol
  publication-title: Ber. Dtsch. Chem. Ges.
  doi: 10.1002/cber.19350680841
– volume: 41
  start-page: 1540
  issue: 9
  year: 2001
  ident: 10.1016/j.polymer.2020.122929_bib62
  article-title: High, internal phase emulsion foams: copolymers, and interpenetrating polymer networks
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.10853
– volume: 12
  start-page: 11778
  issue: 10
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib198
  article-title: Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc–air batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00325
– volume: 76
  start-page: 892
  issue: 4
  year: 2003
  ident: 10.1016/j.polymer.2020.122929_bib68
  article-title: Role of strain crystallization in the fatigue resistance of double network elastomers
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3547779
– volume: 8
  start-page: 12018
  issue: 19
  year: 2016
  ident: 10.1016/j.polymer.2020.122929_bib58
  article-title: Smart macroporous IPN hydrogels responsive to pH, temperature, and ionic strength: synthesis, characterization, and evaluation of controlled release of drugs
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02264
– volume: 35
  start-page: 332
  issue: 3
  year: 2010
  ident: 10.1016/j.polymer.2020.122929_bib136
  article-title: Some hydrogels having novel molecular structures
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2009.12.002
– start-page: 1311
  year: 1960
  ident: 10.1016/j.polymer.2020.122929_bib54
  article-title: 263. Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates
  publication-title: J. Chem. Soc.
  doi: 10.1039/JR9600001311
– volume: 55
  start-page: 54
  issue: 1
  year: 2016
  ident: 10.1016/j.polymer.2020.122929_bib146
  article-title: A review: tailor-made hydrogel structures (classifications and synthesis parameters)
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602559.2015.1050520
– volume: 8
  start-page: 337
  issue: 2
  year: 2012
  ident: 10.1016/j.polymer.2020.122929_bib149
  article-title: Novel strategy for the determination of UCST-like microgels network structure: effect on swelling behavior and rheology
  publication-title: Soft Matter
  doi: 10.1039/C1SM06489D
– volume: 39
  start-page: 8
  issue: 1
  year: 2001
  ident: 10.1016/j.polymer.2020.122929_bib35
  article-title: Novel semi-IPN through vinyl silane polymerization and crosslinking within PVC films
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/1099-0518(20010101)39:1<8::AID-POLA20>3.0.CO;2-Q
– volume: 42
  start-page: 1627
  issue: 5
  year: 2009
  ident: 10.1016/j.polymer.2020.122929_bib65
  article-title: Biodegradable porous polymers through emulsion templating
  publication-title: Macromolecules
  doi: 10.1021/ma802461m
– volume: 40
  start-page: 8329
  issue: 23
  year: 2007
  ident: 10.1016/j.polymer.2020.122929_bib37
  article-title: Silsesquioxane-cross-linked porous nanocomposites synthesized within high internal phase emulsions
  publication-title: Macromolecules
  doi: 10.1021/ma071417t
– volume: 34
  start-page: 317
  issue: 4
  year: 2009
  ident: 10.1016/j.polymer.2020.122929_bib18
  article-title: Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2009.01.001
– volume: 302
  start-page: 1600367
  issue: 4
  year: 2017
  ident: 10.1016/j.polymer.2020.122929_bib161
  article-title: One‐pot fabrication of poly(ε‐caprolactone)‐incorporated bovine serum albumin/calcium alginate/hydroxyapatite nanocomposite scaffolds by high internal phase emulsion templates
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201600367
– volume: 53
  start-page: 4090
  issue: 10
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib200
  article-title: Regulating color activation energy of mechanophore-linked multinetwork elastomers
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c00477
– volume: 12
  start-page: 2123
  issue: 9
  year: 1974
  ident: 10.1016/j.polymer.2020.122929_bib89
  article-title: Latex particle morphology during polymerization and at saturation equilibrium
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
  doi: 10.1002/pol.1974.170120930
– volume: 59
  start-page: 1472
  issue: 5
  year: 2013
  ident: 10.1016/j.polymer.2020.122929_bib151
  article-title: Amphiphilic interpenetrating polymer networks for the oral delivery of chemotherapeutics
  publication-title: AIChE J.
  doi: 10.1002/aic.14077
– volume: 168
  start-page: 146
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib159
  article-title: Robust, highly porous hydrogels templated within emulsions stabilized using a reactive, crosslinking triblock copolymer
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.02.010
– volume: 13
  start-page: 911
  issue: 5
  year: 2017
  ident: 10.1016/j.polymer.2020.122929_bib169
  article-title: Dual physically crosslinked double network hydrogels with high toughness and self-healing properties
  publication-title: Soft Matter
  doi: 10.1039/C6SM02567F
– volume: 40
  start-page: 476
  issue: 2
  year: 1967
  ident: 10.1016/j.polymer.2020.122929_bib56
  article-title: Viscoelastic properties of multiple network polymers. IV. Copolymers of styrene and divinylbenzene
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3539061
– volume: 243
  start-page: 572
  year: 2014
  ident: 10.1016/j.polymer.2020.122929_bib9
  article-title: Design and applications of interpenetrating polymer network hydrogels. A review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.01.065
– volume: 29
  start-page: 1
  issue: 1
  year: 1973
  ident: 10.1016/j.polymer.2020.122929_bib97
  article-title: Morphologie von ABS-Pfropfkautschuken
  publication-title: Die Angewandte Makromolekulare Chemie
  doi: 10.1002/apmc.1973.050290101
– volume: 7
  issue: 1
  year: 2018
  ident: 10.1016/j.polymer.2020.122929_bib158
  article-title: Structured macroporous hydrogels: progress, challenges, and opportunities
  publication-title: Adv. Healthc. Mater.
– volume: 38
  start-page: 7274
  issue: 17
  year: 2005
  ident: 10.1016/j.polymer.2020.122929_bib117
  article-title: Design of porous polymeric materials from interpenetrating polymer networks (IPNs): poly(dl-lactide)/poly(methyl methacrylate)-based semi-IPN systems
  publication-title: Macromolecules
  doi: 10.1021/ma0501390
– year: 1955
  ident: 10.1016/j.polymer.2020.122929_bib53
– volume: 53
  start-page: 1073
  issue: 6
  year: 1920
  ident: 10.1016/j.polymer.2020.122929_bib1
  article-title: Über polymerisation
  publication-title: Ber. Dtsch. Chem. Ges.
  doi: 10.1002/cber.19200530627
– start-page: 1964
  year: 2008
  ident: 10.1016/j.polymer.2020.122929_bib105
  article-title: Porous polymers and resins
– volume: 142
  start-page: 287
  issue: 1
  year: 2004
  ident: 10.1016/j.polymer.2020.122929_bib179
  article-title: Long-life air working conducting semi-IPN/ionic liquid based actuator
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2003.10.005
– volume: 291
  start-page: 2031
  issue: 9
  year: 2013
  ident: 10.1016/j.polymer.2020.122929_bib145
  article-title: A review on tough and sticky hydrogels
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-013-3021-y
– volume: 24
  start-page: 306
  year: 1976
  ident: 10.1016/j.polymer.2020.122929_bib103
  article-title: Viscoelastic properties of acrylic latex interpenetrating polymer networks as broad temperature span vibration damping materials
  publication-title: ACS Symp. Ser.
  doi: 10.1021/bk-1976-0024.ch020
– volume: 368
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.polymer.2020.122929_bib7
  article-title: (Semi-)Interpenetrating polymer networks as fuel cell membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.11.020
– volume: 65
  start-page: 252
  year: 2015
  ident: 10.1016/j.polymer.2020.122929_bib129
  article-title: Biomedical applications of hydrogels: a review of patents and commercial products
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2014.11.024
– volume: 30
  start-page: 1903
  issue: 5
  year: 1985
  ident: 10.1016/j.polymer.2020.122929_bib94
  article-title: Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1985.070300510
– year: 1955
  ident: 10.1016/j.polymer.2020.122929_bib83
– volume: 209
  start-page: 1564
  issue: 15
  year: 2008
  ident: 10.1016/j.polymer.2020.122929_bib162
  article-title: Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200800133
– volume: 29
  start-page: 1547
  issue: 12
  year: 1993
  ident: 10.1016/j.polymer.2020.122929_bib25
  article-title: Properties of two kinds of room temperature cured interpenetrating polymer networks based on castor oil polyurethane
  publication-title: Eur. Polym. J.
  doi: 10.1016/0014-3057(93)90245-B
– volume: 32
  start-page: 2353
  issue: 6
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib191
  article-title: Interpenetrating polymer network hydrogels via a one-pot and in situ gelation system based on peptide self-assembly and orthogonal cross-linking for tissue regeneration
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04725
– volume: 53
  start-page: 1805
  issue: 9
  year: 2012
  ident: 10.1016/j.polymer.2020.122929_bib178
  article-title: Super tough double network hydrogels and their application as biomaterials
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.03.013
– volume: 36
  start-page: 5732
  issue: 15
  year: 2003
  ident: 10.1016/j.polymer.2020.122929_bib138
  article-title: Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay
  publication-title: Macromolecules
  doi: 10.1021/ma034366i
– volume: 18
  start-page: 200
  issue: 3
  year: 1978
  ident: 10.1016/j.polymer.2020.122929_bib27
  article-title: Simultaneous interpenetrating networks based on castor oil polyesters and polystyrene
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760180305
– volume: 46
  start-page: 2357
  issue: 7
  year: 2008
  ident: 10.1016/j.polymer.2020.122929_bib39
  article-title: Highly porous elastomer-silsesquioxane nanocomposites synthesized within high internal phase emulsions
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.22570
– volume: 33
  start-page: 4132
  issue: 11
  year: 2000
  ident: 10.1016/j.polymer.2020.122929_bib66
  article-title: Mechanical and optical behavior of double network rubbers
  publication-title: Macromolecules
  doi: 10.1021/ma000145q
– volume: 11
  start-page: 301
  issue: 1
  year: 1973
  ident: 10.1016/j.polymer.2020.122929_bib88
  article-title: Particle morphology in emulsion polymerization
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
  doi: 10.1002/pol.1973.170110126
– volume: 41
  start-page: 1469
  issue: 4
  year: 2008
  ident: 10.1016/j.polymer.2020.122929_bib63
  article-title: Porous polycaprolactone-polystyrene semi-interpenetrating polymer networks synthesized within high internal phase emulsions
  publication-title: Macromolecules
  doi: 10.1021/ma7027177
– volume: 52
  start-page: 1685
  issue: 4
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib23
  article-title: Revisiting the elasticity theory for real Gaussian phantom networks
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01676
– volume: 11
  start-page: 8
  issue: 1
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib2
  article-title: Celebrating 100 years of “polymer science”: Hermann Staudinger's 1920 manifesto
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY90161B
– volume: 26
  start-page: 2482
  issue: 15
  year: 2016
  ident: 10.1016/j.polymer.2020.122929_bib47
  article-title: Characterizing large strain elasticity of brittle elastomeric networks by embedding them in a soft extensible matrix
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504536
– volume: 7
  start-page: 775
  issue: 11
  year: 1969
  ident: 10.1016/j.polymer.2020.122929_bib55
  article-title: A topologically interpenetrating elastomeric network
  publication-title: J. Polym. Sci. B Polym. Lett.
  doi: 10.1002/pol.1969.110071104
– volume: 7
  start-page: 477
  issue: 2
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib192
  article-title: An ambient-stable and stretchable ionic skin with multimodal sensation
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00715F
– volume: 21
  start-page: 2845
  issue: 10
  year: 1983
  ident: 10.1016/j.polymer.2020.122929_bib92
  article-title: Morphology and grafting in polybutylacrylate-polystyrene core-shell emulsion polymerization
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
  doi: 10.1002/pol.1983.170211001
– volume: 40
  start-page: 2919
  issue: 8
  year: 2007
  ident: 10.1016/j.polymer.2020.122929_bib163
  article-title: Large strain hysteresis and mullins effect of tough double-network hydrogels
  publication-title: Macromolecules
  doi: 10.1021/ma062924y
– start-page: 200
  year: 1993
  ident: 10.1016/j.polymer.2020.122929_bib15
– volume: 30
  start-page: 1706441
  issue: 23
  year: 2018
  ident: 10.1016/j.polymer.2020.122929_bib17
  article-title: Advanced materials by atom transfer radical polymerization
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706441
– start-page: 31
  year: 2011
  ident: 10.1016/j.polymer.2020.122929_bib112
  article-title: Porous polymers from self-assembled structures
– volume: 274
  start-page: 488
  year: 2015
  ident: 10.1016/j.polymer.2020.122929_bib185
  article-title: Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.059
– volume: 78
  start-page: 76
  issue: 1
  year: 2005
  ident: 10.1016/j.polymer.2020.122929_bib67
  article-title: The payne effect in double network elastomers
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3547874
– volume: 217
  start-page: 1022
  issue: 9
  year: 2016
  ident: 10.1016/j.polymer.2020.122929_bib13
  article-title: Engineering of tough double network hydrogels
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201600038
– volume: 70
  start-page: 842
  year: 2017
  ident: 10.1016/j.polymer.2020.122929_bib135
  article-title: Mechanical properties of PNIPAM based hydrogels: a review
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.09.081
– volume: 204–206
  start-page: 198
  year: 2012
  ident: 10.1016/j.polymer.2020.122929_bib60
  article-title: Macroporous composite IPN hydrogels based on poly(acrylamide) and chitosan with tuned swelling and sorption of cationic dyes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.07.126
– volume: 26
  start-page: 1359
  year: 1985
  ident: 10.1016/j.polymer.2020.122929_bib80
  article-title: Properties and structure of elastomeric 2-stage emulsion interpenetrating networks
  publication-title: Polymer
  doi: 10.1016/0032-3861(85)90312-X
– volume: 33
  start-page: 2529
  issue: 7
  year: 1987
  ident: 10.1016/j.polymer.2020.122929_bib82
  article-title: Elastomeric domain-type interpenetrating polymer networks
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1987.070330721
– volume: 93
  start-page: 1
  year: 2015
  ident: 10.1016/j.polymer.2020.122929_bib130
  article-title: Stimulus-responsive hydrogels: theory, modern advances, and applications
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2015.04.001
– volume: 25
  start-page: 257
  issue: 5
  year: 1985
  ident: 10.1016/j.polymer.2020.122929_bib104
  article-title: Capillary extrusion of elastomeric emulsion crosslinked interpenetrating networks
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760250502
– volume: 11
  start-page: 143
  issue: 1
  year: 1973
  ident: 10.1016/j.polymer.2020.122929_bib87
  article-title: Equilibrium encapsulation of polystyrene latex particles
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
  doi: 10.1002/pol.1973.170110112
– year: 1981
  ident: 10.1016/j.polymer.2020.122929_bib5
– volume: 8
  start-page: 6319
  issue: 40
  year: 2017
  ident: 10.1016/j.polymer.2020.122929_bib156
  article-title: Hydrogels through emulsion templating: sequential polymerization and double networks
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY01305A
– volume: 6
  start-page: 2583
  issue: 12
  year: 2010
  ident: 10.1016/j.polymer.2020.122929_bib164
  article-title: Why are double network hydrogels so tough?
  publication-title: Soft Matter
  doi: 10.1039/b924290b
– volume: 24
  start-page: 1217
  issue: 9
  year: 1999
  ident: 10.1016/j.polymer.2020.122929_bib19
  article-title: The mechanism of the propagation step in free-radical copolymerisation
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/S0079-6700(99)00030-1
– volume: 50
  start-page: 8297
  issue: 21
  year: 2017
  ident: 10.1016/j.polymer.2020.122929_bib134
  article-title: 50th anniversary perspective: networks and gels: soft but dynamic and tough
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b01698
– volume: 37
  start-page: 1814
  issue: 22
  year: 2016
  ident: 10.1016/j.polymer.2020.122929_bib154
  article-title: Superabsorbent, high porosity, PAMPS‐based hydrogels through emulsion templating
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201600249
– volume: 51
  start-page: 983
  issue: 10
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib183
  article-title: Development of novel network structures in crosslinked liquid-crystalline polymers
  publication-title: Polym. J.
  doi: 10.1038/s41428-019-0224-1
– volume: 45
  start-page: 63
  issue: 1
  year: 1976
  ident: 10.1016/j.polymer.2020.122929_bib57
  article-title: Synthesis and properties of interpenetrating networks
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RC1976v045n01ABEH002596
– volume: 46
  start-page: 6682
  issue: 17
  year: 2005
  ident: 10.1016/j.polymer.2020.122929_bib36
  article-title: PolyHIPE: IPNs, hybrids, nanoscale porosity, silica monoliths and ICP-based sensors
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.05.022
– volume: 15
  start-page: 9949
  issue: 48
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib187
  article-title: Poly(sodium acrylate) hydrogels: synthesis of various network architectures, local molecular dynamics, salt partitioning, desalination and simulation
  publication-title: Soft Matter
  doi: 10.1039/C9SM01468C
– volume: 8
  start-page: 2617
  issue: 9
  year: 1970
  ident: 10.1016/j.polymer.2020.122929_bib86
  article-title: The morphology of the monomer–polymer particle in styrene emulsion polymerization
  publication-title: J. Polym. Sci. 1 Polym. Chem.
  doi: 10.1002/pol.1970.150080927
– volume: 30
  start-page: 416
  issue: 3
  year: 1989
  ident: 10.1016/j.polymer.2020.122929_bib99
  article-title: Microstructure of polyacrylate polystyrene 2-stage lattices
  publication-title: Polymer
  doi: 10.1016/0032-3861(89)90006-2
– volume: 77
  start-page: 1
  year: 2018
  ident: 10.1016/j.polymer.2020.122929_bib143
  article-title: Polymer composite hydrogels containing carbon nanomaterials—morphology and mechanical and functional performance
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2017.09.001
– volume: 19
  start-page: 2225
  issue: 8
  year: 1975
  ident: 10.1016/j.polymer.2020.122929_bib77
  article-title: Synthesis and behavior of polyvinyl chloride based latex interpenetrating polymer networks
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1975.070190814
– volume: 14
  issue: 4
  year: 1984
  ident: 10.1016/j.polymer.2020.122929_bib79
  article-title: Radiation-damage to latex-particles as an analytical tool in polymer science
  publication-title: Ultramicroscopy
  doi: 10.1016/0304-3991(84)90236-5
– volume: 30
  start-page: 2000754
  issue: 28
  year: 2020
  ident: 10.1016/j.polymer.2020.122929_bib194
  article-title: Fast switching of bright whiteness in channeled hydrogel networks
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000754
– volume: 33
  start-page: 102
  issue: 1
  year: 2000
  ident: 10.1016/j.polymer.2020.122929_bib150
  article-title: Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks
  publication-title: Macromolecules
  doi: 10.1021/ma991398q
– volume: 37
  start-page: 5370
  issue: 14
  year: 2004
  ident: 10.1016/j.polymer.2020.122929_bib70
  article-title: Structural characteristics of double network gels with extremely high mechanical strength
  publication-title: Macromolecules
  doi: 10.1021/ma049506i
– volume: 292
  start-page: 620
  issue: 5
  year: 2007
  ident: 10.1016/j.polymer.2020.122929_bib140
  article-title: Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.200700004
– volume: 47
  start-page: 6408
  issue: 18
  year: 2014
  ident: 10.1016/j.polymer.2020.122929_bib31
  article-title: Robust and degradable hydrogels from poly(ethylene glycol) and semi-interpenetrating collagen
  publication-title: Macromolecules
  doi: 10.1021/ma500972y
– volume: 67
  start-page: 1164
  issue: 7
  year: 1934
  ident: 10.1016/j.polymer.2020.122929_bib4
  article-title: Über hochpolymere Verbindungen, 94. Mitteil.: Über ein unlösliches Poly‐styrol
  publication-title: Ber. Dtsch. Chem. Ges.
  doi: 10.1002/cber.19340670709
– volume: 44
  start-page: 9683
  issue: 24
  year: 2011
  ident: 10.1016/j.polymer.2020.122929_bib180
  article-title: Flexible solid polymer electrolytes based on nitrile butadiene rubber/poly(ethylene oxide) interpenetrating polymer networks containing either LiTFSI or EMITFSI
  publication-title: Macromolecules
  doi: 10.1021/ma201662h
– year: 1929
  ident: 10.1016/j.polymer.2020.122929_bib110
– volume: 39
  start-page: 1973
  issue: 12
  year: 2014
  ident: 10.1016/j.polymer.2020.122929_bib128
  article-title: In situ-forming injectable hydrogels for regenerative medicine
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2014.07.006
– volume: 65
  start-page: 1172
  issue: 9
  year: 2013
  ident: 10.1016/j.polymer.2020.122929_bib8
  article-title: Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.04.002
– volume: 72
  start-page: 344
  year: 2015
  ident: 10.1016/j.polymer.2020.122929_bib131
  article-title: Extremely strong and tough hydrogels as prospective candidates for tissue repair – a review
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2015.07.053
– ident: 10.1016/j.polymer.2020.122929_bib30
– volume: 115
  start-page: 9110
  issue: 37
  year: 2018
  ident: 10.1016/j.polymer.2020.122929_bib45
  article-title: Mechanics of elastomeric molecular composites
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1807750115
– volume: 12
  start-page: 360
  issue: 3
  year: 1979
  ident: 10.1016/j.polymer.2020.122929_bib26
  article-title: Simultaneous interpenetrating networks based on Castor oil elastomers and polystyrene. 2. Synthesis and systems characteristics
  publication-title: Macromolecules
  doi: 10.1021/ma60069a002
– volume: 30
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.polymer.2020.122929_bib72
  article-title: Novel hydrogels with excellent mechanical performance
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2004.11.003
– start-page: 21
  year: 1985
  ident: 10.1016/j.polymer.2020.122929_bib42
  article-title: Recent developments in interpenetrating polymer networks and related materials
– volume: 22
  start-page: 1365
  issue: 6
  year: 1984
  ident: 10.1016/j.polymer.2020.122929_bib90
  article-title: Morphology of core-shell latex particles
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
  doi: 10.1002/pol.1984.170220617
– volume: 197
  start-page: 267
  year: 2012
  ident: 10.1016/j.polymer.2020.122929_bib184
  article-title: Long lifetime in concentrated LiOH aqueous solution of air electrode protected with interpenetrating polymer network membrane
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.09.052
– volume: 86
  start-page: 1707
  issue: 11
  year: 2014
  ident: 10.1016/j.polymer.2020.122929_bib12
  article-title: Advances in interpenetrating polymer network hydrogels and their applications
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2014-0713
– volume: 17
  start-page: 1805
  issue: 6
  year: 1973
  ident: 10.1016/j.polymer.2020.122929_bib96
  article-title: The physical limits of grafting in two-phase polymerization reactions
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1973.070170613
– volume: 16
  start-page: 46
  issue: 1
  year: 1984
  ident: 10.1016/j.polymer.2020.122929_bib116
  article-title: The use of labile crosslinker for morphological studies in interpenetrating polymer networks
  publication-title: Br. Polym. J.
  doi: 10.1002/pi.4980160109
– start-page: 3
  year: 1994
  ident: 10.1016/j.polymer.2020.122929_bib49
  article-title: Interpenetrating polymer networks: an overview
– volume: 26
  start-page: 4468
  issue: 21
  year: 2005
  ident: 10.1016/j.polymer.2020.122929_bib74
  article-title: Biomechanical properties of high-toughness double network hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.11.021
– volume: 39
  start-page: 2998
  issue: 8
  year: 2006
  ident: 10.1016/j.polymer.2020.122929_bib114
  article-title: SANS and XRR porosimetry of a polyphenylene low-k dielectric
  publication-title: Macromolecules
  doi: 10.1021/ma052395i
– volume: 47
  start-page: 4840
  issue: 18
  year: 2009
  ident: 10.1016/j.polymer.2020.122929_bib186
  article-title: Enhancing hydrophilicity in a hydrophobic porous emulsion-templated polyacrylate
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.23522
– volume: 30
  start-page: 1743
  issue: 5
  year: 2018
  ident: 10.1016/j.polymer.2020.122929_bib170
  article-title: General strategy to fabricate strong and tough low-molecular-weight gelator-based supramolecular hydrogels with double network structure
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00063
– volume: 112
  start-page: 3959
  issue: 7
  year: 2012
  ident: 10.1016/j.polymer.2020.122929_bib107
  article-title: Design and preparation of porous polymers
  publication-title: Chem. Rev.
  doi: 10.1021/cr200440z
– volume: 52
  start-page: 839
  issue: 6
  year: 2014
  ident: 10.1016/j.polymer.2020.122929_bib142
  article-title: High water content clay–nanocomposite hydrogels incorporating guanidinium-pendant methacrylamide: tuning of mechanical and swelling properties by supramolecular approach
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.27066
– volume: 15
  start-page: 625
  issue: 2
  year: 1982
  ident: 10.1016/j.polymer.2020.122929_bib115
  article-title: Phase continuity in sequential poly(n-butyl acrylate)/polystyrene interpenetrating polymer networks
  publication-title: Macromolecules
  doi: 10.1021/ma00230a081
– volume: 5
  start-page: 785
  issue: 5
  year: 1922
  ident: 10.1016/j.polymer.2020.122929_bib3
  article-title: Über Isopren und Kautschuk. 5. Mitteilung. Über die Hydrierung des Kautschuks und über seine Konstitution
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.19220050517
– volume: 109
  start-page: 16304
  issue: 34
  year: 2005
  ident: 10.1016/j.polymer.2020.122929_bib73
  article-title: Effect of polymer entanglement on the toughening of double network hydrogels
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp052419n
– volume: 1
  start-page: 331
  issue: 4
  year: 1972
  ident: 10.1016/j.polymer.2020.122929_bib75
  article-title: Latex interpenetrating polymer networks
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  doi: 10.1080/00914037208075293
– volume: 19
  start-page: 1731
  issue: 6
  year: 1975
  ident: 10.1016/j.polymer.2020.122929_bib102
  article-title: Noise and vibration damping with latex interpenetrating polymer networks
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1975.070190623
– start-page: 262
  year: 1982
  ident: 10.1016/j.polymer.2020.122929_bib16
– volume: 7
  start-page: 5742
  issue: 38
  year: 2019
  ident: 10.1016/j.polymer.2020.122929_bib133
  article-title: In situ-forming, mechanically resilient hydrogels for cell delivery
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB01398A
– volume: 42
  start-page: 4473
  issue: 10
  year: 2001
  ident: 10.1016/j.polymer.2020.122929_bib34
  article-title: Organic-inorganic networks in foams from high internal phase emulsion polymerizations
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00820-X
– volume: 55
  start-page: 919
  issue: 6
  year: 1995
  ident: 10.1016/j.polymer.2020.122929_bib152
  article-title: Preparation and characterization of pH-sensitive, interpenetrating networks of poly(vinyl alcohol) and poly(acrylic acid)
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1995.070550610
– volume: 287
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.polymer.2020.122929_bib141
  article-title: Nanocomposite polymer hydrogels
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-008-1949-0
– volume: 84
  issue: 12
  year: 2017
  ident: 10.1016/j.polymer.2020.122929_bib46
  article-title: A model for the mullins effect in multinetwork elastomers
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4037881
– volume: 51
  start-page: 5890
  issue: 25
  year: 2010
  ident: 10.1016/j.polymer.2020.122929_bib119
  article-title: Porous polystyrene-based monolithic materials templated by semi-interpenetrating polymer networks for capillary electrochromatography
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.10.032
– volume: 89
  start-page: 1976
  issue: 7
  year: 2003
  ident: 10.1016/j.polymer.2020.122929_bib125
  article-title: Membrane properties of microporous structures prepared from polyethylene/polymethacrylate IPN
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.12414
– volume: 40
  start-page: 7306
  issue: 20
  year: 2007
  ident: 10.1016/j.polymer.2020.122929_bib98
  article-title: Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles
  publication-title: Macromolecules
  doi: 10.1021/ma071089x
– volume: 12
  start-page: 1490
  issue: 11
  year: 2012
  ident: 10.1016/j.polymer.2020.122929_bib32
  article-title: Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201200234
– start-page: 1004
  year: 2015
  ident: 10.1016/j.polymer.2020.122929_bib11
  article-title: Interpenetrating polymer networks (IPN): structure and mechanical behavior
– volume: 220
  start-page: 24
  issue: 1
  year: 1967
  ident: 10.1016/j.polymer.2020.122929_bib95
  article-title: Die elektronenmikroskopischen Darstellungen von ABS-Kunststoffen
  publication-title: Kolloid-Z. Z. Polym.
  doi: 10.1007/BF02086053
– volume: 14
  start-page: 1124
  issue: 11
  year: 2004
  ident: 10.1016/j.polymer.2020.122929_bib71
  article-title: High mechanical strength double‐network hydrogel with bacterial cellulose
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200305197
– volume: 27
  start-page: 1703086
  issue: 44
  year: 2017
  ident: 10.1016/j.polymer.2020.122929_bib167
  article-title: Super bulk and interfacial toughness of physically crosslinked double-network hydrogels
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703086
– volume: 16
  start-page: S280
  issue: 2
  year: 2007
  ident: 10.1016/j.polymer.2020.122929_bib182
  article-title: Interpenetrating networks of elastomers exhibiting 300% electrically-induced area strain
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/2/S12
– volume: 185
  start-page: 117
  issue: 4706
  year: 1960
  ident: 10.1016/j.polymer.2020.122929_bib126
  article-title: Hydrophilic gels for biological use
  publication-title: Nature
  doi: 10.1038/185117a0
SSID ssj0002524
Score 2.6355097
Snippet A typical description of interpenetrating polymer networks (IPN) can be surprisingly simple, systems that consist of two crosslinked polymer networks that are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122929
SubjectTerms Crosslinking
Damping
Double networks
Emulsion polymerization
Hydrogels
Interpenetrating networks
Interpenetrating polymer networks
Latex
Macromolecular architecture
Macromolecules
Network topologies
Phase separation
Polymers
Porous polymers
Synthesis
Title Interpenetrating polymer networks: So happy together?
URI https://dx.doi.org/10.1016/j.polymer.2020.122929
https://www.proquest.com/docview/2462672993
Volume 207
WOSCitedRecordID wos000579904200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002524
  issn: 0032-3861
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELY2mLTxgDa2aQyY8rC3KlniH7HNC0IIxNCEkMKkvlmJ44yiLq3aguC_3zm2W-g2wSbxElWWLnb8xZe763d3CH1uKixqIcHJyfM0pmVFY4lLFktwJSqdGc2rrmvJN356Kvp9eeb7OU67dgK8bcXNjRw_KdQwBmDb1Nl_gHt-UxiA3wA6XAF2uD4KeEcjBBXWFcS1ueaj4e1PM-m1jvHdceCKUe-iHI-t6fmjS_ldIvideRkbRLgaDB0Dfh4zKAaWTz0NjTI99b5XJHdjCOAwgvLF6SKwFZJbFkyiTlkSHBPhaqUnxulHwUmMsWuwFRQodn1rf1PGLi5wmfjHTOzMSQbSfr3361wXdj47HbZ6BwzJ52gVcyZBVa3ufz3sn8w_sJhhV1zbr2-RmPXlj5P9zeRY-vh2FsX5a7TuXYFo30H4Bj0z7QZ6eRA68G2gtTvFIt8itgxs5BcRBWB3o2IUdbBGAda9d-j70eH5wXHsm17EmhA-i3OR0ToHv4cbYVLeCMowWMWsIcbIDNclhvPTZLLWOi8lYzXjvAGtC-NCpjon79FKO2rNBxQZA9asbBil2v4fz8q81JKyitpaxCSlm4iGfVHaV4S3jUmGKlD_LpV_EmW3U7nt3ETJXGzsSqI8JCDCpitv1zl7TcGb8pDodgBJ-TM2VZiCFw5OoSQf___OW-jV4iRso5XZ5MrsoBf6ejaYTj75V-4XDSh7ew
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpenetrating+polymer+networks%3A+So+happy+together%3F&rft.jtitle=Polymer+%28Guilford%29&rft.au=Silverstein%2C+Michael+S.&rft.date=2020-10-20&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=207&rft_id=info:doi/10.1016%2Fj.polymer.2020.122929&rft.externalDocID=S0032386120307540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon