Interpenetrating polymer networks: So happy together?
A typical description of interpenetrating polymer networks (IPN) can be surprisingly simple, systems that consist of two crosslinked polymer networks that are physically entangled but not chemically linked. That simplistic description, however, successfully encompasses a wide range of synthesis proc...
Saved in:
| Published in: | Polymer (Guilford) Vol. 207; p. 122929 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
20.10.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 0032-3861, 1873-2291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A typical description of interpenetrating polymer networks (IPN) can be surprisingly simple, systems that consist of two crosslinked polymer networks that are physically entangled but not chemically linked. That simplistic description, however, successfully encompasses a wide range of synthesis processes and macromolecular architectures that can include “semi-IPN” (IPN-like systems containing only one crosslinked polymer) and interconnected polymer networks (IPN-like systems that also include a limited amount of inter-network chemical links). The macromolecular topologies of these systems combine kinetically entrapped molecular-level mixing with limited phase separation into a continuous range of nanodomain compositions. This perspective-review presents the family of IPN systems, describes the synthesis parameters used to generate a variety of macromolecular topologies, and discusses the damping properties, the ability to process latex IPN, the mechanical robustness of double network hydrogels, and IPN as templates for porous polymers, as well as recent innovations and cutting-edge applications. The wide gamut of macromolecular topological options described herein will serve as a guide to realizing synergistic behaviors by combining polymers in IPN-like structures.
[Display omitted]
•IPN macromolecular topology: two interpenetrating, but not linked, polymer networks.•IPN: entrapped molecular mixing + nanodomains with a continuous range of compositions.•IPN, semi-IPN, latex IPN, interconnected and double networks, IPN-templated porosity.•LIPN processability: phase-separated, strength-forming interparticle nanodomains.•Tuning: sequence, reaction, crosslinking, compatibility, composition, hydrophilicity. |
|---|---|
| AbstractList | A typical description of interpenetrating polymer networks (IPN) can be surprisingly simple, systems that consist of two crosslinked polymer networks that are physically entangled but not chemically linked. That simplistic description, however, successfully encompasses a wide range of synthesis processes and macromolecular architectures that can include “semi-IPN” (IPN-like systems containing only one crosslinked polymer) and interconnected polymer networks (IPN-like systems that also include a limited amount of inter-network chemical links). The macromolecular topologies of these systems combine kinetically entrapped molecular-level mixing with limited phase separation into a continuous range of nanodomain compositions. This perspective-review presents the family of IPN systems, describes the synthesis parameters used to generate a variety of macromolecular topologies, and discusses the damping properties, the ability to process latex IPN, the mechanical robustness of double network hydrogels, and IPN as templates for porous polymers, as well as recent innovations and cutting-edge applications. The wide gamut of macromolecular topological options described herein will serve as a guide to realizing synergistic behaviors by combining polymers in IPN-like structures.
[Display omitted]
•IPN macromolecular topology: two interpenetrating, but not linked, polymer networks.•IPN: entrapped molecular mixing + nanodomains with a continuous range of compositions.•IPN, semi-IPN, latex IPN, interconnected and double networks, IPN-templated porosity.•LIPN processability: phase-separated, strength-forming interparticle nanodomains.•Tuning: sequence, reaction, crosslinking, compatibility, composition, hydrophilicity. A typical description of interpenetrating polymer networks (IPN) can be surprisingly simple, systems that consist of two crosslinked polymer networks that are physically entangled but not chemically linked. That simplistic description, however, successfully encompasses a wide range of synthesis processes and macromolecular architectures that can include "semi-IPN" (IPN-like systems containing only one crosslinked polymer) and interconnected polymer networks (IPN-like systems that also include a limited amount of inter-network chemical links). The macromolecular topologies of these systems combine kinetically entrapped molecular-level mixing with limited phase separation into a continuous range of nanodomain compositions. This perspective-review presents the family of IPN systems, describes the synthesis parameters used to generate a variety of macromolecular topologies, and discusses the damping properties, the ability to process latex IPN, the mechanical robustness of double network hydrogels, and IPN as templates for porous polymers, as well as recent innovations and cutting-edge applications. The wide gamut of macromolecular topological options described herein will serve as a guide to realizing synergistic behaviors by combining polymers in IPN-like structures. |
| ArticleNumber | 122929 |
| Author | Silverstein, Michael S. |
| Author_xml | – sequence: 1 givenname: Michael S. surname: Silverstein fullname: Silverstein, Michael S. email: michaels@technion.ac.il organization: Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa, 32000, Israel |
| BookMark | eNqFkE1LAzEQhoMo2FZ_grDgeWuS3XzpoUjxo1DwoJ7Dkp1ts7abNUmV_ntTticvPQ3zzrzvMM8YnXeuA4RuCJ4STPhdO-3dZr8FP6WYJo1SRdUZGhEpijw15ByNMC5oXkhOLtE4hBZjTBktR4gtugi-hw6ir6LtVtkxK0vKr_Nf4T57d9m66vt9Ft0K4hr87ApdNNUmwPWxTtDn89PH_DVfvr0s5o_L3BSFiDmXpKy5lFSABCwaWTIqGWFNAaAIrSsKRjRE1cbwSjFWMyEaIUXSpcKGFxN0O-T23n3vIETdup3v0klNS065oEoVaYsNW8a7EDw0uvd2W_m9JlgfCOlWH7_SB0J6IJR8D_98xsYEwXWJhd2cdM8GNyQAPzZNg7HQGaitBxN17eyJhD-wz4bw |
| CitedBy_id | crossref_primary_10_1002_marc_202100457 crossref_primary_10_1016_j_eurpolymj_2022_111098 crossref_primary_10_1039_D4SM01448K crossref_primary_10_1002_mame_202200354 crossref_primary_10_1016_j_porgcoat_2022_107385 crossref_primary_10_1002_app_54058 crossref_primary_10_1016_j_envres_2024_118953 crossref_primary_10_1002_slct_202503363 crossref_primary_10_1016_j_polymer_2025_128158 crossref_primary_10_1016_j_polymer_2024_127130 crossref_primary_10_1039_D3PY00217A crossref_primary_10_1016_j_ijpharm_2024_125039 crossref_primary_10_1016_j_jelechem_2024_118885 crossref_primary_10_1016_j_addr_2021_05_001 crossref_primary_10_1016_j_jmbbm_2023_105876 crossref_primary_10_3390_c9020038 crossref_primary_10_1002_macp_202300311 crossref_primary_10_1016_j_polymertesting_2023_108028 crossref_primary_10_1016_j_addma_2024_104359 crossref_primary_10_1002_pol_20210260 crossref_primary_10_1016_j_polymer_2021_123409 crossref_primary_10_3390_nano13020268 crossref_primary_10_1051_e3sconf_202340105095 crossref_primary_10_1016_j_cis_2024_103113 crossref_primary_10_1016_j_cis_2024_103278 crossref_primary_10_1002_adma_202402282 crossref_primary_10_3390_gels10070444 crossref_primary_10_3390_polym14122427 crossref_primary_10_1016_j_dyepig_2025_113063 crossref_primary_10_1007_s13726_025_01513_y crossref_primary_10_1038_s41467_023_39446_w crossref_primary_10_1039_D3EW00712J crossref_primary_10_1002_adma_202301504 crossref_primary_10_1080_10601325_2024_2328733 crossref_primary_10_1039_D5MH00588D crossref_primary_10_1002_smm2_1160 crossref_primary_10_1016_j_orgel_2024_107040 crossref_primary_10_1002_ange_202106733 crossref_primary_10_1016_j_mser_2025_101098 crossref_primary_10_3390_gels9020161 crossref_primary_10_1016_j_jelechem_2024_118435 crossref_primary_10_1002_adfm_202313255 crossref_primary_10_1016_j_ijbiomac_2021_09_115 crossref_primary_10_1016_j_matdes_2024_112970 crossref_primary_10_1021_acsmacrolett_5c00512 crossref_primary_10_1016_j_cej_2025_164243 crossref_primary_10_1016_j_cej_2022_138071 crossref_primary_10_1016_j_polymer_2022_124886 crossref_primary_10_1002_macp_202400177 crossref_primary_10_1039_D4PY01456A crossref_primary_10_1016_j_eurpolymj_2024_113376 crossref_primary_10_1016_j_jece_2025_117367 crossref_primary_10_1016_j_polymer_2023_126542 crossref_primary_10_1016_j_colsurfa_2022_129979 crossref_primary_10_1016_j_eurpolymj_2023_112524 crossref_primary_10_3390_gels9030221 crossref_primary_10_1007_s13369_025_10595_y crossref_primary_10_1021_acsbiomaterials_5c00980 crossref_primary_10_3390_polym16142050 crossref_primary_10_1002_anie_202106733 crossref_primary_10_1016_j_colsurfb_2024_114431 crossref_primary_10_1039_D1BM01540K crossref_primary_10_1016_j_foodchem_2023_137483 crossref_primary_10_1016_j_polymdegradstab_2025_111368 crossref_primary_10_1007_s11837_024_06770_5 crossref_primary_10_1016_j_tifs_2025_105242 crossref_primary_10_1002_macp_202300211 crossref_primary_10_1039_D3PY00914A crossref_primary_10_3390_buildings15060984 crossref_primary_10_1016_j_jpowsour_2023_232933 crossref_primary_10_1002_pat_6409 crossref_primary_10_1039_D2RA07843K crossref_primary_10_1080_17452759_2025_2505992 crossref_primary_10_1002_pen_25628 crossref_primary_10_1080_00914037_2024_2330420 crossref_primary_10_3390_gels11090761 crossref_primary_10_1016_j_eurpolymj_2025_113761 crossref_primary_10_1016_j_arabjc_2021_103455 crossref_primary_10_1016_j_polymer_2022_125562 crossref_primary_10_1002_pen_27200 crossref_primary_10_1016_j_foodhyd_2021_107097 crossref_primary_10_1039_D5BM00210A crossref_primary_10_3390_polym13193234 crossref_primary_10_1134_S1811238222200012 crossref_primary_10_1039_D5MH00700C crossref_primary_10_1016_j_mtchem_2022_100937 crossref_primary_10_1002_cplu_202300074 crossref_primary_10_1021_acsmacrolett_5c00417 crossref_primary_10_1016_j_cej_2024_155008 crossref_primary_10_1038_s41428_024_01011_7 crossref_primary_10_1007_s13346_022_01254_y crossref_primary_10_1016_j_fuel_2025_136269 crossref_primary_10_1039_D3PY00507K crossref_primary_10_1016_j_cis_2023_103026 |
| Cites_doi | 10.1021/acs.chemmater.8b03860 10.1002/(SICI)1099-1581(1998100)9:10/11<746::AID-PAT847>3.0.CO;2-X 10.1002/anie.201902900 10.1002/anie.201913297 10.1002/adom.202000516 10.1002/pen.760291211 10.1016/S0032-3861(98)00757-5 10.1002/pol.1973.170110120 10.1002/(SICI)1097-4628(19960103)59:1<45::AID-APP7>3.0.CO;2-M 10.1002/macp.201000519 10.1088/1758-5090/ab8708 10.1002/ijch.202000003 10.1002/app.42076 10.5254/1.3547244 10.1021/acs.chemmater.9b00871 10.1002/pol.1980.170181108 10.1016/j.memsci.2019.117511 10.1021/cm0718062 10.1039/C5TB00123D 10.1002/adma.201300817 10.1021/acs.biomac.9b01541 10.1021/acs.biomac.0c00454 10.1016/j.msec.2019.110495 10.1016/j.polymer.2017.07.044 10.1039/C9SC01297D 10.1002/(SICI)1099-1581(199604)7:4<247::AID-PAT527>3.0.CO;2-X 10.1002/adfm.201404357 10.1016/j.polymer.2007.09.044 10.1002/app.29572 10.1039/C7TB01780D 10.1021/acs.chemmater.6b01920 10.1021/acs.chemmater.0c01307 10.1002/pol.1982.130200107 10.1021/acs.macromol.9b01686 10.1021/ie201593h 10.1016/j.polymer.2007.09.009 10.1002/pi.5052 10.1039/C8CS00834E 10.1021/ma402542r 10.1002/app.1979.070240504 10.1021/acs.macromol.5b01979 10.1021/acs.macromol.8b01923 10.1007/12_2007_116 10.1080/0144235X.2013.797277 10.1016/j.progpolymsci.2012.08.002 10.1002/app.1973.070170811 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 10.1039/D0TB00833H 10.1002/adma.200304907 10.1007/s42250-019-00044-3 10.1002/pola.23744 10.1039/b711610a 10.1063/1.1699711 10.1002/marc.1995.030160905 10.1021/ma047353t 10.1080/00914037.2018.1455680 10.1021/ma047431c 10.1016/j.colsurfb.2015.12.011 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T 10.1002/jemt.1060020610 10.1016/j.eurpolymj.2016.06.021 10.1002/cber.19350680841 10.1002/pen.10853 10.1021/acsami.0c00325 10.5254/1.3547779 10.1021/acsami.6b02264 10.1016/j.progpolymsci.2009.12.002 10.1039/JR9600001311 10.1080/03602559.2015.1050520 10.1039/C1SM06489D 10.1002/1099-0518(20010101)39:1<8::AID-POLA20>3.0.CO;2-Q 10.1021/ma802461m 10.1021/ma071417t 10.1016/j.progpolymsci.2009.01.001 10.1002/mame.201600367 10.1021/acs.macromol.0c00477 10.1002/pol.1974.170120930 10.1002/aic.14077 10.1016/j.polymer.2019.02.010 10.1039/C6SM02567F 10.5254/1.3539061 10.1016/j.cej.2014.01.065 10.1002/apmc.1973.050290101 10.1021/ma0501390 10.1002/cber.19200530627 10.1016/j.synthmet.2003.10.005 10.1007/s00396-013-3021-y 10.1021/bk-1976-0024.ch020 10.1016/j.memsci.2010.11.020 10.1016/j.eurpolymj.2014.11.024 10.1002/app.1985.070300510 10.1002/macp.200800133 10.1016/0014-3057(93)90245-B 10.1021/acs.chemmater.9b04725 10.1016/j.polymer.2012.03.013 10.1021/ma034366i 10.1002/pen.760180305 10.1002/pola.22570 10.1021/ma000145q 10.1002/pol.1973.170110126 10.1021/ma7027177 10.1021/acs.macromol.8b01676 10.1039/C9PY90161B 10.1002/adfm.201504536 10.1002/pol.1969.110071104 10.1039/C9MH00715F 10.1002/pol.1983.170211001 10.1021/ma062924y 10.1002/adma.201706441 10.1016/j.jpowsour.2014.10.059 10.5254/1.3547874 10.1002/macp.201600038 10.1016/j.msec.2016.09.081 10.1016/j.cej.2012.07.126 10.1016/0032-3861(85)90312-X 10.1002/app.1987.070330721 10.1016/j.mser.2015.04.001 10.1002/pen.760250502 10.1002/pol.1973.170110112 10.1039/C7PY01305A 10.1039/b924290b 10.1016/S0079-6700(99)00030-1 10.1021/acs.macromol.7b01698 10.1002/marc.201600249 10.1038/s41428-019-0224-1 10.1070/RC1976v045n01ABEH002596 10.1016/j.polymer.2005.05.022 10.1039/C9SM01468C 10.1002/pol.1970.150080927 10.1016/0032-3861(89)90006-2 10.1016/j.progpolymsci.2017.09.001 10.1002/app.1975.070190814 10.1016/0304-3991(84)90236-5 10.1002/adfm.202000754 10.1021/ma991398q 10.1021/ma049506i 10.1002/mame.200700004 10.1021/ma500972y 10.1002/cber.19340670709 10.1021/ma201662h 10.1016/j.progpolymsci.2014.07.006 10.1016/j.addr.2013.04.002 10.1016/j.eurpolymj.2015.07.053 10.1073/pnas.1807750115 10.1021/ma60069a002 10.1016/j.progpolymsci.2004.11.003 10.1002/pol.1984.170220617 10.1016/j.jpowsour.2011.09.052 10.1515/pac-2014-0713 10.1002/app.1973.070170613 10.1002/pi.4980160109 10.1016/j.biomaterials.2004.11.021 10.1021/ma052395i 10.1002/pola.23522 10.1021/acs.chemmater.8b00063 10.1021/cr200440z 10.1002/pola.27066 10.1021/ma00230a081 10.1002/hlca.19220050517 10.1021/jp052419n 10.1080/00914037208075293 10.1002/app.1975.070190623 10.1039/C9TB01398A 10.1016/S0032-3861(00)00820-X 10.1002/app.1995.070550610 10.1007/s00396-008-1949-0 10.1115/1.4037881 10.1016/j.polymer.2010.10.032 10.1002/app.12414 10.1021/ma071089x 10.1002/mabi.201200234 10.1007/BF02086053 10.1002/adfm.200305197 10.1002/adfm.201703086 10.1088/0964-1726/16/2/S12 10.1038/185117a0 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Oct 20, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Oct 20, 2020 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| DOI | 10.1016/j.polymer.2020.122929 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1873-2291 |
| ExternalDocumentID | 10_1016_j_polymer_2020_122929 S0032386120307540 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 6TJ 6TU 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SCB SEW T9H WUQ ~HD 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| ID | FETCH-LOGICAL-c337t-6814d68827e8e07f84528515f3ee912da2ec7f19dcc6a955d577f787a2e890c63 |
| ISICitedReferencesCount | 121 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579904200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0032-3861 |
| IngestDate | Wed Aug 13 11:07:35 EDT 2025 Sat Nov 29 07:27:57 EST 2025 Tue Nov 18 21:44:06 EST 2025 Fri Feb 23 02:48:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Porous polymers Interpenetrating polymer networks Emulsion polymerization Double networks Macromolecular architecture |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c337t-6814d68827e8e07f84528515f3ee912da2ec7f19dcc6a955d577f787a2e890c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2462672993 |
| PQPubID | 2045419 |
| ParticipantIDs | proquest_journals_2462672993 crossref_primary_10_1016_j_polymer_2020_122929 crossref_citationtrail_10_1016_j_polymer_2020_122929 elsevier_sciencedirect_doi_10_1016_j_polymer_2020_122929 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-20 |
| PublicationDateYYYYMMDD | 2020-10-20 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Polymer (Guilford) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Williams (bib88) 1973; 11 Chapman, Pounder, Murphy, Owen (bib110) 1929 Peak, Nagar, Watts, Schmidt (bib31) 2014; 47 Rohman, Grande, Lauprêtre, Boileau, Guérin (bib117) 2005; 38 Keusch, Williams (bib87) 1973; 11 Widmaier, Sperling (bib115) 1982; 15 Young, Riahinezhad, Amsden (bib133) 2019; 7 H. Hopff, Patent 623,351, Germany, 1935. Owens, Jian, Fang, Slaughter, Chen, Peppas (bib98) 2007; 40 Ducrot, Montes, Creton (bib44) 2015; 48 Lumelsky, Lalush-Michael, Levenberg, Silverstein (bib64) 2009; 47 Wu, Ohtani, Tamesue, Ishida, Aida (bib142) 2014; 52 Kato (bib95) 1967; 220 Schexnailder, Schmidt (bib141) 2009; 287 Chikh, Delhorbe, Fichet (bib7) 2011; 368 Millar (bib54) 1960 Yang, Yeom, Hwang, Hoffman, Hahn (bib128) 2014; 39 Singhal, Gupta (bib146) 2016; 55 Tsukeshiba, Huang, Na, Kurokawa, Kuwabara, Tanaka, Furukawa, Osada, Gong (bib73) 2005; 109 Salehi Dashtebayaz, Nourbakhsh (bib132) 2019; 68 Tai, Sergienko, Silverstein (bib34) 2001; 42 Dragan, Cocarta, Gierszewska (bib59) 2016; 139 Eklund, Zhang, Zeng, Priimagi, Ikkala (bib194) 2020; 30 Chen, Le, Lai, Fernandes-Cunha, Myung (bib190) 2020; 32 Matsuda, Nakajima, Gong (bib176) 2019; 31 Chen, Chen, Zhu, Zheng (bib13) 2016; 217 Okubo, Yamada, Matsumoto (bib91) 1980; 18 Chen, Zhu, Zhao, Wang, Zheng (bib174) 2013; 25 Bombonnel, Vancaeyzeele, Guérin, Vidal (bib195) 2020; 109 Staudinger, Heuer (bib4) 1934; 67 Grates, Thomas, Hickey, Sperling (bib102) 1975; 19 Peak, Wilker, Schmidt (bib145) 2013; 291 Yan, Chen, Zhu, Chen, Wei, Chen, Tang, Yang, Zheng (bib168) 2017; 5 Silverstein, Talmon, Narkis (bib99) 1989; 30 Gong, Katsuyama, Kurokawa, Osada (bib69) 2003; 15 Rohman, Lauprêtre, Boileau, Guérin, Grande (bib118) 2007; 48 Okumura, Ito (bib144) 2001; 13 Kulygin, Silverstein (bib153) 2007; 3 Alam, Zhang, Kuan, Lee, Ma (bib143) 2018; 77 Devia-Manjarres, Manson, Sperling, Conde (bib27) 1978; 18 Mott, Roland (bib66) 2000; 33 Okubo, Katsuta, Matsumoto (bib93) 1982; 20 Roland (bib11) 2015 Johnson, Turro, Koberstein, Mark (bib136) 2010; 35 Schoener, Hutson, Peppas (bib151) 2013; 59 Sperling, Chiu, Hartman, Thomas (bib75) 1972; 1 Ducrot, Creton (bib47) 2016; 26 Lumelsky, Zoldan, Levenberg, Silverstein (bib63) 2008; 41 Lav, Carbonnier, Guerrouache, Grande (bib119) 2010; 51 Ko, Shinde, Yeon, Jeong (bib127) 2013; 38 Paranhos, Soares, Oliveira, Pessan (bib140) 2007; 292 Staudinger (bib1) 1920; 53 Normatov, Silverstein (bib37) 2007; 40 Haraguchi, Li, Matsuda, Takehisa, Elliott (bib139) 2005; 38 Kovačič, Silverstein (bib154) 2016; 37 Matricardi, Di Meo, Coviello, Hennink, Alhaique (bib8) 2013; 65 Sun, Lu, Yu, Su, Gao, Zheng (bib198) 2020; 12 Rudin (bib16) 1982 Haque, Kurokawa, Gong (bib178) 2012; 53 Wang, Wang, Gu, Sourakov, Olsen, Johnson (bib22) 2019; 10 Santangelo, Roland (bib68) 2003; 76 Frisch, Klempner, Frisch (bib55) 1969; 7 Stabenow, Haaf (bib97) 1973; 29 Chen, Chen, Zhu, Tang, Li, Qin, Yang, Zhang, Ren, Zheng (bib170) 2018; 30 Talmon, Narkis, Silverstein (bib81) 1985; 2 Pfau, McKinzey, Roth, Grunlan (bib189) 2020; 21 Williams (bib89) 1974; 12 Sperling, Hu (bib10) 2014 Toledo, Urbano (bib160) 2016; 81 Arens, Barther, Landsgesell, Holm, Wilhelm (bib187) 2019; 15 Fukao, Tanaka, Kiyama, Nonoyama, Gong (bib188) 2020; 8 Costa, Mano (bib131) 2015; 72 Livshin, Silverstein (bib186) 2009; 47 Lipatov, Sergeeva (bib57) 1976; 45 Hu, Schulze, Pionteck (bib124) 1999; 40 Silverstein, Shach-Caplan, Bauer, Hedden, Lee, Landes (bib113) 2005; 38 Vidal, Plesse, Teyssié, Chevrot (bib179) 2004; 142 Sperling, Chiu, Thomas (bib76) 1973; 17 Silverstein, Narkis (bib104) 1985; 25 Sperling (bib49) 1994 Zhang, Guo, Yang, Tan, Li, Dai, Yu, Zhang, Weng, Jian, Xu (bib175) 2009; 112 Odian (bib14) 2004 Ishikawa, Iijima, Matsukuma, Asawa, Hoshi, Osawa, Otsuka (bib191) 2020; 32 Zhang, Desai, Wang, Lee (bib196) 2020; 21 Fox, Flory (bib43) 1950; 21 Gu, Zhao, Johnson (bib21) 2020; 59 Staudinger, Hutchinson (bib52) 1951 Grande (bib121) 2016 Lipatov, Alekseeva (bib41) 2007; 208 Bovey, Kolthoff, Medalia, Meehan (bib83) 1955 Ying, Wu, Li, Liu (bib192) 2020; 7 Kamath, Kincaid, Mandal (bib29) 1996; 59 Bacca, Creton, McMeeking (bib46) 2017; 84 Hu, Sun, Lin, Jackson, Terlier, Owolabi, Mei, Li, Wang, Sidhik, Hao, Yao, Mohite, Verduzco (bib197) 2020 Chan, Wippich, Wu, Sivasankar, Schmidt (bib32) 2012; 12 Shibayama, Suzuki (bib56) 1967; 40 Devia, Manson, Sperling, Conde (bib26) 1979; 12 Matyjaszewski (bib17) 2018; 30 Haraguchi, Takehisa (bib137) 2002; 14 Wang, Hamed, Umetsu, Roland (bib67) 2005; 78 Dragan, Lazar, Dinu, Doroftei (bib60) 2012; 204–206 Ghamouss, Mallouki, Bertolotti, Chikh, Vancaeyzeele, Alfonsi, Fichet (bib184) 2012; 197 Caló, Khutoryanskiy (bib129) 2015; 65 Kovacic, Silverstein (bib156) 2017; 8 Chen, Liu, Ren, Zhang, Ma, Xu, Chen, Zheng (bib167) 2017; 27 Millereau, Ducrot, Clough, Wiseman, Brown, Sijbesma, Creton (bib45) 2018; 115 Frey, Johann (bib2) 2020; 11 Gudeman, Peppas (bib152) 1995; 55 Qiu, Gurr, Qiao (bib200) 2020; 53 Grande, Rohman (bib122) 2019; 2 Silverstein, Tai, Sergienko, Lumelsky, Pavlovsky (bib36) 2005; 46 Webber, Creton, Brown, Gong (bib163) 2007; 40 Sperling (bib5) 1981 Rosen (bib15) 1993 Pionteck, Hu, Schulze (bib125) 2003; 89 Zhang, Peppas (bib150) 2000; 33 Gong (bib164) 2010; 6 Goujon, Khaldi, Maziz, Plesse, Nguyen, Aubert, Vidal, Chevrot, Teyssié (bib180) 2011; 44 Dinu, Perju, Drăgan (bib61) 2011; 212 France, Xu, Hoare (bib158) 2018; 7 Qiu, Ben (bib108) 2016 Chen, Yan, Zhu, Chen, Jiang, Wei, Huang, Yang, Liu, Zheng (bib171) 2016; 28 Zhang, Silverstein (bib157) 2017; 126 Aylsworth (bib51) 1914 Hentze, Antonietti (bib105) 2008 Chen, Zhu, Chen, Yan, Huang, Yang, Zheng (bib172) 2015; 25 Sperling, Thomas, Lorenz, Nagel (bib77) 1975; 19 Widmaier, Sperling (bib116) 1984; 16 Normatov, Silverstein (bib40) 2008; 20 Grancio, Williams (bib86) 1970; 8 Gardon (bib85) 1973; 11 Solt (bib53) 1955 Silverstein, Narkis (bib48) 1989; 29 Nakayama, Kakugo, Gong, Osada, Takai, Erata, Kawano (bib71) 2004; 14 Nemirovski, Silverstein, Narkis (bib100) 1996; 7 Noble, Coote (bib20) 2013; 32 Chen, Zhu, Huang, Chen, Xu, Tan, Wang, Zheng (bib173) 2014; 47 Creton (bib134) 2017; 50 P. Giusti, L. Callegaro, Biomaterial Comprising Hyaluronic Acid and Derivatives Thereof in Interpenetrating Polymer Networks (IPN), US Patent 5,644,049, 1997. Gardon (bib84) 1970; 43 Slaughter, Blanchard, Maass, Peppas (bib148) 2015; 132 Oldenhuis, Qin, Wang, Ye, Alt, Willard, Van Voorhis, Craig, Johnson (bib33) 2020; 59 Wu, Xu, Sun, Fu, He, Matyjaszewski (bib107) 2012; 112 Tan (bib24) 1994 Normatov, Silverstein (bib38) 2007; 48 Tai, Sergienko, Silverstein (bib62) 2001; 41 Dragan, Cocarta (bib58) 2016; 8 Ha, Yuan, Pei, Pelrine, Stanford (bib182) 2007; 16 Xie, Guo, Wang (bib25) 1993; 29 Hu, Han, Chen, Zou, Ouyang, Zhou, Yang, Wang (bib161) 2017; 302 Sionakidis, Sperling, Thomas (bib78) 1979; 24 Ube (bib183) 2019; 51 Gao, Matyjaszewski (bib18) 2009; 34 Dragan (bib12) 2014; 86 Chen, Chen, Zhu, Zheng (bib177) 2015; 3 Li, Liu, Wang, Yang, Wang, He (bib199) 2020; 595 Hu, Pompe, Schulze, Pionteck (bib123) 1998; 9 Ma, Chou, Xie, Pei (bib181) 2019; 48 Silverstein (bib109) 2020; 60 Normatov, Silverstein (bib39) 2008; 46 Lumelsky, Silverstein (bib65) 2009; 42 Staudinger, Fritschi (bib3) 1922; 5 Tang, Zhang, Gong, Zhang, Xie, Ren, Liu, Yang, Zhou, Chang, Tang, Zheng (bib165) 2019; 52 Na, Kurokawa, Katsuyama, Tsukeshiba, Gong, Osada, Okabe, Karino, Shibayama (bib70) 2004; 37 Lorenz, Thomas, Sperling (bib103) 1976; 24 Rosen (bib96) 1973; 17 Dragan (bib9) 2014; 243 Kurisawa, Terano, Yui (bib28) 1995; 16 Bertolotti, Messaoudi, Chikh, Vancaeyzeele, Alfonsi, Fichet (bib185) 2015; 274 Coote, Davis (bib19) 1999; 24 Haraguchi, Farnworth, Ohbayashi, Takehisa (bib138) 2003; 36 Song, Zhu, Chen, Haraguchi (bib162) 2008; 209 Tang, Chen, Chen, Zhu, Lu, Ren, Zhang, Yang, Zheng (bib166) 2019; 31 Talmon, Narkis, Silverstein (bib79) 1984; 14 Silverstein, Bauer, Hedden, Lee, Landes (bib114) 2006; 39 Schoener, Hutson, Fletcher, Peppas (bib147) 2011; 50 Ovadia, Silverstein (bib155) 2016; 65 Wichterle, Lím (bib126) 1960; 185 Todd, Hillmyer (bib112) 2011 Li, Yang, Zhao, Long, Zheng (bib169) 2017; 13 Min, Klein, El-Aasser, Vanderhoff (bib92) 1983; 21 Schipani, Scheurer, Florentin, Critchley, Kelly (bib193) 2020; 12 Sluszny, Silverstein, Kababya, Schmidt, Narkis (bib35) 2001; 39 Sperling (bib42) 1985 Sperling (bib50) 2011 Staudinger, Husemann (bib111) 1935; 68 Tanaka, Gong, Osada (bib72) 2005; 30 Koetting, Peters, Steichen, Peppas (bib130) 2015; 93 Muroi, Hashimoto, Hosoi (bib90) 1984; 22 Haq, Su, Wang (bib135) 2017; 70 Utroša, Žagar, Kovačič, Pahovnik (bib120) 2019; 52 Cho, Lee (bib94) 1985; 30 Echeverria, Peppas, Mijangos (bib149) 2012; 8 Silverstein, Narkis (bib82) 1987; 33 Narkis, Talmon, Silverstein (bib80) 1985; 26 Sperling (bib6) 2004 Silverstein, Cameron, Hillmyer (bib106) 2011 Zhang, Silverstein (bib159) 2019; 168 Yasuda, Ping Gong, Katsuyama, Nakayama, Tanabe, Kondo, Ueno, Osada (bib74) 2005; 26 Lin, Wang, Johnson, Olsen (bib23) 2019; 52 Widmaier (10.1016/j.polymer.2020.122929_bib116) 1984; 16 Bombonnel (10.1016/j.polymer.2020.122929_bib195) 2020; 109 Schoener (10.1016/j.polymer.2020.122929_bib147) 2011; 50 Staudinger (10.1016/j.polymer.2020.122929_bib1) 1920; 53 Dragan (10.1016/j.polymer.2020.122929_bib59) 2016; 139 Zhang (10.1016/j.polymer.2020.122929_bib196) 2020; 21 Chan (10.1016/j.polymer.2020.122929_bib32) 2012; 12 Silverstein (10.1016/j.polymer.2020.122929_bib104) 1985; 25 Kovacic (10.1016/j.polymer.2020.122929_bib156) 2017; 8 Santangelo (10.1016/j.polymer.2020.122929_bib68) 2003; 76 Bacca (10.1016/j.polymer.2020.122929_bib46) 2017; 84 Nakayama (10.1016/j.polymer.2020.122929_bib71) 2004; 14 Ovadia (10.1016/j.polymer.2020.122929_bib155) 2016; 65 Sun (10.1016/j.polymer.2020.122929_bib198) 2020; 12 Lipatov (10.1016/j.polymer.2020.122929_bib41) 2007; 208 Echeverria (10.1016/j.polymer.2020.122929_bib149) 2012; 8 Young (10.1016/j.polymer.2020.122929_bib133) 2019; 7 Gudeman (10.1016/j.polymer.2020.122929_bib152) 1995; 55 Haq (10.1016/j.polymer.2020.122929_bib135) 2017; 70 Livshin (10.1016/j.polymer.2020.122929_bib186) 2009; 47 Frey (10.1016/j.polymer.2020.122929_bib2) 2020; 11 Oldenhuis (10.1016/j.polymer.2020.122929_bib33) 2020; 59 Tang (10.1016/j.polymer.2020.122929_bib166) 2019; 31 Tanaka (10.1016/j.polymer.2020.122929_bib72) 2005; 30 Hu (10.1016/j.polymer.2020.122929_bib124) 1999; 40 Pfau (10.1016/j.polymer.2020.122929_bib189) 2020; 21 Noble (10.1016/j.polymer.2020.122929_bib20) 2013; 32 Webber (10.1016/j.polymer.2020.122929_bib163) 2007; 40 Gong (10.1016/j.polymer.2020.122929_bib69) 2003; 15 Kovačič (10.1016/j.polymer.2020.122929_bib154) 2016; 37 Rohman (10.1016/j.polymer.2020.122929_bib117) 2005; 38 Haque (10.1016/j.polymer.2020.122929_bib178) 2012; 53 Frisch (10.1016/j.polymer.2020.122929_bib55) 1969; 7 Wu (10.1016/j.polymer.2020.122929_bib142) 2014; 52 Tsukeshiba (10.1016/j.polymer.2020.122929_bib73) 2005; 109 Gardon (10.1016/j.polymer.2020.122929_bib85) 1973; 11 Ying (10.1016/j.polymer.2020.122929_bib192) 2020; 7 Muroi (10.1016/j.polymer.2020.122929_bib90) 1984; 22 Grande (10.1016/j.polymer.2020.122929_bib121) 2016 Grates (10.1016/j.polymer.2020.122929_bib102) 1975; 19 Kulygin (10.1016/j.polymer.2020.122929_bib153) 2007; 3 Todd (10.1016/j.polymer.2020.122929_bib112) 2011 Yasuda (10.1016/j.polymer.2020.122929_bib74) 2005; 26 Tai (10.1016/j.polymer.2020.122929_bib34) 2001; 42 Haraguchi (10.1016/j.polymer.2020.122929_bib138) 2003; 36 Ghamouss (10.1016/j.polymer.2020.122929_bib184) 2012; 197 Normatov (10.1016/j.polymer.2020.122929_bib39) 2008; 46 Sionakidis (10.1016/j.polymer.2020.122929_bib78) 1979; 24 Chen (10.1016/j.polymer.2020.122929_bib171) 2016; 28 Silverstein (10.1016/j.polymer.2020.122929_bib36) 2005; 46 Chen (10.1016/j.polymer.2020.122929_bib172) 2015; 25 Sperling (10.1016/j.polymer.2020.122929_bib49) 1994 Kato (10.1016/j.polymer.2020.122929_bib95) 1967; 220 Rosen (10.1016/j.polymer.2020.122929_bib96) 1973; 17 Hu (10.1016/j.polymer.2020.122929_bib197) 2020 France (10.1016/j.polymer.2020.122929_bib158) 2018; 7 Chen (10.1016/j.polymer.2020.122929_bib190) 2020; 32 Eklund (10.1016/j.polymer.2020.122929_bib194) 2020; 30 Kurisawa (10.1016/j.polymer.2020.122929_bib28) 1995; 16 Min (10.1016/j.polymer.2020.122929_bib92) 1983; 21 Tai (10.1016/j.polymer.2020.122929_bib62) 2001; 41 Grancio (10.1016/j.polymer.2020.122929_bib86) 1970; 8 Staudinger (10.1016/j.polymer.2020.122929_bib4) 1934; 67 Sperling (10.1016/j.polymer.2020.122929_bib77) 1975; 19 Zhang (10.1016/j.polymer.2020.122929_bib157) 2017; 126 Keusch (10.1016/j.polymer.2020.122929_bib87) 1973; 11 Zhang (10.1016/j.polymer.2020.122929_bib175) 2009; 112 Dinu (10.1016/j.polymer.2020.122929_bib61) 2011; 212 Devia-Manjarres (10.1016/j.polymer.2020.122929_bib27) 1978; 18 Na (10.1016/j.polymer.2020.122929_bib70) 2004; 37 Hu (10.1016/j.polymer.2020.122929_bib161) 2017; 302 Normatov (10.1016/j.polymer.2020.122929_bib38) 2007; 48 Okubo (10.1016/j.polymer.2020.122929_bib91) 1980; 18 Lumelsky (10.1016/j.polymer.2020.122929_bib63) 2008; 41 Alam (10.1016/j.polymer.2020.122929_bib143) 2018; 77 Coote (10.1016/j.polymer.2020.122929_bib19) 1999; 24 Peak (10.1016/j.polymer.2020.122929_bib145) 2013; 291 Sperling (10.1016/j.polymer.2020.122929_bib6) 2004 Slaughter (10.1016/j.polymer.2020.122929_bib148) 2015; 132 Yan (10.1016/j.polymer.2020.122929_bib168) 2017; 5 Aylsworth (10.1016/j.polymer.2020.122929_bib51) 1914 Williams (10.1016/j.polymer.2020.122929_bib89) 1974; 12 Shibayama (10.1016/j.polymer.2020.122929_bib56) 1967; 40 Toledo (10.1016/j.polymer.2020.122929_bib160) 2016; 81 Talmon (10.1016/j.polymer.2020.122929_bib79) 1984; 14 Utroša (10.1016/j.polymer.2020.122929_bib120) 2019; 52 Gu (10.1016/j.polymer.2020.122929_bib21) 2020; 59 Ma (10.1016/j.polymer.2020.122929_bib181) 2019; 48 Staudinger (10.1016/j.polymer.2020.122929_bib111) 1935; 68 Ko (10.1016/j.polymer.2020.122929_bib127) 2013; 38 Dragan (10.1016/j.polymer.2020.122929_bib58) 2016; 8 Li (10.1016/j.polymer.2020.122929_bib169) 2017; 13 Silverstein (10.1016/j.polymer.2020.122929_bib48) 1989; 29 Gao (10.1016/j.polymer.2020.122929_bib18) 2009; 34 Odian (10.1016/j.polymer.2020.122929_bib14) 2004 Li (10.1016/j.polymer.2020.122929_bib199) 2020; 595 Silverstein (10.1016/j.polymer.2020.122929_bib114) 2006; 39 Peak (10.1016/j.polymer.2020.122929_bib31) 2014; 47 Millereau (10.1016/j.polymer.2020.122929_bib45) 2018; 115 Talmon (10.1016/j.polymer.2020.122929_bib81) 1985; 2 Wang (10.1016/j.polymer.2020.122929_bib67) 2005; 78 Tan (10.1016/j.polymer.2020.122929_bib24) 1994 Fox (10.1016/j.polymer.2020.122929_bib43) 1950; 21 Chapman (10.1016/j.polymer.2020.122929_bib110) 1929 Haraguchi (10.1016/j.polymer.2020.122929_bib137) 2002; 14 Chen (10.1016/j.polymer.2020.122929_bib170) 2018; 30 Hu (10.1016/j.polymer.2020.122929_bib123) 1998; 9 Ube (10.1016/j.polymer.2020.122929_bib183) 2019; 51 Creton (10.1016/j.polymer.2020.122929_bib134) 2017; 50 Roland (10.1016/j.polymer.2020.122929_bib11) 2015 Lumelsky (10.1016/j.polymer.2020.122929_bib64) 2009; 47 Paranhos (10.1016/j.polymer.2020.122929_bib140) 2007; 292 Grande (10.1016/j.polymer.2020.122929_bib122) 2019; 2 Rosen (10.1016/j.polymer.2020.122929_bib15) 1993 Hentze (10.1016/j.polymer.2020.122929_bib105) 2008 Rudin (10.1016/j.polymer.2020.122929_bib16) 1982 10.1016/j.polymer.2020.122929_bib101 Salehi Dashtebayaz (10.1016/j.polymer.2020.122929_bib132) 2019; 68 Arens (10.1016/j.polymer.2020.122929_bib187) 2019; 15 Wang (10.1016/j.polymer.2020.122929_bib22) 2019; 10 Caló (10.1016/j.polymer.2020.122929_bib129) 2015; 65 Koetting (10.1016/j.polymer.2020.122929_bib130) 2015; 93 Pionteck (10.1016/j.polymer.2020.122929_bib125) 2003; 89 Nemirovski (10.1016/j.polymer.2020.122929_bib100) 1996; 7 Bertolotti (10.1016/j.polymer.2020.122929_bib185) 2015; 274 Matyjaszewski (10.1016/j.polymer.2020.122929_bib17) 2018; 30 Dragan (10.1016/j.polymer.2020.122929_bib12) 2014; 86 Okubo (10.1016/j.polymer.2020.122929_bib93) 1982; 20 Chen (10.1016/j.polymer.2020.122929_bib174) 2013; 25 Dragan (10.1016/j.polymer.2020.122929_bib60) 2012; 204–206 Fukao (10.1016/j.polymer.2020.122929_bib188) 2020; 8 Sperling (10.1016/j.polymer.2020.122929_bib42) 1985 Haraguchi (10.1016/j.polymer.2020.122929_bib139) 2005; 38 Staudinger (10.1016/j.polymer.2020.122929_bib52) 1951 Wichterle (10.1016/j.polymer.2020.122929_bib126) 1960; 185 Widmaier (10.1016/j.polymer.2020.122929_bib115) 1982; 15 Sperling (10.1016/j.polymer.2020.122929_bib75) 1972; 1 Normatov (10.1016/j.polymer.2020.122929_bib37) 2007; 40 Lumelsky (10.1016/j.polymer.2020.122929_bib65) 2009; 42 Xie (10.1016/j.polymer.2020.122929_bib25) 1993; 29 Chikh (10.1016/j.polymer.2020.122929_bib7) 2011; 368 Goujon (10.1016/j.polymer.2020.122929_bib180) 2011; 44 Vidal (10.1016/j.polymer.2020.122929_bib179) 2004; 142 Rohman (10.1016/j.polymer.2020.122929_bib118) 2007; 48 Staudinger (10.1016/j.polymer.2020.122929_bib3) 1922; 5 Sperling (10.1016/j.polymer.2020.122929_bib10) 2014 Lorenz (10.1016/j.polymer.2020.122929_bib103) 1976; 24 Schexnailder (10.1016/j.polymer.2020.122929_bib141) 2009; 287 Bovey (10.1016/j.polymer.2020.122929_bib83) 1955 Sperling (10.1016/j.polymer.2020.122929_bib50) 2011 Millar (10.1016/j.polymer.2020.122929_bib54) 1960 Matsuda (10.1016/j.polymer.2020.122929_bib176) 2019; 31 Kamath (10.1016/j.polymer.2020.122929_bib29) 1996; 59 Williams (10.1016/j.polymer.2020.122929_bib88) 1973; 11 Lav (10.1016/j.polymer.2020.122929_bib119) 2010; 51 Ducrot (10.1016/j.polymer.2020.122929_bib47) 2016; 26 Silverstein (10.1016/j.polymer.2020.122929_bib82) 1987; 33 Silverstein (10.1016/j.polymer.2020.122929_bib106) 2011 Sperling (10.1016/j.polymer.2020.122929_bib5) 1981 Silverstein (10.1016/j.polymer.2020.122929_bib99) 1989; 30 Chen (10.1016/j.polymer.2020.122929_bib13) 2016; 217 Song (10.1016/j.polymer.2020.122929_bib162) 2008; 209 Normatov (10.1016/j.polymer.2020.122929_bib40) 2008; 20 Tang (10.1016/j.polymer.2020.122929_bib165) 2019; 52 Narkis (10.1016/j.polymer.2020.122929_bib80) 1985; 26 Yang (10.1016/j.polymer.2020.122929_bib128) 2014; 39 Qiu (10.1016/j.polymer.2020.122929_bib108) 2016 Schoener (10.1016/j.polymer.2020.122929_bib151) 2013; 59 Owens (10.1016/j.polymer.2020.122929_bib98) 2007; 40 Gardon (10.1016/j.polymer.2020.122929_bib84) 1970; 43 Dragan (10.1016/j.polymer.2020.122929_bib9) 2014; 243 Chen (10.1016/j.polymer.2020.122929_bib167) 2017; 27 Cho (10.1016/j.polymer.2020.122929_bib94) 1985; 30 Matricardi (10.1016/j.polymer.2020.122929_bib8) 2013; 65 Gong (10.1016/j.polymer.2020.122929_bib164) 2010; 6 Stabenow (10.1016/j.polymer.2020.122929_bib97) 1973; 29 Zhang (10.1016/j.polymer.2020.122929_bib150) 2000; 33 Devia (10.1016/j.polymer.2020.122929_bib26) 1979; 12 Ducrot (10.1016/j.polymer.2020.122929_bib44) 2015; 48 Sluszny (10.1016/j.polymer.2020.122929_bib35) 2001; 39 Lipatov (10.1016/j.polymer.2020.122929_bib57) 1976; 45 Silverstein (10.1016/j.polymer.2020.122929_bib109) 2020; 60 Chen (10.1016/j.polymer.2020.122929_bib173) 2014; 47 Chen (10.1016/j.polymer.2020.122929_bib177) 2015; 3 10.1016/j.polymer.2020.122929_bib30 Ishikawa (10.1016/j.polymer.2020.122929_bib191) 2020; 32 Qiu (10.1016/j.polymer.2020.122929_bib200) 2020; 53 Lin (10.1016/j.polymer.2020.122929_bib23) 2019; 52 Costa (10.1016/j.p |
| References_xml | – reference: H. Hopff, Patent 623,351, Germany, 1935. – volume: 24 start-page: 1217 year: 1999 end-page: 1251 ident: bib19 article-title: The mechanism of the propagation step in free-radical copolymerisation publication-title: Prog. Polym. Sci. – volume: 32 start-page: 2353 year: 2020 end-page: 2364 ident: bib191 article-title: Interpenetrating polymer network hydrogels via a one-pot and in situ gelation system based on peptide self-assembly and orthogonal cross-linking for tissue regeneration publication-title: Chem. Mater. – volume: 2 start-page: 253 year: 2019 end-page: 265 ident: bib122 article-title: Oligoester-derivatized (Semi-)Interpenetrating polymer networks as nanostructured precursors to porous materials with tunable porosity publication-title: Chem. Afr. – volume: 28 start-page: 5710 year: 2016 end-page: 5720 ident: bib171 article-title: Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions publication-title: Chem. Mater. – volume: 39 start-page: 8 year: 2001 end-page: 22 ident: bib35 article-title: Novel semi-IPN through vinyl silane polymerization and crosslinking within PVC films publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 48 start-page: 6648 year: 2007 end-page: 6655 ident: bib38 article-title: Porous interpenetrating network hybrids synthesized within high internal phase emulsions publication-title: Polymer – volume: 1 start-page: 331 year: 1972 end-page: 341 ident: bib75 article-title: Latex interpenetrating polymer networks publication-title: Int. J. Polym. Mater. Polym. Biomater. – start-page: 31 year: 2011 end-page: 78 ident: bib112 article-title: Porous polymers from self-assembled structures publication-title: Porous Polymers – year: 1929 ident: bib110 article-title: Manufacture of Goods of Rubber or Similar Material, BP 332,525 – volume: 197 start-page: 267 year: 2012 end-page: 275 ident: bib184 article-title: Long lifetime in concentrated LiOH aqueous solution of air electrode protected with interpenetrating polymer network membrane publication-title: J. Power Sources – volume: 109 start-page: 16304 year: 2005 end-page: 16309 ident: bib73 article-title: Effect of polymer entanglement on the toughening of double network hydrogels publication-title: J. Phys. Chem. B – volume: 17 start-page: 2443 year: 1973 end-page: 2455 ident: bib76 article-title: Glass transition behavior of latex interpenetrating polymer networks based on methacrylic/acrylic pairs publication-title: J. Appl. Polym. Sci. – volume: 10 start-page: 5332 year: 2019 end-page: 5337 ident: bib22 article-title: Counting loops in sidechain-crosslinked polymers from elastic solids to single-chain nanoparticles publication-title: Chem. Sci. – volume: 26 start-page: 4468 year: 2005 end-page: 4475 ident: bib74 article-title: Biomechanical properties of high-toughness double network hydrogels publication-title: Biomaterials – volume: 7 start-page: 5742 year: 2019 end-page: 5761 ident: bib133 article-title: In situ-forming, mechanically resilient hydrogels for cell delivery publication-title: J. Mater. Chem. B – volume: 30 start-page: 1 year: 2005 end-page: 9 ident: bib72 article-title: Novel hydrogels with excellent mechanical performance publication-title: Prog. Polym. Sci. – volume: 13 start-page: 911 year: 2017 end-page: 920 ident: bib169 article-title: Dual physically crosslinked double network hydrogels with high toughness and self-healing properties publication-title: Soft Matter – volume: 212 start-page: 240 year: 2011 end-page: 251 ident: bib61 article-title: Porous semi-interpenetrating hydrogel networks based on dextran and polyacrylamide with superfast responsiveness publication-title: Macromol. Chem. Phys. – volume: 52 start-page: 819 year: 2019 end-page: 826 ident: bib120 article-title: Porous polystyrene monoliths prepared from in situ simultaneous interpenetrating polymer networks: modulation of morphology by polymerization kinetics publication-title: Macromolecules – year: 2011 ident: bib106 article-title: Porous Polymers – start-page: 1004 year: 2015 end-page: 1011 ident: bib11 article-title: Interpenetrating polymer networks (IPN): structure and mechanical behavior publication-title: Encyclopedia of Polymeric Nanomaterials – volume: 76 start-page: 892 year: 2003 end-page: 898 ident: bib68 article-title: Role of strain crystallization in the fatigue resistance of double network elastomers publication-title: Rubber Chem. Technol. – volume: 81 start-page: 316 year: 2016 end-page: 326 ident: bib160 article-title: Poly(2-hydroxyethyl methacrylate)-based porous hydrogel: influence of surfactant and SiO2 nanoparticles on the morphology, swelling and thermal properties publication-title: Eur. Polym. J. – year: 1951 ident: bib52 article-title: Process for the Production of Strain-free Masses from Crosslinked Styrene-type Polymers – volume: 21 start-page: 2493 year: 2020 end-page: 2501 ident: bib189 article-title: PCL-based shape memory polymer semi-IPNs: the role of miscibility in tuning the degradation rate publication-title: Biomacromolecules – start-page: 272 year: 2004 end-page: 311 ident: bib6 article-title: Interpenetrating Polymer Networks, Encyclopedia of Polymer Science and Technology – volume: 274 start-page: 488 year: 2015 end-page: 495 ident: bib185 article-title: Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane publication-title: J. Power Sources – volume: 52 start-page: 9512 year: 2019 end-page: 9525 ident: bib165 article-title: Double-network physical cross-linking strategy to promote bulk mechanical and surface adhesive properties of hydrogels publication-title: Macromolecules – volume: 2 start-page: 589 year: 1985 end-page: 596 ident: bib81 article-title: Electron-beam radiation-damage to organic inclusions in ice as an analytical tool for polymer science publication-title: J. Electron. Microsc. Tech. – volume: 33 start-page: 4132 year: 2000 end-page: 4137 ident: bib66 article-title: Mechanical and optical behavior of double network rubbers publication-title: Macromolecules – volume: 13 start-page: 485 year: 2001 end-page: 487 ident: bib144 article-title: The polyrotaxane gel: a topological gel by figure-of-eight cross-links publication-title: Adv. Mater. – volume: 15 start-page: 9949 year: 2019 end-page: 9964 ident: bib187 article-title: Poly(sodium acrylate) hydrogels: synthesis of various network architectures, local molecular dynamics, salt partitioning, desalination and simulation publication-title: Soft Matter – volume: 21 start-page: 1149 year: 2020 end-page: 1156 ident: bib196 article-title: Elastin-based thermoresponsive shape-memory hydrogels publication-title: Biomacromolecules – volume: 8 start-page: 6319 year: 2017 end-page: 6328 ident: bib156 article-title: Hydrogels through emulsion templating: sequential polymerization and double networks publication-title: Polym. Chem. – volume: 29 start-page: 824 year: 1989 end-page: 834 ident: bib48 article-title: Elastomeric latex domain-interpenetrating polymer networks - physical and rheological properties publication-title: Polym. Eng. Sci. – volume: 77 start-page: 1 year: 2018 end-page: 18 ident: bib143 article-title: Polymer composite hydrogels containing carbon nanomaterials—morphology and mechanical and functional performance publication-title: Prog. Polym. Sci. – volume: 368 start-page: 1 year: 2011 end-page: 17 ident: bib7 article-title: (Semi-)Interpenetrating polymer networks as fuel cell membranes publication-title: J. Membr. Sci. – volume: 65 start-page: 252 year: 2015 end-page: 267 ident: bib129 article-title: Biomedical applications of hydrogels: a review of patents and commercial products publication-title: Eur. Polym. J. – volume: 47 start-page: 4840 year: 2009 end-page: 4845 ident: bib186 article-title: Enhancing hydrophilicity in a hydrophobic porous emulsion-templated polyacrylate publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 7 start-page: 477 year: 2020 end-page: 488 ident: bib192 article-title: An ambient-stable and stretchable ionic skin with multimodal sensation publication-title: Mater. Horiz. – volume: 243 start-page: 572 year: 2014 end-page: 590 ident: bib9 article-title: Design and applications of interpenetrating polymer network hydrogels. A review publication-title: Chem. Eng. J. – volume: 26 start-page: 1359 year: 1985 end-page: 1364 ident: bib80 article-title: Properties and structure of elastomeric 2-stage emulsion interpenetrating networks publication-title: Polymer – volume: 220 start-page: 24 year: 1967 end-page: 31 ident: bib95 article-title: Die elektronenmikroskopischen Darstellungen von ABS-Kunststoffen publication-title: Kolloid-Z. Z. Polym. – volume: 53 start-page: 1073 year: 1920 end-page: 1085 ident: bib1 article-title: Über polymerisation publication-title: Ber. Dtsch. Chem. Ges. – volume: 55 start-page: 54 year: 2016 end-page: 70 ident: bib146 article-title: A review: tailor-made hydrogel structures (classifications and synthesis parameters) publication-title: Polym. Plast. Technol. Eng. – volume: 33 start-page: 102 year: 2000 end-page: 107 ident: bib150 article-title: Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks publication-title: Macromolecules – volume: 59 start-page: 45 year: 1996 end-page: 50 ident: bib29 article-title: Interpenetrating polymer networks of photocrosslinkable cellulose derivatives publication-title: J. Appl. Polym. Sci. – volume: 59 start-page: 1472 year: 2013 end-page: 1478 ident: bib151 article-title: Amphiphilic interpenetrating polymer networks for the oral delivery of chemotherapeutics publication-title: AIChE J. – volume: 19 start-page: 1731 year: 1975 end-page: 1743 ident: bib102 article-title: Noise and vibration damping with latex interpenetrating polymer networks publication-title: J. Appl. Polym. Sci. – year: 1981 ident: bib5 article-title: Interpenetrating Polymer Networks and Related Material – volume: 22 start-page: 1365 year: 1984 end-page: 1372 ident: bib90 article-title: Morphology of core-shell latex particles publication-title: J. Polym. Sci. Polym. Chem. Ed. – volume: 5 start-page: 785 year: 1922 end-page: 806 ident: bib3 article-title: Über Isopren und Kautschuk. 5. Mitteilung. Über die Hydrierung des Kautschuks und über seine Konstitution publication-title: Helv. Chim. Acta – volume: 93 start-page: 1 year: 2015 end-page: 49 ident: bib130 article-title: Stimulus-responsive hydrogels: theory, modern advances, and applications publication-title: Mater. Sci. Eng. R Rep. – volume: 45 start-page: 63 year: 1976 end-page: 74 ident: bib57 article-title: Synthesis and properties of interpenetrating networks publication-title: Russ. Chem. Rev. – volume: 36 start-page: 5732 year: 2003 end-page: 5741 ident: bib138 article-title: Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly( publication-title: Macromolecules – volume: 8 start-page: 337 year: 2012 end-page: 346 ident: bib149 article-title: Novel strategy for the determination of UCST-like microgels network structure: effect on swelling behavior and rheology publication-title: Soft Matter – volume: 25 start-page: 4171 year: 2013 end-page: 4176 ident: bib174 article-title: A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide publication-title: Adv. Mater. – volume: 21 start-page: 2845 year: 1983 end-page: 2861 ident: bib92 article-title: Morphology and grafting in polybutylacrylate-polystyrene core-shell emulsion polymerization publication-title: J. Polym. Sci. Polym. Chem. Ed. – volume: 40 start-page: 5279 year: 1999 end-page: 5284 ident: bib124 article-title: Degradation of interpenetrating polymer networks based on PE and polymethacrylates by electron beam irradiation publication-title: Polymer – volume: 89 start-page: 1976 year: 2003 end-page: 1982 ident: bib125 article-title: Membrane properties of microporous structures prepared from polyethylene/polymethacrylate IPN publication-title: J. Appl. Polym. Sci. – volume: 47 start-page: 7043 year: 2009 end-page: 7053 ident: bib64 article-title: A degradable, porous, emulsion-templated polyacrylate publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 86 start-page: 1707 year: 2014 ident: bib12 article-title: Advances in interpenetrating polymer network hydrogels and their applications publication-title: Pure Appl. Chem. – volume: 15 start-page: 1155 year: 2003 end-page: 1158 ident: bib69 article-title: Double-network hydrogels with extremely high mechanical strength publication-title: Adv. Mater. – volume: 60 start-page: 140 year: 2020 end-page: 150 ident: bib109 article-title: The Chemistry of porous polymers: the holey grail publication-title: Isr. J. Chem. – volume: 59 start-page: 2784 year: 2020 end-page: 2792 ident: bib33 article-title: Photoswitchable sol–gel transitions and catalysis mediated by polymer networks with coumarin-decorated Cu publication-title: Angew. Chem. Int. Ed. – volume: 291 start-page: 2031 year: 2013 end-page: 2047 ident: bib145 article-title: A review on tough and sticky hydrogels publication-title: Colloid Polym. Sci. – volume: 29 start-page: 1547 year: 1993 end-page: 1551 ident: bib25 article-title: Properties of two kinds of room temperature cured interpenetrating polymer networks based on castor oil polyurethane publication-title: Eur. Polym. J. – volume: 30 start-page: 1706441 year: 2018 ident: bib17 article-title: Advanced materials by atom transfer radical polymerization publication-title: Adv. Mater. – volume: 41 start-page: 1540 year: 2001 end-page: 1552 ident: bib62 article-title: High, internal phase emulsion foams: copolymers, and interpenetrating polymer networks publication-title: Polym. Eng. Sci. – start-page: 127 year: 2016 end-page: 143 ident: bib121 article-title: Macro-, meso-, and nanoporous systems designed from IPNs publication-title: Micro‐ and Nano‐structured Interpenetrating Polymer Networks: from Design to Applications – volume: 84 year: 2017 ident: bib46 article-title: A model for the mullins effect in multinetwork elastomers publication-title: J. Appl. Mech. – volume: 132 year: 2015 ident: bib148 article-title: Dynamic swelling behavior of interpenetrating polymer networks in response to temperature and pH publication-title: J. Appl. Polym. Sci. – volume: 25 start-page: 1598 year: 2015 end-page: 1607 ident: bib172 article-title: A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties publication-title: Adv. Funct. Mater. – volume: 217 start-page: 1022 year: 2016 end-page: 1036 ident: bib13 article-title: Engineering of tough double network hydrogels publication-title: Macromol. Chem. Phys. – volume: 11 start-page: 241 year: 1973 end-page: 251 ident: bib85 article-title: Evidence for and against concentration gradients in polymerizing latex particles publication-title: J. Polym. Sci. Polym. Chem. Ed. – year: 2016 ident: bib108 article-title: Porous Polymers: Design, Synthesis and Applications, Porous Polymers: Design, Synthesis and Applications – volume: 168 start-page: 146 year: 2019 end-page: 154 ident: bib159 article-title: Robust, highly porous hydrogels templated within emulsions stabilized using a reactive, crosslinking triblock copolymer publication-title: Polymer – volume: 142 start-page: 287 year: 2004 end-page: 291 ident: bib179 article-title: Long-life air working conducting semi-IPN/ionic liquid based actuator publication-title: Synth. Met. – volume: 42 start-page: 4473 year: 2001 end-page: 4482 ident: bib34 article-title: Organic-inorganic networks in foams from high internal phase emulsion polymerizations publication-title: Polymer – volume: 30 start-page: 2000754 year: 2020 ident: bib194 article-title: Fast switching of bright whiteness in channeled hydrogel networks publication-title: Adv. Funct. Mater. – volume: 52 start-page: 1685 year: 2019 end-page: 1694 ident: bib23 article-title: Revisiting the elasticity theory for real Gaussian phantom networks publication-title: Macromolecules – volume: 46 start-page: 2357 year: 2008 end-page: 2366 ident: bib39 article-title: Highly porous elastomer-silsesquioxane nanocomposites synthesized within high internal phase emulsions publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 204–206 start-page: 198 year: 2012 end-page: 209 ident: bib60 article-title: Macroporous composite IPN hydrogels based on poly(acrylamide) and chitosan with tuned swelling and sorption of cationic dyes publication-title: Chem. Eng. J. – volume: 53 start-page: 1805 year: 2012 end-page: 1822 ident: bib178 article-title: Super tough double network hydrogels and their application as biomaterials publication-title: Polymer – volume: 6 start-page: 2583 year: 2010 end-page: 2590 ident: bib164 article-title: Why are double network hydrogels so tough? publication-title: Soft Matter – volume: 5 start-page: 7683 year: 2017 end-page: 7691 ident: bib168 article-title: High strength and self-healable gelatin/polyacrylamide double network hydrogels publication-title: J. Mater. Chem. B – volume: 67 start-page: 1164 year: 1934 end-page: 1172 ident: bib4 article-title: Über hochpolymere Verbindungen, 94. Mitteil.: Über ein unlösliches Poly‐styrol publication-title: Ber. Dtsch. Chem. Ges. – volume: 20 start-page: 1571 year: 2008 end-page: 1577 ident: bib40 article-title: Interconnected silsesquioxane-organic networks in porous nanocomposites synthesized within high internal phase emulsions publication-title: Chem. Mater. – volume: 21 start-page: 581 year: 1950 end-page: 591 ident: bib43 article-title: Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight publication-title: J. Appl. Phys. – volume: 50 start-page: 8297 year: 2017 end-page: 8316 ident: bib134 article-title: 50th anniversary perspective: networks and gels: soft but dynamic and tough publication-title: Macromolecules – start-page: 1964 year: 2008 end-page: 2013 ident: bib105 article-title: Porous polymers and resins publication-title: Handbook of Porous Solids – volume: 209 start-page: 1564 year: 2008 end-page: 1575 ident: bib162 article-title: Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks publication-title: Macromol. Chem. Phys. – volume: 12 year: 2020 ident: bib193 article-title: Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites publication-title: Biofabrication – volume: 12 start-page: 1490 year: 2012 end-page: 1501 ident: bib32 article-title: Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds publication-title: Macromol. Biosci. – year: 1914 ident: bib51 article-title: Plastic Composition – start-page: 262 year: 1982 end-page: 302 ident: bib16 article-title: The Elements of Polymer Science and Engineering – volume: 40 start-page: 7306 year: 2007 end-page: 7310 ident: bib98 article-title: Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles publication-title: Macromolecules – volume: 17 start-page: 1805 year: 1973 end-page: 1811 ident: bib96 article-title: The physical limits of grafting in two-phase polymerization reactions publication-title: J. Appl. Polym. Sci. – volume: 115 start-page: 9110 year: 2018 ident: bib45 article-title: Mechanics of elastomeric molecular composites publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 46 start-page: 6682 year: 2005 end-page: 6694 ident: bib36 article-title: PolyHIPE: IPNs, hybrids, nanoscale porosity, silica monoliths and ICP-based sensors publication-title: Polymer – start-page: 69 year: 2011 end-page: 82 ident: bib50 article-title: History of interpenetrating polymer networks starting with bakelite-based compositions publication-title: 100+ Years of Plastics. Leo Baekeland and beyond – volume: 40 start-page: 8329 year: 2007 end-page: 8335 ident: bib37 article-title: Silsesquioxane-cross-linked porous nanocomposites synthesized within high internal phase emulsions publication-title: Macromolecules – start-page: 1311 year: 1960 end-page: 1317 ident: bib54 article-title: 263. Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates publication-title: J. Chem. Soc. – volume: 33 start-page: 2529 year: 1987 end-page: 2547 ident: bib82 article-title: Elastomeric domain-type interpenetrating polymer networks publication-title: J. Appl. Polym. Sci. – start-page: 2000516 year: 2020 ident: bib197 article-title: Improved mechanical durability of high-performance OPVs using semi-interpenetrating networks publication-title: Adv. Opt. Mater. – volume: 42 start-page: 1627 year: 2009 end-page: 1633 ident: bib65 article-title: Biodegradable porous polymers through emulsion templating publication-title: Macromolecules – volume: 32 start-page: 467 year: 2013 end-page: 513 ident: bib20 article-title: First principles modelling of free-radical polymerisation kinetics publication-title: Int. Rev. Phys. Chem. – volume: 26 start-page: 2482 year: 2016 end-page: 2492 ident: bib47 article-title: Characterizing large strain elasticity of brittle elastomeric networks by embedding them in a soft extensible matrix publication-title: Adv. Funct. Mater. – volume: 14 start-page: 1124 year: 2004 end-page: 1128 ident: bib71 article-title: High mechanical strength double‐network hydrogel with bacterial cellulose publication-title: Adv. Funct. Mater. – volume: 112 start-page: 3063 year: 2009 end-page: 3070 ident: bib175 article-title: Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers publication-title: J. Appl. Polym. Sci. – volume: 50 start-page: 12556 year: 2011 end-page: 12561 ident: bib147 article-title: Amphiphilic interpenetrating networks for the delivery of hydrophobic, low molecular weight therapeutic agents publication-title: Ind. Eng. Chem. Res. – year: 1955 ident: bib53 article-title: Improvements Relating to the Production of Ion-Exchange Resins – volume: 12 start-page: 2123 year: 1974 end-page: 2132 ident: bib89 article-title: Latex particle morphology during polymerization and at saturation equilibrium publication-title: J. Polym. Sci. Polym. Chem. Ed. – volume: 59 start-page: 5022 year: 2020 end-page: 5049 ident: bib21 article-title: Polymer networks: from plastics and gels to porous frameworks publication-title: Angew. Chem. Int. Ed. – start-page: 677 year: 2014 end-page: 724 ident: bib10 article-title: Interpenetrating polymer networks publication-title: Polymer Blends Handbook – volume: 7 start-page: 247 year: 1996 end-page: 256 ident: bib100 article-title: Latex interpenetrating polymer networks: from structure to properties publication-title: Polym. Adv. Technol. – start-page: 464 year: 2004 end-page: 543 ident: bib14 article-title: Principles of Polymerization – volume: 48 start-page: 7945 year: 2015 end-page: 7952 ident: bib44 article-title: Structure of tough multiple network elastomers by small angle neutron scattering publication-title: Macromolecules – volume: 7 year: 2018 ident: bib158 article-title: Structured macroporous hydrogels: progress, challenges, and opportunities publication-title: Adv. Healthc. Mater. – volume: 9 start-page: 746 year: 1998 end-page: 751 ident: bib123 article-title: Synthesis, electron irradiation modification and characterization of polyethylene/poly(butyl methacrylate-co-methyl methacrylate) interpenetrating polymer network publication-title: Polym. Adv. Technol. – volume: 16 start-page: 663 year: 1995 end-page: 666 ident: bib28 article-title: Doublestimuli‐responsive degradable hydrogels for drug delivery: interpenetrating polymer networks composed of oligopeptide‐terminated poly(ethylene glycol) and dextran publication-title: Macromol. Rapid Commun. – volume: 52 start-page: 839 year: 2014 end-page: 847 ident: bib142 article-title: High water content clay–nanocomposite hydrogels incorporating guanidinium-pendant methacrylamide: tuning of mechanical and swelling properties by supramolecular approach publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 24 start-page: 306 year: 1976 end-page: 329 ident: bib103 article-title: Viscoelastic properties of acrylic latex interpenetrating polymer networks as broad temperature span vibration damping materials publication-title: ACS Symp. Ser. – volume: 302 start-page: 1600367 year: 2017 ident: bib161 article-title: One‐pot fabrication of poly(ε‐caprolactone)‐incorporated bovine serum albumin/calcium alginate/hydroxyapatite nanocomposite scaffolds by high internal phase emulsion templates publication-title: Macromol. Mater. Eng. – volume: 208 start-page: 1 year: 2007 end-page: 227 ident: bib41 article-title: Phase-separated interpenetrating polymer networks publication-title: Adv. Polym. Sci. – volume: 38 start-page: 4301 year: 2005 end-page: 4310 ident: bib113 article-title: Nanopore formation in a polyphenylene low-k dielectric publication-title: Macromolecules – volume: 14 year: 1984 ident: bib79 article-title: Radiation-damage to latex-particles as an analytical tool in polymer science publication-title: Ultramicroscopy – volume: 292 start-page: 620 year: 2007 end-page: 626 ident: bib140 article-title: Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization publication-title: Macromol. Mater. Eng. – volume: 35 start-page: 332 year: 2010 end-page: 337 ident: bib136 article-title: Some hydrogels having novel molecular structures publication-title: Prog. Polym. Sci. – volume: 37 start-page: 1814 year: 2016 end-page: 1819 ident: bib154 article-title: Superabsorbent, high porosity, PAMPS‐based hydrogels through emulsion templating publication-title: Macromol. Rapid Commun. – volume: 51 start-page: 983 year: 2019 end-page: 988 ident: bib183 article-title: Development of novel network structures in crosslinked liquid-crystalline polymers publication-title: Polym. J. – volume: 72 start-page: 344 year: 2015 end-page: 364 ident: bib131 article-title: Extremely strong and tough hydrogels as prospective candidates for tissue repair – a review publication-title: Eur. Polym. J. – volume: 30 start-page: 1903 year: 1985 end-page: 1926 ident: bib94 article-title: Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene publication-title: J. Appl. Polym. Sci. – volume: 24 start-page: 1179 year: 1979 end-page: 1190 ident: bib78 article-title: Morphology and mechanical-behavior of polyvinyl chloride)-poly(butadiene-co-acrylonitrile) latex interpenetrating polymer networks publication-title: J. Appl. Polym. Sci. – volume: 47 start-page: 2140 year: 2014 end-page: 2148 ident: bib173 article-title: Fracture of the physically cross-linked first network in hybrid double network hydrogels publication-title: Macromolecules – start-page: 595 year: 1994 end-page: 614 ident: bib24 article-title: Interpenetrating Polymer Networks from Castor Oil Polyurethane and Vinyl Copolymers, Interpenetrating Polymer Networks – volume: 70 start-page: 842 year: 2017 end-page: 855 ident: bib135 article-title: Mechanical properties of PNIPAM based hydrogels: a review publication-title: Mater. Sci. Eng. C – start-page: 21 year: 1985 end-page: 56 ident: bib42 article-title: Recent developments in interpenetrating polymer networks and related materials publication-title: Multicomponent Polymer Materials – volume: 48 start-page: 1741 year: 2019 end-page: 1786 ident: bib181 article-title: Morphological/nanostructural control toward intrinsically stretchable organic electronics publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1 year: 1973 end-page: 23 ident: bib97 article-title: Morphologie von ABS-Pfropfkautschuken publication-title: Die Angewandte Makromolekulare Chemie – volume: 16 start-page: 46 year: 1984 end-page: 48 ident: bib116 article-title: The use of labile crosslinker for morphological studies in interpenetrating polymer networks publication-title: Br. Polym. J. – volume: 109 start-page: 110495 year: 2020 ident: bib195 article-title: Fabrication of bicontinuous double networks as thermal and pH stimuli responsive drug carriers for on-demand release publication-title: Mater. Sci. Eng. C – volume: 12 start-page: 360 year: 1979 end-page: 369 ident: bib26 article-title: Simultaneous interpenetrating networks based on Castor oil elastomers and polystyrene. 2. Synthesis and systems characteristics publication-title: Macromolecules – volume: 31 start-page: 3766 year: 2019 end-page: 3776 ident: bib176 article-title: Fabrication of tough and stretchable hybrid double-network elastomers using ionic dissociation of polyelectrolyte in nonaqueous media publication-title: Chem. Mater. – volume: 30 start-page: 1743 year: 2018 end-page: 1754 ident: bib170 article-title: General strategy to fabricate strong and tough low-molecular-weight gelator-based supramolecular hydrogels with double network structure publication-title: Chem. Mater. – volume: 19 start-page: 2225 year: 1975 end-page: 2233 ident: bib77 article-title: Synthesis and behavior of polyvinyl chloride based latex interpenetrating polymer networks publication-title: J. Appl. Polym. Sci. – volume: 15 start-page: 625 year: 1982 end-page: 631 ident: bib115 article-title: Phase continuity in sequential poly(n-butyl acrylate)/polystyrene interpenetrating polymer networks publication-title: Macromolecules – volume: 44 start-page: 9683 year: 2011 end-page: 9691 ident: bib180 article-title: Flexible solid polymer electrolytes based on nitrile butadiene rubber/poly(ethylene oxide) interpenetrating polymer networks containing either LiTFSI or EMITFSI publication-title: Macromolecules – volume: 11 start-page: 8 year: 2020 end-page: 14 ident: bib2 article-title: Celebrating 100 years of “polymer science”: Hermann Staudinger's 1920 manifesto publication-title: Polym. Chem. – volume: 30 start-page: 416 year: 1989 end-page: 424 ident: bib99 article-title: Microstructure of polyacrylate polystyrene 2-stage lattices publication-title: Polymer – volume: 8 start-page: 12018 year: 2016 end-page: 12030 ident: bib58 article-title: Smart macroporous IPN hydrogels responsive to pH, temperature, and ionic strength: synthesis, characterization, and evaluation of controlled release of drugs publication-title: ACS Appl. Mater. Interfaces – volume: 41 start-page: 1469 year: 2008 end-page: 1474 ident: bib63 article-title: Porous polycaprolactone-polystyrene semi-interpenetrating polymer networks synthesized within high internal phase emulsions publication-title: Macromolecules – volume: 18 start-page: 3219 year: 1980 end-page: 3228 ident: bib91 article-title: Estimation of morphology of composite polymer emulsion particles by the soap titration method publication-title: J. Polym. Sci. Polym. Chem. Ed. – volume: 185 start-page: 117 year: 1960 end-page: 118 ident: bib126 article-title: Hydrophilic gels for biological use publication-title: Nature – volume: 55 start-page: 919 year: 1995 end-page: 928 ident: bib152 article-title: Preparation and characterization of pH-sensitive, interpenetrating networks of poly(vinyl alcohol) and poly(acrylic acid) publication-title: J. Appl. Polym. Sci. – volume: 139 start-page: 33 year: 2016 end-page: 41 ident: bib59 article-title: Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery publication-title: Colloids Surf. B Biointerfaces – volume: 11 start-page: 143 year: 1973 end-page: 162 ident: bib87 article-title: Equilibrium encapsulation of polystyrene latex particles publication-title: J. Polym. Sci. Polym. Chem. Ed. – volume: 14 start-page: 1120 year: 2002 end-page: 1124 ident: bib137 article-title: Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties publication-title: Adv. Mater. – volume: 112 start-page: 3959 year: 2012 end-page: 4015 ident: bib107 article-title: Design and preparation of porous polymers publication-title: Chem. Rev. – volume: 34 start-page: 317 year: 2009 end-page: 350 ident: bib18 article-title: Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels publication-title: Prog. Polym. Sci. – volume: 43 start-page: 74 year: 1970 end-page: 94 ident: bib84 article-title: Mechanism of emulsion polymerization publication-title: Rubber Chem. Technol. – volume: 595 start-page: 117511 year: 2020 ident: bib199 article-title: Proton exchange membranes with cross-linked interpenetrating network of sulfonated polyvinyl alcohol and poly(2-acrylamido-2-methyl-1-propanesulfonic acid): excellent relative selectivity publication-title: J. Membr. Sci. – volume: 12 start-page: 11778 year: 2020 end-page: 11788 ident: bib198 article-title: Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc–air batteries publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 4090 year: 2020 end-page: 4098 ident: bib200 article-title: Regulating color activation energy of mechanophore-linked multinetwork elastomers publication-title: Macromolecules – volume: 27 start-page: 1703086 year: 2017 ident: bib167 article-title: Super bulk and interfacial toughness of physically crosslinked double-network hydrogels publication-title: Adv. Funct. Mater. – volume: 47 start-page: 6408 year: 2014 end-page: 6417 ident: bib31 article-title: Robust and degradable hydrogels from poly(ethylene glycol) and semi-interpenetrating collagen publication-title: Macromolecules – volume: 3 start-page: 1525 year: 2007 end-page: 1529 ident: bib153 article-title: Porous poly(2-hydroxyethyl methacrylate) hydrogels synthesized within high internal phase emulsions publication-title: Soft Matter – start-page: 200 year: 1993 end-page: 213 ident: bib15 article-title: Fundamental Principles of Polymer Materials – volume: 31 start-page: 179 year: 2019 end-page: 189 ident: bib166 article-title: General principle for fabricating natural globular protein-based double-network hydrogels with integrated highly mechanical properties and surface adhesion on solid surfaces publication-title: Chem. Mater. – volume: 39 start-page: 1973 year: 2014 end-page: 1986 ident: bib128 article-title: In situ-forming injectable hydrogels for regenerative medicine publication-title: Prog. Polym. Sci. – volume: 8 start-page: 2617 year: 1970 end-page: 2629 ident: bib86 article-title: The morphology of the monomer–polymer particle in styrene emulsion polymerization publication-title: J. Polym. Sci. 1 Polym. Chem. – volume: 37 start-page: 5370 year: 2004 end-page: 5374 ident: bib70 article-title: Structural characteristics of double network gels with extremely high mechanical strength publication-title: Macromolecules – volume: 287 start-page: 1 year: 2009 end-page: 11 ident: bib141 article-title: Nanocomposite polymer hydrogels publication-title: Colloid Polym. Sci. – volume: 48 start-page: 7017 year: 2007 end-page: 7028 ident: bib118 article-title: Poly(d,l-lactide)/poly(methyl methacrylate) interpenetrating polymer networks: synthesis, characterization, and use as precursors to porous polymeric materials publication-title: Polymer – year: 1955 ident: bib83 article-title: Emulsion Polymerization – volume: 18 start-page: 200 year: 1978 end-page: 203 ident: bib27 article-title: Simultaneous interpenetrating networks based on castor oil polyesters and polystyrene publication-title: Polym. Eng. Sci. – volume: 40 start-page: 2919 year: 2007 end-page: 2927 ident: bib163 article-title: Large strain hysteresis and mullins effect of tough double-network hydrogels publication-title: Macromolecules – volume: 32 start-page: 5208 year: 2020 end-page: 5216 ident: bib190 article-title: Simultaneous interpenetrating polymer network of collagen and hyaluronic acid as an in situ-forming corneal defect filler publication-title: Chem. Mater. – volume: 38 start-page: 672 year: 2013 end-page: 701 ident: bib127 article-title: Recent progress of in situ formed gels for biomedical applications publication-title: Prog. Polym. Sci. – volume: 51 start-page: 5890 year: 2010 end-page: 5894 ident: bib119 article-title: Porous polystyrene-based monolithic materials templated by semi-interpenetrating polymer networks for capillary electrochromatography publication-title: Polymer – volume: 68 start-page: 442 year: 2019 end-page: 451 ident: bib132 article-title: Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering publication-title: Int. J. Polym. Mater. Polym. Biomater. – volume: 3 start-page: 3654 year: 2015 end-page: 3676 ident: bib177 article-title: Fundamentals of double network hydrogels publication-title: J. Mater. Chem. B – volume: 38 start-page: 3482 year: 2005 end-page: 3490 ident: bib139 article-title: Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels publication-title: Macromolecules – start-page: 3 year: 1994 end-page: 38 ident: bib49 article-title: Interpenetrating polymer networks: an overview publication-title: Interpenetrating Polymer Networks – volume: 38 start-page: 7274 year: 2005 end-page: 7285 ident: bib117 article-title: Design of porous polymeric materials from interpenetrating polymer networks (IPNs): poly(dl-lactide)/poly(methyl methacrylate)-based semi-IPN systems publication-title: Macromolecules – volume: 8 start-page: 5184 year: 2020 end-page: 5188 ident: bib188 article-title: Hydrogels toughened by biominerals providing energy-dissipative sacrificial bonds publication-title: J. Mater. Chem. B – volume: 40 start-page: 476 year: 1967 end-page: 483 ident: bib56 article-title: Viscoelastic properties of multiple network polymers. IV. Copolymers of styrene and divinylbenzene publication-title: Rubber Chem. Technol. – volume: 68 start-page: 1618 year: 1935 end-page: 1634 ident: bib111 article-title: Über hochpolymere Verbindungen, 116. Mitteil.: Über das begrenzt quellbare Poly-styrol publication-title: Ber. Dtsch. Chem. Ges. – volume: 39 start-page: 2998 year: 2006 end-page: 3006 ident: bib114 article-title: SANS and XRR porosimetry of a polyphenylene low- publication-title: Macromolecules – volume: 65 start-page: 1172 year: 2013 end-page: 1187 ident: bib8 article-title: Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering publication-title: Adv. Drug Deliv. Rev. – volume: 25 start-page: 257 year: 1985 end-page: 263 ident: bib104 article-title: Capillary extrusion of elastomeric emulsion crosslinked interpenetrating networks publication-title: Polym. Eng. Sci. – volume: 126 start-page: 386 year: 2017 end-page: 394 ident: bib157 article-title: Doubly-crosslinked, emulsion-templated hydrogels through reversible metal coordination publication-title: Polymer – volume: 20 start-page: 45 year: 1982 end-page: 51 ident: bib93 article-title: Studies on suspension and emulsion. li. peculiar morphology of composite polymer particles produced by seeded emulsion polymerization publication-title: J. Polym. Sci., Polym. Lett. Ed. – volume: 16 start-page: S280 year: 2007 end-page: S287 ident: bib182 article-title: Interpenetrating networks of elastomers exhibiting 300% electrically-induced area strain publication-title: Smart Mater. Struct. – volume: 65 start-page: 280 year: 2016 end-page: 289 ident: bib155 article-title: High porosity, responsive hydrogel copolymers from emulsion templating publication-title: Polym. Int. – reference: P. Giusti, L. Callegaro, Biomaterial Comprising Hyaluronic Acid and Derivatives Thereof in Interpenetrating Polymer Networks (IPN), US Patent 5,644,049, 1997. – volume: 78 start-page: 76 year: 2005 end-page: 83 ident: bib67 article-title: The payne effect in double network elastomers publication-title: Rubber Chem. Technol. – volume: 11 start-page: 301 year: 1973 end-page: 303 ident: bib88 article-title: Particle morphology in emulsion polymerization publication-title: J. Polym. Sci. Polym. Chem. Ed. – volume: 7 start-page: 775 year: 1969 end-page: 779 ident: bib55 article-title: A topologically interpenetrating elastomeric network publication-title: J. Polym. Sci. B Polym. Lett. – year: 2016 ident: 10.1016/j.polymer.2020.122929_bib108 – volume: 31 start-page: 179 issue: 1 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib166 article-title: General principle for fabricating natural globular protein-based double-network hydrogels with integrated highly mechanical properties and surface adhesion on solid surfaces publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03860 – volume: 9 start-page: 746 issue: 10‐11 year: 1998 ident: 10.1016/j.polymer.2020.122929_bib123 article-title: Synthesis, electron irradiation modification and characterization of polyethylene/poly(butyl methacrylate-co-methyl methacrylate) interpenetrating polymer network publication-title: Polym. Adv. Technol. doi: 10.1002/(SICI)1099-1581(1998100)9:10/11<746::AID-PAT847>3.0.CO;2-X – volume: 59 start-page: 5022 issue: 13 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib21 article-title: Polymer networks: from plastics and gels to porous frameworks publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902900 – volume: 59 start-page: 2784 issue: 7 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib33 article-title: Photoswitchable sol–gel transitions and catalysis mediated by polymer networks with coumarin-decorated Cu24L24 metal–organic cages as junctions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913297 – start-page: 677 year: 2014 ident: 10.1016/j.polymer.2020.122929_bib10 article-title: Interpenetrating polymer networks – year: 1951 ident: 10.1016/j.polymer.2020.122929_bib52 – start-page: 2000516 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib197 article-title: Improved mechanical durability of high-performance OPVs using semi-interpenetrating networks publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000516 – volume: 29 start-page: 824 issue: 12 year: 1989 ident: 10.1016/j.polymer.2020.122929_bib48 article-title: Elastomeric latex domain-interpenetrating polymer networks - physical and rheological properties publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760291211 – volume: 40 start-page: 5279 issue: 19 year: 1999 ident: 10.1016/j.polymer.2020.122929_bib124 article-title: Degradation of interpenetrating polymer networks based on PE and polymethacrylates by electron beam irradiation publication-title: Polymer doi: 10.1016/S0032-3861(98)00757-5 – volume: 11 start-page: 241 issue: 1 year: 1973 ident: 10.1016/j.polymer.2020.122929_bib85 article-title: Evidence for and against concentration gradients in polymerizing latex particles publication-title: J. Polym. Sci. Polym. Chem. Ed. doi: 10.1002/pol.1973.170110120 – volume: 59 start-page: 45 issue: 1 year: 1996 ident: 10.1016/j.polymer.2020.122929_bib29 article-title: Interpenetrating polymer networks of photocrosslinkable cellulose derivatives publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19960103)59:1<45::AID-APP7>3.0.CO;2-M – start-page: 127 year: 2016 ident: 10.1016/j.polymer.2020.122929_bib121 article-title: Macro-, meso-, and nanoporous systems designed from IPNs – volume: 212 start-page: 240 issue: 3 year: 2011 ident: 10.1016/j.polymer.2020.122929_bib61 article-title: Porous semi-interpenetrating hydrogel networks based on dextran and polyacrylamide with superfast responsiveness publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201000519 – volume: 12 issue: 3 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib193 article-title: Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites publication-title: Biofabrication doi: 10.1088/1758-5090/ab8708 – volume: 60 start-page: 140 issue: 1–2 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib109 article-title: The Chemistry of porous polymers: the holey grail publication-title: Isr. J. Chem. doi: 10.1002/ijch.202000003 – volume: 132 issue: 24 year: 2015 ident: 10.1016/j.polymer.2020.122929_bib148 article-title: Dynamic swelling behavior of interpenetrating polymer networks in response to temperature and pH publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.42076 – start-page: 595 year: 1994 ident: 10.1016/j.polymer.2020.122929_bib24 – volume: 43 start-page: 74 issue: 1 year: 1970 ident: 10.1016/j.polymer.2020.122929_bib84 article-title: Mechanism of emulsion polymerization publication-title: Rubber Chem. Technol. doi: 10.5254/1.3547244 – volume: 31 start-page: 3766 issue: 10 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib176 article-title: Fabrication of tough and stretchable hybrid double-network elastomers using ionic dissociation of polyelectrolyte in nonaqueous media publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00871 – volume: 18 start-page: 3219 issue: 11 year: 1980 ident: 10.1016/j.polymer.2020.122929_bib91 article-title: Estimation of morphology of composite polymer emulsion particles by the soap titration method publication-title: J. Polym. Sci. Polym. Chem. Ed. doi: 10.1002/pol.1980.170181108 – volume: 595 start-page: 117511 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib199 article-title: Proton exchange membranes with cross-linked interpenetrating network of sulfonated polyvinyl alcohol and poly(2-acrylamido-2-methyl-1-propanesulfonic acid): excellent relative selectivity publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117511 – volume: 20 start-page: 1571 issue: 4 year: 2008 ident: 10.1016/j.polymer.2020.122929_bib40 article-title: Interconnected silsesquioxane-organic networks in porous nanocomposites synthesized within high internal phase emulsions publication-title: Chem. Mater. doi: 10.1021/cm0718062 – volume: 3 start-page: 3654 issue: 18 year: 2015 ident: 10.1016/j.polymer.2020.122929_bib177 article-title: Fundamentals of double network hydrogels publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00123D – volume: 25 start-page: 4171 issue: 30 year: 2013 ident: 10.1016/j.polymer.2020.122929_bib174 article-title: A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide publication-title: Adv. Mater. doi: 10.1002/adma.201300817 – volume: 21 start-page: 1149 issue: 3 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib196 article-title: Elastin-based thermoresponsive shape-memory hydrogels publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b01541 – volume: 21 start-page: 2493 issue: 6 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib189 article-title: PCL-based shape memory polymer semi-IPNs: the role of miscibility in tuning the degradation rate publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c00454 – volume: 109 start-page: 110495 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib195 article-title: Fabrication of bicontinuous double networks as thermal and pH stimuli responsive drug carriers for on-demand release publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.110495 – volume: 126 start-page: 386 year: 2017 ident: 10.1016/j.polymer.2020.122929_bib157 article-title: Doubly-crosslinked, emulsion-templated hydrogels through reversible metal coordination publication-title: Polymer doi: 10.1016/j.polymer.2017.07.044 – volume: 10 start-page: 5332 issue: 20 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib22 article-title: Counting loops in sidechain-crosslinked polymers from elastic solids to single-chain nanoparticles publication-title: Chem. Sci. doi: 10.1039/C9SC01297D – start-page: 272 year: 2004 ident: 10.1016/j.polymer.2020.122929_bib6 – volume: 7 start-page: 247 issue: 4 year: 1996 ident: 10.1016/j.polymer.2020.122929_bib100 article-title: Latex interpenetrating polymer networks: from structure to properties publication-title: Polym. Adv. Technol. doi: 10.1002/(SICI)1099-1581(199604)7:4<247::AID-PAT527>3.0.CO;2-X – volume: 25 start-page: 1598 issue: 10 year: 2015 ident: 10.1016/j.polymer.2020.122929_bib172 article-title: A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201404357 – volume: 48 start-page: 7017 issue: 24 year: 2007 ident: 10.1016/j.polymer.2020.122929_bib118 article-title: Poly(d,l-lactide)/poly(methyl methacrylate) interpenetrating polymer networks: synthesis, characterization, and use as precursors to porous polymeric materials publication-title: Polymer doi: 10.1016/j.polymer.2007.09.044 – volume: 112 start-page: 3063 issue: 5 year: 2009 ident: 10.1016/j.polymer.2020.122929_bib175 article-title: Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.29572 – volume: 5 start-page: 7683 issue: 37 year: 2017 ident: 10.1016/j.polymer.2020.122929_bib168 article-title: High strength and self-healable gelatin/polyacrylamide double network hydrogels publication-title: J. Mater. Chem. B doi: 10.1039/C7TB01780D – volume: 28 start-page: 5710 issue: 16 year: 2016 ident: 10.1016/j.polymer.2020.122929_bib171 article-title: Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01920 – volume: 32 start-page: 5208 issue: 12 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib190 article-title: Simultaneous interpenetrating polymer network of collagen and hyaluronic acid as an in situ-forming corneal defect filler publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01307 – volume: 20 start-page: 45 issue: 1 year: 1982 ident: 10.1016/j.polymer.2020.122929_bib93 article-title: Studies on suspension and emulsion. li. peculiar morphology of composite polymer particles produced by seeded emulsion polymerization publication-title: J. Polym. Sci., Polym. Lett. Ed. doi: 10.1002/pol.1982.130200107 – volume: 52 start-page: 9512 issue: 24 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib165 article-title: Double-network physical cross-linking strategy to promote bulk mechanical and surface adhesive properties of hydrogels publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01686 – volume: 50 start-page: 12556 issue: 22 year: 2011 ident: 10.1016/j.polymer.2020.122929_bib147 article-title: Amphiphilic interpenetrating networks for the delivery of hydrophobic, low molecular weight therapeutic agents publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie201593h – volume: 48 start-page: 6648 issue: 22 year: 2007 ident: 10.1016/j.polymer.2020.122929_bib38 article-title: Porous interpenetrating network hybrids synthesized within high internal phase emulsions publication-title: Polymer doi: 10.1016/j.polymer.2007.09.009 – volume: 65 start-page: 280 issue: 3 year: 2016 ident: 10.1016/j.polymer.2020.122929_bib155 article-title: High porosity, responsive hydrogel copolymers from emulsion templating publication-title: Polym. Int. doi: 10.1002/pi.5052 – volume: 48 start-page: 1741 issue: 6 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib181 article-title: Morphological/nanostructural control toward intrinsically stretchable organic electronics publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00834E – volume: 47 start-page: 2140 issue: 6 year: 2014 ident: 10.1016/j.polymer.2020.122929_bib173 article-title: Fracture of the physically cross-linked first network in hybrid double network hydrogels publication-title: Macromolecules doi: 10.1021/ma402542r – volume: 24 start-page: 1179 issue: 5 year: 1979 ident: 10.1016/j.polymer.2020.122929_bib78 article-title: Morphology and mechanical-behavior of polyvinyl chloride)-poly(butadiene-co-acrylonitrile) latex interpenetrating polymer networks publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1979.070240504 – volume: 48 start-page: 7945 issue: 21 year: 2015 ident: 10.1016/j.polymer.2020.122929_bib44 article-title: Structure of tough multiple network elastomers by small angle neutron scattering publication-title: Macromolecules doi: 10.1021/acs.macromol.5b01979 – volume: 52 start-page: 819 issue: 3 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib120 article-title: Porous polystyrene monoliths prepared from in situ simultaneous interpenetrating polymer networks: modulation of morphology by polymerization kinetics publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01923 – ident: 10.1016/j.polymer.2020.122929_bib101 – volume: 208 start-page: 1 year: 2007 ident: 10.1016/j.polymer.2020.122929_bib41 article-title: Phase-separated interpenetrating polymer networks publication-title: Adv. Polym. Sci. doi: 10.1007/12_2007_116 – volume: 32 start-page: 467 issue: 3 year: 2013 ident: 10.1016/j.polymer.2020.122929_bib20 article-title: First principles modelling of free-radical polymerisation kinetics publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235X.2013.797277 – volume: 38 start-page: 672 issue: 3–4 year: 2013 ident: 10.1016/j.polymer.2020.122929_bib127 article-title: Recent progress of in situ formed gels for biomedical applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2012.08.002 – year: 1914 ident: 10.1016/j.polymer.2020.122929_bib51 – volume: 17 start-page: 2443 issue: 8 year: 1973 ident: 10.1016/j.polymer.2020.122929_bib76 article-title: Glass transition behavior of latex interpenetrating polymer networks based on methacrylic/acrylic pairs publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1973.070170811 – volume: 14 start-page: 1120 issue: 16 year: 2002 ident: 10.1016/j.polymer.2020.122929_bib137 article-title: Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 – volume: 8 start-page: 5184 issue: 24 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib188 article-title: Hydrogels toughened by biominerals providing energy-dissipative sacrificial bonds publication-title: J. Mater. Chem. B doi: 10.1039/D0TB00833H – volume: 15 start-page: 1155 issue: 14 year: 2003 ident: 10.1016/j.polymer.2020.122929_bib69 article-title: Double-network hydrogels with extremely high mechanical strength publication-title: Adv. Mater. doi: 10.1002/adma.200304907 – volume: 2 start-page: 253 issue: 2 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib122 article-title: Oligoester-derivatized (Semi-)Interpenetrating polymer networks as nanostructured precursors to porous materials with tunable porosity publication-title: Chem. Afr. doi: 10.1007/s42250-019-00044-3 – volume: 47 start-page: 7043 issue: 24 year: 2009 ident: 10.1016/j.polymer.2020.122929_bib64 article-title: A degradable, porous, emulsion-templated polyacrylate publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.23744 – volume: 3 start-page: 1525 issue: 12 year: 2007 ident: 10.1016/j.polymer.2020.122929_bib153 article-title: Porous poly(2-hydroxyethyl methacrylate) hydrogels synthesized within high internal phase emulsions publication-title: Soft Matter doi: 10.1039/b711610a – start-page: 464 year: 2004 ident: 10.1016/j.polymer.2020.122929_bib14 – volume: 21 start-page: 581 issue: 6 year: 1950 ident: 10.1016/j.polymer.2020.122929_bib43 article-title: Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight publication-title: J. Appl. Phys. doi: 10.1063/1.1699711 – volume: 16 start-page: 663 issue: 9 year: 1995 ident: 10.1016/j.polymer.2020.122929_bib28 article-title: Doublestimuli‐responsive degradable hydrogels for drug delivery: interpenetrating polymer networks composed of oligopeptide‐terminated poly(ethylene glycol) and dextran publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.1995.030160905 – volume: 38 start-page: 4301 issue: 10 year: 2005 ident: 10.1016/j.polymer.2020.122929_bib113 article-title: Nanopore formation in a polyphenylene low-k dielectric publication-title: Macromolecules doi: 10.1021/ma047353t – volume: 68 start-page: 442 issue: 8 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib132 article-title: Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2018.1455680 – volume: 38 start-page: 3482 issue: 8 year: 2005 ident: 10.1016/j.polymer.2020.122929_bib139 article-title: Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels publication-title: Macromolecules doi: 10.1021/ma047431c – year: 2011 ident: 10.1016/j.polymer.2020.122929_bib106 – volume: 139 start-page: 33 year: 2016 ident: 10.1016/j.polymer.2020.122929_bib59 article-title: Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2015.12.011 – volume: 13 start-page: 485 issue: 7 year: 2001 ident: 10.1016/j.polymer.2020.122929_bib144 article-title: The polyrotaxane gel: a topological gel by figure-of-eight cross-links publication-title: Adv. Mater. doi: 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T – start-page: 69 year: 2011 ident: 10.1016/j.polymer.2020.122929_bib50 article-title: History of interpenetrating polymer networks starting with bakelite-based compositions – volume: 2 start-page: 589 issue: 6 year: 1985 ident: 10.1016/j.polymer.2020.122929_bib81 article-title: Electron-beam radiation-damage to organic inclusions in ice as an analytical tool for polymer science publication-title: J. Electron. Microsc. Tech. doi: 10.1002/jemt.1060020610 – volume: 81 start-page: 316 year: 2016 ident: 10.1016/j.polymer.2020.122929_bib160 article-title: Poly(2-hydroxyethyl methacrylate)-based porous hydrogel: influence of surfactant and SiO2 nanoparticles on the morphology, swelling and thermal properties publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2016.06.021 – volume: 68 start-page: 1618 issue: 8 year: 1935 ident: 10.1016/j.polymer.2020.122929_bib111 article-title: Über hochpolymere Verbindungen, 116. Mitteil.: Über das begrenzt quellbare Poly-styrol publication-title: Ber. Dtsch. Chem. Ges. doi: 10.1002/cber.19350680841 – volume: 41 start-page: 1540 issue: 9 year: 2001 ident: 10.1016/j.polymer.2020.122929_bib62 article-title: High, internal phase emulsion foams: copolymers, and interpenetrating polymer networks publication-title: Polym. Eng. Sci. doi: 10.1002/pen.10853 – volume: 12 start-page: 11778 issue: 10 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib198 article-title: Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc–air batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00325 – volume: 76 start-page: 892 issue: 4 year: 2003 ident: 10.1016/j.polymer.2020.122929_bib68 article-title: Role of strain crystallization in the fatigue resistance of double network elastomers publication-title: Rubber Chem. Technol. doi: 10.5254/1.3547779 – volume: 8 start-page: 12018 issue: 19 year: 2016 ident: 10.1016/j.polymer.2020.122929_bib58 article-title: Smart macroporous IPN hydrogels responsive to pH, temperature, and ionic strength: synthesis, characterization, and evaluation of controlled release of drugs publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02264 – volume: 35 start-page: 332 issue: 3 year: 2010 ident: 10.1016/j.polymer.2020.122929_bib136 article-title: Some hydrogels having novel molecular structures publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2009.12.002 – start-page: 1311 year: 1960 ident: 10.1016/j.polymer.2020.122929_bib54 article-title: 263. Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates publication-title: J. Chem. Soc. doi: 10.1039/JR9600001311 – volume: 55 start-page: 54 issue: 1 year: 2016 ident: 10.1016/j.polymer.2020.122929_bib146 article-title: A review: tailor-made hydrogel structures (classifications and synthesis parameters) publication-title: Polym. Plast. Technol. Eng. doi: 10.1080/03602559.2015.1050520 – volume: 8 start-page: 337 issue: 2 year: 2012 ident: 10.1016/j.polymer.2020.122929_bib149 article-title: Novel strategy for the determination of UCST-like microgels network structure: effect on swelling behavior and rheology publication-title: Soft Matter doi: 10.1039/C1SM06489D – volume: 39 start-page: 8 issue: 1 year: 2001 ident: 10.1016/j.polymer.2020.122929_bib35 article-title: Novel semi-IPN through vinyl silane polymerization and crosslinking within PVC films publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/1099-0518(20010101)39:1<8::AID-POLA20>3.0.CO;2-Q – volume: 42 start-page: 1627 issue: 5 year: 2009 ident: 10.1016/j.polymer.2020.122929_bib65 article-title: Biodegradable porous polymers through emulsion templating publication-title: Macromolecules doi: 10.1021/ma802461m – volume: 40 start-page: 8329 issue: 23 year: 2007 ident: 10.1016/j.polymer.2020.122929_bib37 article-title: Silsesquioxane-cross-linked porous nanocomposites synthesized within high internal phase emulsions publication-title: Macromolecules doi: 10.1021/ma071417t – volume: 34 start-page: 317 issue: 4 year: 2009 ident: 10.1016/j.polymer.2020.122929_bib18 article-title: Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2009.01.001 – volume: 302 start-page: 1600367 issue: 4 year: 2017 ident: 10.1016/j.polymer.2020.122929_bib161 article-title: One‐pot fabrication of poly(ε‐caprolactone)‐incorporated bovine serum albumin/calcium alginate/hydroxyapatite nanocomposite scaffolds by high internal phase emulsion templates publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201600367 – volume: 53 start-page: 4090 issue: 10 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib200 article-title: Regulating color activation energy of mechanophore-linked multinetwork elastomers publication-title: Macromolecules doi: 10.1021/acs.macromol.0c00477 – volume: 12 start-page: 2123 issue: 9 year: 1974 ident: 10.1016/j.polymer.2020.122929_bib89 article-title: Latex particle morphology during polymerization and at saturation equilibrium publication-title: J. Polym. Sci. Polym. Chem. Ed. doi: 10.1002/pol.1974.170120930 – volume: 59 start-page: 1472 issue: 5 year: 2013 ident: 10.1016/j.polymer.2020.122929_bib151 article-title: Amphiphilic interpenetrating polymer networks for the oral delivery of chemotherapeutics publication-title: AIChE J. doi: 10.1002/aic.14077 – volume: 168 start-page: 146 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib159 article-title: Robust, highly porous hydrogels templated within emulsions stabilized using a reactive, crosslinking triblock copolymer publication-title: Polymer doi: 10.1016/j.polymer.2019.02.010 – volume: 13 start-page: 911 issue: 5 year: 2017 ident: 10.1016/j.polymer.2020.122929_bib169 article-title: Dual physically crosslinked double network hydrogels with high toughness and self-healing properties publication-title: Soft Matter doi: 10.1039/C6SM02567F – volume: 40 start-page: 476 issue: 2 year: 1967 ident: 10.1016/j.polymer.2020.122929_bib56 article-title: Viscoelastic properties of multiple network polymers. IV. Copolymers of styrene and divinylbenzene publication-title: Rubber Chem. Technol. doi: 10.5254/1.3539061 – volume: 243 start-page: 572 year: 2014 ident: 10.1016/j.polymer.2020.122929_bib9 article-title: Design and applications of interpenetrating polymer network hydrogels. A review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.01.065 – volume: 29 start-page: 1 issue: 1 year: 1973 ident: 10.1016/j.polymer.2020.122929_bib97 article-title: Morphologie von ABS-Pfropfkautschuken publication-title: Die Angewandte Makromolekulare Chemie doi: 10.1002/apmc.1973.050290101 – volume: 7 issue: 1 year: 2018 ident: 10.1016/j.polymer.2020.122929_bib158 article-title: Structured macroporous hydrogels: progress, challenges, and opportunities publication-title: Adv. Healthc. Mater. – volume: 38 start-page: 7274 issue: 17 year: 2005 ident: 10.1016/j.polymer.2020.122929_bib117 article-title: Design of porous polymeric materials from interpenetrating polymer networks (IPNs): poly(dl-lactide)/poly(methyl methacrylate)-based semi-IPN systems publication-title: Macromolecules doi: 10.1021/ma0501390 – year: 1955 ident: 10.1016/j.polymer.2020.122929_bib53 – volume: 53 start-page: 1073 issue: 6 year: 1920 ident: 10.1016/j.polymer.2020.122929_bib1 article-title: Über polymerisation publication-title: Ber. Dtsch. Chem. Ges. doi: 10.1002/cber.19200530627 – start-page: 1964 year: 2008 ident: 10.1016/j.polymer.2020.122929_bib105 article-title: Porous polymers and resins – volume: 142 start-page: 287 issue: 1 year: 2004 ident: 10.1016/j.polymer.2020.122929_bib179 article-title: Long-life air working conducting semi-IPN/ionic liquid based actuator publication-title: Synth. Met. doi: 10.1016/j.synthmet.2003.10.005 – volume: 291 start-page: 2031 issue: 9 year: 2013 ident: 10.1016/j.polymer.2020.122929_bib145 article-title: A review on tough and sticky hydrogels publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-013-3021-y – volume: 24 start-page: 306 year: 1976 ident: 10.1016/j.polymer.2020.122929_bib103 article-title: Viscoelastic properties of acrylic latex interpenetrating polymer networks as broad temperature span vibration damping materials publication-title: ACS Symp. Ser. doi: 10.1021/bk-1976-0024.ch020 – volume: 368 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.polymer.2020.122929_bib7 article-title: (Semi-)Interpenetrating polymer networks as fuel cell membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.11.020 – volume: 65 start-page: 252 year: 2015 ident: 10.1016/j.polymer.2020.122929_bib129 article-title: Biomedical applications of hydrogels: a review of patents and commercial products publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.11.024 – volume: 30 start-page: 1903 issue: 5 year: 1985 ident: 10.1016/j.polymer.2020.122929_bib94 article-title: Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1985.070300510 – year: 1955 ident: 10.1016/j.polymer.2020.122929_bib83 – volume: 209 start-page: 1564 issue: 15 year: 2008 ident: 10.1016/j.polymer.2020.122929_bib162 article-title: Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200800133 – volume: 29 start-page: 1547 issue: 12 year: 1993 ident: 10.1016/j.polymer.2020.122929_bib25 article-title: Properties of two kinds of room temperature cured interpenetrating polymer networks based on castor oil polyurethane publication-title: Eur. Polym. J. doi: 10.1016/0014-3057(93)90245-B – volume: 32 start-page: 2353 issue: 6 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib191 article-title: Interpenetrating polymer network hydrogels via a one-pot and in situ gelation system based on peptide self-assembly and orthogonal cross-linking for tissue regeneration publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04725 – volume: 53 start-page: 1805 issue: 9 year: 2012 ident: 10.1016/j.polymer.2020.122929_bib178 article-title: Super tough double network hydrogels and their application as biomaterials publication-title: Polymer doi: 10.1016/j.polymer.2012.03.013 – volume: 36 start-page: 5732 issue: 15 year: 2003 ident: 10.1016/j.polymer.2020.122929_bib138 article-title: Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay publication-title: Macromolecules doi: 10.1021/ma034366i – volume: 18 start-page: 200 issue: 3 year: 1978 ident: 10.1016/j.polymer.2020.122929_bib27 article-title: Simultaneous interpenetrating networks based on castor oil polyesters and polystyrene publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760180305 – volume: 46 start-page: 2357 issue: 7 year: 2008 ident: 10.1016/j.polymer.2020.122929_bib39 article-title: Highly porous elastomer-silsesquioxane nanocomposites synthesized within high internal phase emulsions publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.22570 – volume: 33 start-page: 4132 issue: 11 year: 2000 ident: 10.1016/j.polymer.2020.122929_bib66 article-title: Mechanical and optical behavior of double network rubbers publication-title: Macromolecules doi: 10.1021/ma000145q – volume: 11 start-page: 301 issue: 1 year: 1973 ident: 10.1016/j.polymer.2020.122929_bib88 article-title: Particle morphology in emulsion polymerization publication-title: J. Polym. Sci. Polym. Chem. Ed. doi: 10.1002/pol.1973.170110126 – volume: 41 start-page: 1469 issue: 4 year: 2008 ident: 10.1016/j.polymer.2020.122929_bib63 article-title: Porous polycaprolactone-polystyrene semi-interpenetrating polymer networks synthesized within high internal phase emulsions publication-title: Macromolecules doi: 10.1021/ma7027177 – volume: 52 start-page: 1685 issue: 4 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib23 article-title: Revisiting the elasticity theory for real Gaussian phantom networks publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01676 – volume: 11 start-page: 8 issue: 1 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib2 article-title: Celebrating 100 years of “polymer science”: Hermann Staudinger's 1920 manifesto publication-title: Polym. Chem. doi: 10.1039/C9PY90161B – volume: 26 start-page: 2482 issue: 15 year: 2016 ident: 10.1016/j.polymer.2020.122929_bib47 article-title: Characterizing large strain elasticity of brittle elastomeric networks by embedding them in a soft extensible matrix publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504536 – volume: 7 start-page: 775 issue: 11 year: 1969 ident: 10.1016/j.polymer.2020.122929_bib55 article-title: A topologically interpenetrating elastomeric network publication-title: J. Polym. Sci. B Polym. Lett. doi: 10.1002/pol.1969.110071104 – volume: 7 start-page: 477 issue: 2 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib192 article-title: An ambient-stable and stretchable ionic skin with multimodal sensation publication-title: Mater. Horiz. doi: 10.1039/C9MH00715F – volume: 21 start-page: 2845 issue: 10 year: 1983 ident: 10.1016/j.polymer.2020.122929_bib92 article-title: Morphology and grafting in polybutylacrylate-polystyrene core-shell emulsion polymerization publication-title: J. Polym. Sci. Polym. Chem. Ed. doi: 10.1002/pol.1983.170211001 – volume: 40 start-page: 2919 issue: 8 year: 2007 ident: 10.1016/j.polymer.2020.122929_bib163 article-title: Large strain hysteresis and mullins effect of tough double-network hydrogels publication-title: Macromolecules doi: 10.1021/ma062924y – start-page: 200 year: 1993 ident: 10.1016/j.polymer.2020.122929_bib15 – volume: 30 start-page: 1706441 issue: 23 year: 2018 ident: 10.1016/j.polymer.2020.122929_bib17 article-title: Advanced materials by atom transfer radical polymerization publication-title: Adv. Mater. doi: 10.1002/adma.201706441 – start-page: 31 year: 2011 ident: 10.1016/j.polymer.2020.122929_bib112 article-title: Porous polymers from self-assembled structures – volume: 274 start-page: 488 year: 2015 ident: 10.1016/j.polymer.2020.122929_bib185 article-title: Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.059 – volume: 78 start-page: 76 issue: 1 year: 2005 ident: 10.1016/j.polymer.2020.122929_bib67 article-title: The payne effect in double network elastomers publication-title: Rubber Chem. Technol. doi: 10.5254/1.3547874 – volume: 217 start-page: 1022 issue: 9 year: 2016 ident: 10.1016/j.polymer.2020.122929_bib13 article-title: Engineering of tough double network hydrogels publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201600038 – volume: 70 start-page: 842 year: 2017 ident: 10.1016/j.polymer.2020.122929_bib135 article-title: Mechanical properties of PNIPAM based hydrogels: a review publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.09.081 – volume: 204–206 start-page: 198 year: 2012 ident: 10.1016/j.polymer.2020.122929_bib60 article-title: Macroporous composite IPN hydrogels based on poly(acrylamide) and chitosan with tuned swelling and sorption of cationic dyes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.07.126 – volume: 26 start-page: 1359 year: 1985 ident: 10.1016/j.polymer.2020.122929_bib80 article-title: Properties and structure of elastomeric 2-stage emulsion interpenetrating networks publication-title: Polymer doi: 10.1016/0032-3861(85)90312-X – volume: 33 start-page: 2529 issue: 7 year: 1987 ident: 10.1016/j.polymer.2020.122929_bib82 article-title: Elastomeric domain-type interpenetrating polymer networks publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1987.070330721 – volume: 93 start-page: 1 year: 2015 ident: 10.1016/j.polymer.2020.122929_bib130 article-title: Stimulus-responsive hydrogels: theory, modern advances, and applications publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2015.04.001 – volume: 25 start-page: 257 issue: 5 year: 1985 ident: 10.1016/j.polymer.2020.122929_bib104 article-title: Capillary extrusion of elastomeric emulsion crosslinked interpenetrating networks publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760250502 – volume: 11 start-page: 143 issue: 1 year: 1973 ident: 10.1016/j.polymer.2020.122929_bib87 article-title: Equilibrium encapsulation of polystyrene latex particles publication-title: J. Polym. Sci. Polym. Chem. Ed. doi: 10.1002/pol.1973.170110112 – year: 1981 ident: 10.1016/j.polymer.2020.122929_bib5 – volume: 8 start-page: 6319 issue: 40 year: 2017 ident: 10.1016/j.polymer.2020.122929_bib156 article-title: Hydrogels through emulsion templating: sequential polymerization and double networks publication-title: Polym. Chem. doi: 10.1039/C7PY01305A – volume: 6 start-page: 2583 issue: 12 year: 2010 ident: 10.1016/j.polymer.2020.122929_bib164 article-title: Why are double network hydrogels so tough? publication-title: Soft Matter doi: 10.1039/b924290b – volume: 24 start-page: 1217 issue: 9 year: 1999 ident: 10.1016/j.polymer.2020.122929_bib19 article-title: The mechanism of the propagation step in free-radical copolymerisation publication-title: Prog. Polym. Sci. doi: 10.1016/S0079-6700(99)00030-1 – volume: 50 start-page: 8297 issue: 21 year: 2017 ident: 10.1016/j.polymer.2020.122929_bib134 article-title: 50th anniversary perspective: networks and gels: soft but dynamic and tough publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01698 – volume: 37 start-page: 1814 issue: 22 year: 2016 ident: 10.1016/j.polymer.2020.122929_bib154 article-title: Superabsorbent, high porosity, PAMPS‐based hydrogels through emulsion templating publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201600249 – volume: 51 start-page: 983 issue: 10 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib183 article-title: Development of novel network structures in crosslinked liquid-crystalline polymers publication-title: Polym. J. doi: 10.1038/s41428-019-0224-1 – volume: 45 start-page: 63 issue: 1 year: 1976 ident: 10.1016/j.polymer.2020.122929_bib57 article-title: Synthesis and properties of interpenetrating networks publication-title: Russ. Chem. Rev. doi: 10.1070/RC1976v045n01ABEH002596 – volume: 46 start-page: 6682 issue: 17 year: 2005 ident: 10.1016/j.polymer.2020.122929_bib36 article-title: PolyHIPE: IPNs, hybrids, nanoscale porosity, silica monoliths and ICP-based sensors publication-title: Polymer doi: 10.1016/j.polymer.2005.05.022 – volume: 15 start-page: 9949 issue: 48 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib187 article-title: Poly(sodium acrylate) hydrogels: synthesis of various network architectures, local molecular dynamics, salt partitioning, desalination and simulation publication-title: Soft Matter doi: 10.1039/C9SM01468C – volume: 8 start-page: 2617 issue: 9 year: 1970 ident: 10.1016/j.polymer.2020.122929_bib86 article-title: The morphology of the monomer–polymer particle in styrene emulsion polymerization publication-title: J. Polym. Sci. 1 Polym. Chem. doi: 10.1002/pol.1970.150080927 – volume: 30 start-page: 416 issue: 3 year: 1989 ident: 10.1016/j.polymer.2020.122929_bib99 article-title: Microstructure of polyacrylate polystyrene 2-stage lattices publication-title: Polymer doi: 10.1016/0032-3861(89)90006-2 – volume: 77 start-page: 1 year: 2018 ident: 10.1016/j.polymer.2020.122929_bib143 article-title: Polymer composite hydrogels containing carbon nanomaterials—morphology and mechanical and functional performance publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2017.09.001 – volume: 19 start-page: 2225 issue: 8 year: 1975 ident: 10.1016/j.polymer.2020.122929_bib77 article-title: Synthesis and behavior of polyvinyl chloride based latex interpenetrating polymer networks publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1975.070190814 – volume: 14 issue: 4 year: 1984 ident: 10.1016/j.polymer.2020.122929_bib79 article-title: Radiation-damage to latex-particles as an analytical tool in polymer science publication-title: Ultramicroscopy doi: 10.1016/0304-3991(84)90236-5 – volume: 30 start-page: 2000754 issue: 28 year: 2020 ident: 10.1016/j.polymer.2020.122929_bib194 article-title: Fast switching of bright whiteness in channeled hydrogel networks publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000754 – volume: 33 start-page: 102 issue: 1 year: 2000 ident: 10.1016/j.polymer.2020.122929_bib150 article-title: Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks publication-title: Macromolecules doi: 10.1021/ma991398q – volume: 37 start-page: 5370 issue: 14 year: 2004 ident: 10.1016/j.polymer.2020.122929_bib70 article-title: Structural characteristics of double network gels with extremely high mechanical strength publication-title: Macromolecules doi: 10.1021/ma049506i – volume: 292 start-page: 620 issue: 5 year: 2007 ident: 10.1016/j.polymer.2020.122929_bib140 article-title: Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.200700004 – volume: 47 start-page: 6408 issue: 18 year: 2014 ident: 10.1016/j.polymer.2020.122929_bib31 article-title: Robust and degradable hydrogels from poly(ethylene glycol) and semi-interpenetrating collagen publication-title: Macromolecules doi: 10.1021/ma500972y – volume: 67 start-page: 1164 issue: 7 year: 1934 ident: 10.1016/j.polymer.2020.122929_bib4 article-title: Über hochpolymere Verbindungen, 94. Mitteil.: Über ein unlösliches Poly‐styrol publication-title: Ber. Dtsch. Chem. Ges. doi: 10.1002/cber.19340670709 – volume: 44 start-page: 9683 issue: 24 year: 2011 ident: 10.1016/j.polymer.2020.122929_bib180 article-title: Flexible solid polymer electrolytes based on nitrile butadiene rubber/poly(ethylene oxide) interpenetrating polymer networks containing either LiTFSI or EMITFSI publication-title: Macromolecules doi: 10.1021/ma201662h – year: 1929 ident: 10.1016/j.polymer.2020.122929_bib110 – volume: 39 start-page: 1973 issue: 12 year: 2014 ident: 10.1016/j.polymer.2020.122929_bib128 article-title: In situ-forming injectable hydrogels for regenerative medicine publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2014.07.006 – volume: 65 start-page: 1172 issue: 9 year: 2013 ident: 10.1016/j.polymer.2020.122929_bib8 article-title: Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.04.002 – volume: 72 start-page: 344 year: 2015 ident: 10.1016/j.polymer.2020.122929_bib131 article-title: Extremely strong and tough hydrogels as prospective candidates for tissue repair – a review publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2015.07.053 – ident: 10.1016/j.polymer.2020.122929_bib30 – volume: 115 start-page: 9110 issue: 37 year: 2018 ident: 10.1016/j.polymer.2020.122929_bib45 article-title: Mechanics of elastomeric molecular composites publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1807750115 – volume: 12 start-page: 360 issue: 3 year: 1979 ident: 10.1016/j.polymer.2020.122929_bib26 article-title: Simultaneous interpenetrating networks based on Castor oil elastomers and polystyrene. 2. Synthesis and systems characteristics publication-title: Macromolecules doi: 10.1021/ma60069a002 – volume: 30 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.polymer.2020.122929_bib72 article-title: Novel hydrogels with excellent mechanical performance publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2004.11.003 – start-page: 21 year: 1985 ident: 10.1016/j.polymer.2020.122929_bib42 article-title: Recent developments in interpenetrating polymer networks and related materials – volume: 22 start-page: 1365 issue: 6 year: 1984 ident: 10.1016/j.polymer.2020.122929_bib90 article-title: Morphology of core-shell latex particles publication-title: J. Polym. Sci. Polym. Chem. Ed. doi: 10.1002/pol.1984.170220617 – volume: 197 start-page: 267 year: 2012 ident: 10.1016/j.polymer.2020.122929_bib184 article-title: Long lifetime in concentrated LiOH aqueous solution of air electrode protected with interpenetrating polymer network membrane publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.09.052 – volume: 86 start-page: 1707 issue: 11 year: 2014 ident: 10.1016/j.polymer.2020.122929_bib12 article-title: Advances in interpenetrating polymer network hydrogels and their applications publication-title: Pure Appl. Chem. doi: 10.1515/pac-2014-0713 – volume: 17 start-page: 1805 issue: 6 year: 1973 ident: 10.1016/j.polymer.2020.122929_bib96 article-title: The physical limits of grafting in two-phase polymerization reactions publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1973.070170613 – volume: 16 start-page: 46 issue: 1 year: 1984 ident: 10.1016/j.polymer.2020.122929_bib116 article-title: The use of labile crosslinker for morphological studies in interpenetrating polymer networks publication-title: Br. Polym. J. doi: 10.1002/pi.4980160109 – start-page: 3 year: 1994 ident: 10.1016/j.polymer.2020.122929_bib49 article-title: Interpenetrating polymer networks: an overview – volume: 26 start-page: 4468 issue: 21 year: 2005 ident: 10.1016/j.polymer.2020.122929_bib74 article-title: Biomechanical properties of high-toughness double network hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.11.021 – volume: 39 start-page: 2998 issue: 8 year: 2006 ident: 10.1016/j.polymer.2020.122929_bib114 article-title: SANS and XRR porosimetry of a polyphenylene low-k dielectric publication-title: Macromolecules doi: 10.1021/ma052395i – volume: 47 start-page: 4840 issue: 18 year: 2009 ident: 10.1016/j.polymer.2020.122929_bib186 article-title: Enhancing hydrophilicity in a hydrophobic porous emulsion-templated polyacrylate publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.23522 – volume: 30 start-page: 1743 issue: 5 year: 2018 ident: 10.1016/j.polymer.2020.122929_bib170 article-title: General strategy to fabricate strong and tough low-molecular-weight gelator-based supramolecular hydrogels with double network structure publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00063 – volume: 112 start-page: 3959 issue: 7 year: 2012 ident: 10.1016/j.polymer.2020.122929_bib107 article-title: Design and preparation of porous polymers publication-title: Chem. Rev. doi: 10.1021/cr200440z – volume: 52 start-page: 839 issue: 6 year: 2014 ident: 10.1016/j.polymer.2020.122929_bib142 article-title: High water content clay–nanocomposite hydrogels incorporating guanidinium-pendant methacrylamide: tuning of mechanical and swelling properties by supramolecular approach publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.27066 – volume: 15 start-page: 625 issue: 2 year: 1982 ident: 10.1016/j.polymer.2020.122929_bib115 article-title: Phase continuity in sequential poly(n-butyl acrylate)/polystyrene interpenetrating polymer networks publication-title: Macromolecules doi: 10.1021/ma00230a081 – volume: 5 start-page: 785 issue: 5 year: 1922 ident: 10.1016/j.polymer.2020.122929_bib3 article-title: Über Isopren und Kautschuk. 5. Mitteilung. Über die Hydrierung des Kautschuks und über seine Konstitution publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19220050517 – volume: 109 start-page: 16304 issue: 34 year: 2005 ident: 10.1016/j.polymer.2020.122929_bib73 article-title: Effect of polymer entanglement on the toughening of double network hydrogels publication-title: J. Phys. Chem. B doi: 10.1021/jp052419n – volume: 1 start-page: 331 issue: 4 year: 1972 ident: 10.1016/j.polymer.2020.122929_bib75 article-title: Latex interpenetrating polymer networks publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037208075293 – volume: 19 start-page: 1731 issue: 6 year: 1975 ident: 10.1016/j.polymer.2020.122929_bib102 article-title: Noise and vibration damping with latex interpenetrating polymer networks publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1975.070190623 – start-page: 262 year: 1982 ident: 10.1016/j.polymer.2020.122929_bib16 – volume: 7 start-page: 5742 issue: 38 year: 2019 ident: 10.1016/j.polymer.2020.122929_bib133 article-title: In situ-forming, mechanically resilient hydrogels for cell delivery publication-title: J. Mater. Chem. B doi: 10.1039/C9TB01398A – volume: 42 start-page: 4473 issue: 10 year: 2001 ident: 10.1016/j.polymer.2020.122929_bib34 article-title: Organic-inorganic networks in foams from high internal phase emulsion polymerizations publication-title: Polymer doi: 10.1016/S0032-3861(00)00820-X – volume: 55 start-page: 919 issue: 6 year: 1995 ident: 10.1016/j.polymer.2020.122929_bib152 article-title: Preparation and characterization of pH-sensitive, interpenetrating networks of poly(vinyl alcohol) and poly(acrylic acid) publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1995.070550610 – volume: 287 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.polymer.2020.122929_bib141 article-title: Nanocomposite polymer hydrogels publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-008-1949-0 – volume: 84 issue: 12 year: 2017 ident: 10.1016/j.polymer.2020.122929_bib46 article-title: A model for the mullins effect in multinetwork elastomers publication-title: J. Appl. Mech. doi: 10.1115/1.4037881 – volume: 51 start-page: 5890 issue: 25 year: 2010 ident: 10.1016/j.polymer.2020.122929_bib119 article-title: Porous polystyrene-based monolithic materials templated by semi-interpenetrating polymer networks for capillary electrochromatography publication-title: Polymer doi: 10.1016/j.polymer.2010.10.032 – volume: 89 start-page: 1976 issue: 7 year: 2003 ident: 10.1016/j.polymer.2020.122929_bib125 article-title: Membrane properties of microporous structures prepared from polyethylene/polymethacrylate IPN publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.12414 – volume: 40 start-page: 7306 issue: 20 year: 2007 ident: 10.1016/j.polymer.2020.122929_bib98 article-title: Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles publication-title: Macromolecules doi: 10.1021/ma071089x – volume: 12 start-page: 1490 issue: 11 year: 2012 ident: 10.1016/j.polymer.2020.122929_bib32 article-title: Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds publication-title: Macromol. Biosci. doi: 10.1002/mabi.201200234 – start-page: 1004 year: 2015 ident: 10.1016/j.polymer.2020.122929_bib11 article-title: Interpenetrating polymer networks (IPN): structure and mechanical behavior – volume: 220 start-page: 24 issue: 1 year: 1967 ident: 10.1016/j.polymer.2020.122929_bib95 article-title: Die elektronenmikroskopischen Darstellungen von ABS-Kunststoffen publication-title: Kolloid-Z. Z. Polym. doi: 10.1007/BF02086053 – volume: 14 start-page: 1124 issue: 11 year: 2004 ident: 10.1016/j.polymer.2020.122929_bib71 article-title: High mechanical strength double‐network hydrogel with bacterial cellulose publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200305197 – volume: 27 start-page: 1703086 issue: 44 year: 2017 ident: 10.1016/j.polymer.2020.122929_bib167 article-title: Super bulk and interfacial toughness of physically crosslinked double-network hydrogels publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703086 – volume: 16 start-page: S280 issue: 2 year: 2007 ident: 10.1016/j.polymer.2020.122929_bib182 article-title: Interpenetrating networks of elastomers exhibiting 300% electrically-induced area strain publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/2/S12 – volume: 185 start-page: 117 issue: 4706 year: 1960 ident: 10.1016/j.polymer.2020.122929_bib126 article-title: Hydrophilic gels for biological use publication-title: Nature doi: 10.1038/185117a0 |
| SSID | ssj0002524 |
| Score | 2.6355097 |
| Snippet | A typical description of interpenetrating polymer networks (IPN) can be surprisingly simple, systems that consist of two crosslinked polymer networks that are... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122929 |
| SubjectTerms | Crosslinking Damping Double networks Emulsion polymerization Hydrogels Interpenetrating networks Interpenetrating polymer networks Latex Macromolecular architecture Macromolecules Network topologies Phase separation Polymers Porous polymers Synthesis |
| Title | Interpenetrating polymer networks: So happy together? |
| URI | https://dx.doi.org/10.1016/j.polymer.2020.122929 https://www.proquest.com/docview/2462672993 |
| Volume | 207 |
| WOSCitedRecordID | wos000579904200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-2291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002524 issn: 0032-3861 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELbGhgQ8TGOAGAyUB3iakjV2HNu8TNPoNFBVJrWb-mYljgOdShraDo1_zzm201GNbTzwElWOnDr-7PPd5e4-hN6pDM6URMdhYWyTJFNxKKhKw5TDzjLfffKGee68x_p9PhqJU0c0Pm_oBFhV8asrUf9XqKENwDaps_8Ad_tQaIDfADpcAXa43gt4G0YIIqwpiGtyzaeTX9_1bK-yEd9NDNxguvctq2ujen5tUn5XAvxOXR_jRLgcT2wEfOszGIxNPPXcE2W60HvnRXUuBMAEZC_uLP1abW7L-XVRSXBIuK2UHmkrHTkjIcaWXsuLT2xZa50AjG8Uy9ZDcBG5F47MIKIYnuRG_kcZ7P4XeXzW68lhdzSE5V__CA1HmPmW_p58tHg9QBuYUQFSbOPwU3f0uT17McW27rYb_DJna__Gf_-bNrJyLjfKxnALbTorITi06D5Fa7raRo-OPDnfNnpyrY7kM0RXMQ_cIAKP-YdgMA0axAOP-MFzdHbcHR6dhI4PI1SEsAXsnzgpUjCJmOa6w0qeUAwKMy2J1iLGRYa1YmUsCqXSTFBaUMZKEMjQzkVHpeQFWq-mlX6JAkyJLgVTuSnXQ5MyzwtMyryMuYD9qosdlPh5kcoVizecJRPpowIvpHsTaaZT2uncQVHbrbbVUu7qwP2kS6fyWVVOwtK5q-uuB0m67TeXOAEDHexFQV7dfvs1erzcCbtofTG71G_QQ_VzMZ7P3rpl9RubCn3J |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpenetrating+polymer+networks%3A+So+happy+together%3F&rft.jtitle=Polymer+%28Guilford%29&rft.au=Silverstein%2C+Michael+S&rft.date=2020-10-20&rft.pub=Elsevier+BV&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=207&rft.spage=1&rft_id=info:doi/10.1016%2Fj.polymer.2020.122929&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |