Deep Convolutional Asymmetric Autoencoder-Based Spatial-Spectral Clustering Network for Hyperspectral Image

Due to the complex properties of hyperspectral images (HSI), such as spatial-spectral structure, high dimension, and great spectral variability, HSI clustering is a challenging operation. In this paper, we propose a novel deep convolutional asymmetric autoencoder-based spatial-spectral clustering ne...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing Vol. 2022; no. 1
Main Authors: Liu, Baisen, Kong, Weili, Wang, Yan
Format: Journal Article
Language:English
Published: Oxford Hindawi 2022
John Wiley & Sons, Inc
Subjects:
ISSN:1530-8669, 1530-8677
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the complex properties of hyperspectral images (HSI), such as spatial-spectral structure, high dimension, and great spectral variability, HSI clustering is a challenging operation. In this paper, we propose a novel deep convolutional asymmetric autoencoder-based spatial-spectral clustering network (DCAAES2C-Net) which employs a convolutional autoencoder (CAE) and an asymmetric autoencoder to investigate spatial-spectral information. First, we use a CAE to extract spatial-spectral features. Then, we introduce an asymmetric autoencoder between the encoder and decoder of CAE to suppress some non-material-related spatial information in latten feature like shading and texture. By using a collaborative strategy to train the proposed networks, we obtain the representation features in a low dimension. Furthermore, we improve the k-means algorithm by using the concept of over-clustering to handle fuzzy representation which is difficult to distinguish the cluster, and utilize it to obtain the final HSI clustering result. The results of the experiments demonstrated that the proposed methodology outperforms other methods on the frequently used hyperspectral image dataset.
AbstractList Due to the complex properties of hyperspectral images (HSI), such as spatial-spectral structure, high dimension, and great spectral variability, HSI clustering is a challenging operation. In this paper, we propose a novel deep convolutional asymmetric autoencoder-based spatial-spectral clustering network (DCAAES2C-Net) which employs a convolutional autoencoder (CAE) and an asymmetric autoencoder to investigate spatial-spectral information. First, we use a CAE to extract spatial-spectral features. Then, we introduce an asymmetric autoencoder between the encoder and decoder of CAE to suppress some non-material-related spatial information in latten feature like shading and texture. By using a collaborative strategy to train the proposed networks, we obtain the representation features in a low dimension. Furthermore, we improve the k-means algorithm by using the concept of over-clustering to handle fuzzy representation which is difficult to distinguish the cluster, and utilize it to obtain the final HSI clustering result. The results of the experiments demonstrated that the proposed methodology outperforms other methods on the frequently used hyperspectral image dataset.
Due to the complex properties of hyperspectral images (HSI), such as spatial‐spectral structure, high dimension, and great spectral variability, HSI clustering is a challenging operation. In this paper, we propose a novel deep convolutional asymmetric autoencoder‐based spatial‐spectral clustering network (DCAAES 2 C‐Net) which employs a convolutional autoencoder (CAE) and an asymmetric autoencoder to investigate spatial‐spectral information. First, we use a CAE to extract spatial‐spectral features. Then, we introduce an asymmetric autoencoder between the encoder and decoder of CAE to suppress some non‐material‐related spatial information in latten feature like shading and texture. By using a collaborative strategy to train the proposed networks, we obtain the representation features in a low dimension. Furthermore, we improve the k ‐means algorithm by using the concept of over‐clustering to handle fuzzy representation which is difficult to distinguish the cluster, and utilize it to obtain the final HSI clustering result. The results of the experiments demonstrated that the proposed methodology outperforms other methods on the frequently used hyperspectral image dataset.
Author Liu, Baisen
Kong, Weili
Wang, Yan
Author_xml – sequence: 1
  givenname: Baisen
  orcidid: 0000-0002-2551-816X
  surname: Liu
  fullname: Liu, Baisen
  organization: College of Electrical and Information EngineeringHeilongjiang Institute of TechnologyHarbin 150001Chinahljit.edu.cn
– sequence: 2
  givenname: Weili
  orcidid: 0000-0003-4783-4566
  surname: Kong
  fullname: Kong, Weili
  organization: College of Electrical and Information EngineeringHeilongjiang Institute of TechnologyHarbin 150001Chinahljit.edu.cn
– sequence: 3
  givenname: Yan
  orcidid: 0000-0002-1555-4108
  surname: Wang
  fullname: Wang, Yan
  organization: College of Electrical and Information EngineeringHeilongjiang Institute of TechnologyHarbin 150001Chinahljit.edu.cn
BookMark eNp9kEtPwzAMgCMEEtvgxg-oxBEKeaxJehzjsUkTHAbnKkvdka1rSpIy7d_TaoMDElxsS_5s2V8fHVe2AoQuCL4hJEluKaa0CyKV5Aj1SMJwLLkQxz81T09R3_sVxphhSnpofQ9QR2NbfdqyCcZWqoxGfrfZQHBGR6MmWKi0zcHFd8pDHs1rFYwq43kNOriWHpeND-BMtYyeIWytW0eFddFkV4Pz39B0o5Zwhk4KVXo4P-QBent8eB1P4tnL03Q8msWaMRFiLjHjwNM8gUSnjFKQWqWaLmhKFlynXCtWSCnbHsnFUHEhF0oOC1YwkTPC2ABd7vfWzn404EO2so1rP_MZFUQkRFCOW4ruKe2s9w6KTJugOgXtxabMCM46qVknNTtIbYeufw3VzmyU2_2FX-3xd1Plamv-p78A7M2HMQ
CitedBy_id crossref_primary_10_3390_rs17172968
crossref_primary_10_1016_j_saa_2024_124015
crossref_primary_10_1109_JSTARS_2024_3408817
crossref_primary_10_1080_01431161_2024_2358547
crossref_primary_10_1109_JSTARS_2023_3337132
Cites_doi 10.1109/LGRS.2011.2128854
10.1109/TGRS.2019.2913004
10.1109/tgrs.2014.2358615
10.1016/j.scitotenv.2019.134584
10.1016/j.isprsjprs.2014.04.006
10.1109/IGARSS.2016.7729792
10.1109/tgrs.2017.2675902
10.1016/j.epsr.2010.10.036
10.1016/j.ins.2019.02.008
10.1109/TGRS.2018.2828029
10.1109/tsmcb.2012.2208744
10.1016/j.compag.2020.105618
10.1109/ECONF.2015.39
10.1080/2150704X.2016.1249295
10.1007/s00530-015-0450-0
10.1109/LGRS.2019.2943001
10.1109/TGRS.2016.2524557
10.1007/BF01908075
10.1109/ICPR.2010.579
10.1109/TIP.2018.2878958
10.3390/min9020122
10.1109/TSMCA.2007.909595
10.1007/s11222-007-9033-z
10.1016/j.rama.2018.10.005
10.1109/36.377930
10.1016/j.rse.2007.08.014
10.1109/TGRS.2020.2987955
10.1109/lgrs.2019.2960945
10.2307/2288123
10.1109/tcsvt.2020.3027616
10.1016/j.isprsjprs.2011.09.013
10.1109/jstars.2013.2240655
10.1016/j.jag.2011.03.007
10.1109/IGARSS.2003.1295256
10.1109/TGRS.2019.2908756
10.1007/s11227-016-1896-3
10.1109/mgrs.2020.3032575
10.1109/TGRS.2003.812908
10.1109/MGRS.2019.2902525
10.1109/TPAMI.1979.4766909
10.1126/science.1242072
10.1109/AIPR.2003.1284255
10.1007/s41664-018-0068-2
10.3390/rs9060548
10.1109/JSTARS.2014.2329330
ContentType Journal Article
Copyright Copyright © 2022 Baisen Liu et al.
Copyright © 2022 Baisen Liu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2022 Baisen Liu et al.
– notice: Copyright © 2022 Baisen Liu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2022/2027981
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Lakshmanna, Kuruva
Editor_xml – sequence: 1
  givenname: Kuruva
  surname: Lakshmanna
  fullname: Lakshmanna, Kuruva
ExternalDocumentID 10_1155_2022_2027981
GrantInformation_xml – fundername: Postdoctoral Scientific Research Development Fund of Heilongjiang Province
  grantid: LBH-Q18110
– fundername: Natural Science Foundation of Heilongjiang Province
  grantid: ZD2021F004
GroupedDBID .3N
.4S
.DC
.GA
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABIJN
ABPVW
ACGFO
ADBBV
ADIZJ
AENEX
AEUQT
AFBPY
AFKRA
AIAGR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ARCSS
ASPBG
ATUGU
AVWKF
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
EDO
F00
F01
F04
F21
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HZ~
I-F
IAO
ITC
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LITHE
LP6
LP7
M0N
MK4
MY~
N04
N05
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WLBEL
XPP
XV2
~IA
~WT
.Y3
24P
31~
5VS
AAEVG
AAMMB
AANHP
AAYXX
AAZKR
ACBWZ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AEUCX
AFFHD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
AZFZN
BDRZF
BFHJK
CITATION
EJD
FEDTE
H13
HF~
HVGLF
LH4
LW6
O8X
PHGZM
PHGZT
PQGLB
ROL
WYUIH
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c337t-68036e69d5e5c9322e8ca9c2b291b6c96ca3f888c931d74a678ba84f3f37d3133
IEDL.DBID RHX
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881352000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-8669
IngestDate Fri Jul 25 09:32:02 EDT 2025
Sat Nov 29 07:31:10 EST 2025
Tue Nov 18 22:13:25 EST 2025
Sun Jun 02 19:21:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-68036e69d5e5c9322e8ca9c2b291b6c96ca3f888c931d74a678ba84f3f37d3133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4783-4566
0000-0002-1555-4108
0000-0002-2551-816X
OpenAccessLink https://dx.doi.org/10.1155/2022/2027981
PQID 2717517260
PQPubID 2034344
ParticipantIDs proquest_journals_2717517260
crossref_citationtrail_10_1155_2022_2027981
crossref_primary_10_1155_2022_2027981
hindawi_primary_10_1155_2022_2027981
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
Vinh N. X. (e_1_2_8_48_2) 2010; 11
e_1_2_8_9_2
e_1_2_8_1_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_30_2
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_40_2
Bäcklund H. (e_1_2_8_42_2) 2011; 33
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_31_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_50_2
References_xml – ident: e_1_2_8_27_2
  doi: 10.1109/LGRS.2011.2128854
– ident: e_1_2_8_35_2
  doi: 10.1109/TGRS.2019.2913004
– ident: e_1_2_8_40_2
  doi: 10.1109/tgrs.2014.2358615
– ident: e_1_2_8_7_2
  doi: 10.1016/j.scitotenv.2019.134584
– ident: e_1_2_8_31_2
  doi: 10.1016/j.isprsjprs.2014.04.006
– ident: e_1_2_8_26_2
  doi: 10.1109/IGARSS.2016.7729792
– ident: e_1_2_8_33_2
  doi: 10.1109/tgrs.2017.2675902
– ident: e_1_2_8_50_2
  doi: 10.1016/j.epsr.2010.10.036
– ident: e_1_2_8_36_2
  doi: 10.1016/j.ins.2019.02.008
– ident: e_1_2_8_30_2
  doi: 10.1109/TGRS.2018.2828029
– ident: e_1_2_8_39_2
  doi: 10.1109/tsmcb.2012.2208744
– ident: e_1_2_8_8_2
  doi: 10.1016/j.compag.2020.105618
– volume: 33
  start-page: 11
  year: 2011
  ident: e_1_2_8_42_2
  article-title: A density-based spatial clustering of application with noise
  publication-title: Data Mining TNM033
– ident: e_1_2_8_14_2
  doi: 10.1109/ECONF.2015.39
– ident: e_1_2_8_3_2
– volume: 11
  start-page: 2837
  year: 2010
  ident: e_1_2_8_48_2
  article-title: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance
  publication-title: The Journal of Machine Learning Research
– ident: e_1_2_8_25_2
– ident: e_1_2_8_17_2
  doi: 10.1080/2150704X.2016.1249295
– ident: e_1_2_8_22_2
  doi: 10.1007/s00530-015-0450-0
– ident: e_1_2_8_37_2
  doi: 10.1109/LGRS.2019.2943001
– ident: e_1_2_8_44_2
– ident: e_1_2_8_23_2
  doi: 10.1109/TGRS.2016.2524557
– ident: e_1_2_8_47_2
  doi: 10.1007/BF01908075
– ident: e_1_2_8_45_2
  doi: 10.1109/ICPR.2010.579
– ident: e_1_2_8_1_2
  doi: 10.1109/TIP.2018.2878958
– ident: e_1_2_8_6_2
  doi: 10.3390/min9020122
– ident: e_1_2_8_20_2
  doi: 10.1109/TSMCA.2007.909595
– ident: e_1_2_8_21_2
  doi: 10.1007/s11222-007-9033-z
– ident: e_1_2_8_10_2
  doi: 10.1016/j.rama.2018.10.005
– ident: e_1_2_8_19_2
  doi: 10.1109/36.377930
– ident: e_1_2_8_2_2
  doi: 10.1016/j.rse.2007.08.014
– ident: e_1_2_8_41_2
  doi: 10.1109/TGRS.2020.2987955
– ident: e_1_2_8_38_2
  doi: 10.1109/lgrs.2019.2960945
– ident: e_1_2_8_46_2
  doi: 10.2307/2288123
– ident: e_1_2_8_24_2
  doi: 10.1109/tcsvt.2020.3027616
– ident: e_1_2_8_9_2
  doi: 10.1016/j.isprsjprs.2011.09.013
– ident: e_1_2_8_34_2
  doi: 10.1109/jstars.2013.2240655
– ident: e_1_2_8_11_2
  doi: 10.1016/j.jag.2011.03.007
– ident: e_1_2_8_18_2
  doi: 10.1109/IGARSS.2003.1295256
– ident: e_1_2_8_4_2
  doi: 10.1109/TGRS.2019.2908756
– ident: e_1_2_8_15_2
  doi: 10.1007/s11227-016-1896-3
– ident: e_1_2_8_13_2
  doi: 10.1109/mgrs.2020.3032575
– ident: e_1_2_8_5_2
  doi: 10.1109/TGRS.2003.812908
– ident: e_1_2_8_12_2
  doi: 10.1109/MGRS.2019.2902525
– ident: e_1_2_8_49_2
  doi: 10.1109/TPAMI.1979.4766909
– ident: e_1_2_8_16_2
  doi: 10.1126/science.1242072
– ident: e_1_2_8_28_2
  doi: 10.1109/AIPR.2003.1284255
– ident: e_1_2_8_43_2
  doi: 10.1007/s41664-018-0068-2
– ident: e_1_2_8_29_2
  doi: 10.3390/rs9060548
– ident: e_1_2_8_32_2
  doi: 10.1109/JSTARS.2014.2329330
SSID ssj0003021
Score 2.3199418
Snippet Due to the complex properties of hyperspectral images (HSI), such as spatial-spectral structure, high dimension, and great spectral variability, HSI clustering...
Due to the complex properties of hyperspectral images (HSI), such as spatial‐spectral structure, high dimension, and great spectral variability, HSI clustering...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Asymmetry
Clustering
Coders
Discriminant analysis
Feature extraction
Hyperspectral imaging
Methods
Remote sensing
Representations
Spatial data
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60KujBt1itsod6ksUmm90kJ6nVoiClB5XiJWw2Eyz2ZV_iv3cn2VZF1IO3wA5LYCYz8012v4-QMqjA0SrGoXvqMS9IgKmYaya0F0LK4xiyuzAPt36jEbRaYdMO3Eb2WOUsJ2aJOulrnJGfuQZ3CFNtZeV88MJQNQr_rloJjUWyhCwJKN3QFI_zTMwrruVLrbBAynB28F0IxPxuBvzDwPlSklaeEAu_tr_l5qzg1Df--6qbZN22mrSax8YWWYDeNln7REC4Q54vAQa01u9NbQSi_eit20WdLU2rk3EfiS4TGLILU-4SigrGJmIZytbjjITWOhOkWjC70UZ-opyaNpheG3ib3-JEo5uuyVq75L5-dVe7ZlZ-gWnO_TGTgaluIMNEgNCmzXMh0CrUbuyGTix1KLXiqQHQZs1JfE-ZsherwEt5yv2EG-y7Rwq9fg_2CYUUkFcPwJHKS4RU5hFE6kjfwDElK0VyOvNApC03OUpkdKIMowgRob8i668iOZlbD3JOjh_sytaZf5iVZm6M7Ac8ij58ePD78iFZxc3yqUyJFMbDCRyRZT0dt0fD4ywe3wHleudy
  priority: 102
  providerName: ProQuest
Title Deep Convolutional Asymmetric Autoencoder-Based Spatial-Spectral Clustering Network for Hyperspectral Image
URI https://dx.doi.org/10.1155/2022/2027981
https://www.proquest.com/docview/2717517260
Volume 2022
WOSCitedRecordID wos000881352000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: K7-
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: PIMPY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-QQ_iE59LDnqSwLZp0vaoq7KiLkVUVi8lTacouruyD8V_70ybFR-IXkof0xwy05n5psk3jO2CiTxrMiq6F4EIohyEyaQVygYxFDLLoNwLc3MetlpRux0njiRp8PMXPkY7gud-idFj2mI9GSlauXXZbH84XFn3HS1qXURax-P17d_e_RJ5Zu8J8r4-_HDBZVw5WWQLLiHkB5UGl9gEdJfZ_CeawBX2eATwzBu97ouzE5IfvHU61A3L8oPRsEd0lDn0xSEGpZxTn2G0K0HN5amSwRtPIyJEwNF4q1r3zTFZ5U0EodVeSxI67aBvWWXXJ8dXjaZwTRKElTIcCh1hDAId5wqUxWTMh8ia2PqZH3uZtrG2RhYIc_GZl4eBweCUmSgoZCHDXCJCXWNT3V4X1hmHAoj9DsDTJsiVNngKqvB0iKDJ6PoG2x9PYGodgzg1snhKSyShVErTnbrp3mB7H9LPFXPGL3K7Thd_iG2PFZW6z2yQ-ghGFaZgur75v1G22BxdVjWUbTY17I9gh83Yl-HDoF9j04fHreSyxibPQoHHRN3hveT0IrmtlSb3DlwXy60
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4Q1IgHRcUAovQBTqbjzvR0T8-BGFwku9llYyIabmNPT00ksA_2AeFP-RutmgdqjHriwG2SrnQy01991VVTD4AddDbwLuOgexHJyOYoXaa81D5KsFBZhmUtzJd-PBjYk5Pk4xJ8b2phOK2y4cSSqPOx5xj525D8Dk3W1rTeTS4kT43iv6vNCI0KFj28viKXbbbXPaDz3Q3Dww_H7Y6spwpIr1Q8l8YSaaNJco3a0-0lROtd4sMsTILM-MR4pwryC2ktyOPIEZtnzkaFKlScq4ADoET59yJlY9arXixvmF-1wro_a0taY5Im0V5rjjGEZaAhscFvJvDBN_a9r07_sAWlgTt8ctc-zSo8rq_SYr_C_lNYwtEzePRLg8XncHaAOBHt8eiy1jCWn10PhzxHzIv9xXzMjTxznMr3ZM5zwROaSSPlJy5AnZJ0-3zBrSRoNzGoMuYFXfNFh9z3qkqVhbpDYuU1-Hwrb_sClkfjEa6DwAK5byBiYFyUa-PoEXURmJjcTWdaG_CmOfHU173XeQTIeVr6YFqnjI-0xscG7N5IT6qeI3-R26nB8x-xrQY2aU1Qs_QnZjb_vbwNDzvHR_203x30XsIKb1xFoLZgeT5d4Cu47y_np7Pp61IXBHy9bYT9AMFuQw0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5SF6KK-ilhbwoT0hq5s4dpIDQmWXVVetVivxUMUlOM5EXbX76D5a9a_x65hJnAJCwKkHbpE8spT4mxl_k3kA7KJNAmdzDrqXkYySAqXNlZPaRSmWKs-xqoX5fBz3-8nJSTpYgW9NLQynVTY2sTLUxcRxjHw_JN6hydua1n7p0yIGne7b6YXkCVL8p7UZp1FD5Aivr4i-zd_0OnTWe2HYff-xfSj9hAHplIoX0iRkwNGkhUbt6CYTYuJs6sI8TIPcuNQ4q0riiLQWFHFkybLnNolKVaq4UAEHQ8n834mJY3I64UB_ufECqhX6Xq0tmRiTNkn3WnO8IayCDmkS_OIO750yD78a_uYXKmfXffg_f6ZHsO6v2OKg1onHsILjJ7D2U-PFp3DWQZyK9mR86TWP5efXoxHPF3PiYLmYcIPPAmfyHbn5QvDkZtJU-YELU2ck3T5fcosJ2k3060x6Qdd_cUi0vq5eZaHeiKz1Bny6lbd9BqvjyRg3QWCJ3E8QMTA2KrSx9Ii6DExMNNSa1ha8bk4_c74nO48GOc8qbqZ1xljJPFa2YO9Gelr3IvmD3K4H0j_EdhoIZd5wzbMf-Hn-9-VXcJ-AlR33-kfb8ID3rQNTO7C6mC3xBdx1l4vhfPayUgsBX28bYN8BSwtMMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Asymmetric+Autoencoder-Based+Spatial-Spectral+Clustering+Network+for+Hyperspectral+Image&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Liu%2C+Baisen&rft.au=Kong%2C+Weili&rft.au=Wang%2C+Yan&rft.date=2022&rft.pub=Hindawi&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F2027981&rft.externalDocID=10_1155_2022_2027981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon