Deep Convolutional Asymmetric Autoencoder-Based Spatial-Spectral Clustering Network for Hyperspectral Image
Due to the complex properties of hyperspectral images (HSI), such as spatial-spectral structure, high dimension, and great spectral variability, HSI clustering is a challenging operation. In this paper, we propose a novel deep convolutional asymmetric autoencoder-based spatial-spectral clustering ne...
Saved in:
| Published in: | Wireless communications and mobile computing Vol. 2022; no. 1 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Hindawi
2022
John Wiley & Sons, Inc |
| Subjects: | |
| ISSN: | 1530-8669, 1530-8677 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Due to the complex properties of hyperspectral images (HSI), such as spatial-spectral structure, high dimension, and great spectral variability, HSI clustering is a challenging operation. In this paper, we propose a novel deep convolutional asymmetric autoencoder-based spatial-spectral clustering network (DCAAES2C-Net) which employs a convolutional autoencoder (CAE) and an asymmetric autoencoder to investigate spatial-spectral information. First, we use a CAE to extract spatial-spectral features. Then, we introduce an asymmetric autoencoder between the encoder and decoder of CAE to suppress some non-material-related spatial information in latten feature like shading and texture. By using a collaborative strategy to train the proposed networks, we obtain the representation features in a low dimension. Furthermore, we improve the k-means algorithm by using the concept of over-clustering to handle fuzzy representation which is difficult to distinguish the cluster, and utilize it to obtain the final HSI clustering result. The results of the experiments demonstrated that the proposed methodology outperforms other methods on the frequently used hyperspectral image dataset. |
|---|---|
| AbstractList | Due to the complex properties of hyperspectral images (HSI), such as spatial-spectral structure, high dimension, and great spectral variability, HSI clustering is a challenging operation. In this paper, we propose a novel deep convolutional asymmetric autoencoder-based spatial-spectral clustering network (DCAAES2C-Net) which employs a convolutional autoencoder (CAE) and an asymmetric autoencoder to investigate spatial-spectral information. First, we use a CAE to extract spatial-spectral features. Then, we introduce an asymmetric autoencoder between the encoder and decoder of CAE to suppress some non-material-related spatial information in latten feature like shading and texture. By using a collaborative strategy to train the proposed networks, we obtain the representation features in a low dimension. Furthermore, we improve the k-means algorithm by using the concept of over-clustering to handle fuzzy representation which is difficult to distinguish the cluster, and utilize it to obtain the final HSI clustering result. The results of the experiments demonstrated that the proposed methodology outperforms other methods on the frequently used hyperspectral image dataset. Due to the complex properties of hyperspectral images (HSI), such as spatial‐spectral structure, high dimension, and great spectral variability, HSI clustering is a challenging operation. In this paper, we propose a novel deep convolutional asymmetric autoencoder‐based spatial‐spectral clustering network (DCAAES 2 C‐Net) which employs a convolutional autoencoder (CAE) and an asymmetric autoencoder to investigate spatial‐spectral information. First, we use a CAE to extract spatial‐spectral features. Then, we introduce an asymmetric autoencoder between the encoder and decoder of CAE to suppress some non‐material‐related spatial information in latten feature like shading and texture. By using a collaborative strategy to train the proposed networks, we obtain the representation features in a low dimension. Furthermore, we improve the k ‐means algorithm by using the concept of over‐clustering to handle fuzzy representation which is difficult to distinguish the cluster, and utilize it to obtain the final HSI clustering result. The results of the experiments demonstrated that the proposed methodology outperforms other methods on the frequently used hyperspectral image dataset. |
| Author | Liu, Baisen Kong, Weili Wang, Yan |
| Author_xml | – sequence: 1 givenname: Baisen orcidid: 0000-0002-2551-816X surname: Liu fullname: Liu, Baisen organization: College of Electrical and Information EngineeringHeilongjiang Institute of TechnologyHarbin 150001Chinahljit.edu.cn – sequence: 2 givenname: Weili orcidid: 0000-0003-4783-4566 surname: Kong fullname: Kong, Weili organization: College of Electrical and Information EngineeringHeilongjiang Institute of TechnologyHarbin 150001Chinahljit.edu.cn – sequence: 3 givenname: Yan orcidid: 0000-0002-1555-4108 surname: Wang fullname: Wang, Yan organization: College of Electrical and Information EngineeringHeilongjiang Institute of TechnologyHarbin 150001Chinahljit.edu.cn |
| BookMark | eNp9kEtPwzAMgCMEEtvgxg-oxBEKeaxJehzjsUkTHAbnKkvdka1rSpIy7d_TaoMDElxsS_5s2V8fHVe2AoQuCL4hJEluKaa0CyKV5Aj1SMJwLLkQxz81T09R3_sVxphhSnpofQ9QR2NbfdqyCcZWqoxGfrfZQHBGR6MmWKi0zcHFd8pDHs1rFYwq43kNOriWHpeND-BMtYyeIWytW0eFddFkV4Pz39B0o5Zwhk4KVXo4P-QBent8eB1P4tnL03Q8msWaMRFiLjHjwNM8gUSnjFKQWqWaLmhKFlynXCtWSCnbHsnFUHEhF0oOC1YwkTPC2ABd7vfWzn404EO2so1rP_MZFUQkRFCOW4ruKe2s9w6KTJugOgXtxabMCM46qVknNTtIbYeufw3VzmyU2_2FX-3xd1Plamv-p78A7M2HMQ |
| CitedBy_id | crossref_primary_10_3390_rs17172968 crossref_primary_10_1016_j_saa_2024_124015 crossref_primary_10_1109_JSTARS_2024_3408817 crossref_primary_10_1080_01431161_2024_2358547 crossref_primary_10_1109_JSTARS_2023_3337132 |
| Cites_doi | 10.1109/LGRS.2011.2128854 10.1109/TGRS.2019.2913004 10.1109/tgrs.2014.2358615 10.1016/j.scitotenv.2019.134584 10.1016/j.isprsjprs.2014.04.006 10.1109/IGARSS.2016.7729792 10.1109/tgrs.2017.2675902 10.1016/j.epsr.2010.10.036 10.1016/j.ins.2019.02.008 10.1109/TGRS.2018.2828029 10.1109/tsmcb.2012.2208744 10.1016/j.compag.2020.105618 10.1109/ECONF.2015.39 10.1080/2150704X.2016.1249295 10.1007/s00530-015-0450-0 10.1109/LGRS.2019.2943001 10.1109/TGRS.2016.2524557 10.1007/BF01908075 10.1109/ICPR.2010.579 10.1109/TIP.2018.2878958 10.3390/min9020122 10.1109/TSMCA.2007.909595 10.1007/s11222-007-9033-z 10.1016/j.rama.2018.10.005 10.1109/36.377930 10.1016/j.rse.2007.08.014 10.1109/TGRS.2020.2987955 10.1109/lgrs.2019.2960945 10.2307/2288123 10.1109/tcsvt.2020.3027616 10.1016/j.isprsjprs.2011.09.013 10.1109/jstars.2013.2240655 10.1016/j.jag.2011.03.007 10.1109/IGARSS.2003.1295256 10.1109/TGRS.2019.2908756 10.1007/s11227-016-1896-3 10.1109/mgrs.2020.3032575 10.1109/TGRS.2003.812908 10.1109/MGRS.2019.2902525 10.1109/TPAMI.1979.4766909 10.1126/science.1242072 10.1109/AIPR.2003.1284255 10.1007/s41664-018-0068-2 10.3390/rs9060548 10.1109/JSTARS.2014.2329330 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Baisen Liu et al. Copyright © 2022 Baisen Liu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright © 2022 Baisen Liu et al. – notice: Copyright © 2022 Baisen Liu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 7XB 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1155/2022/2027981 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: ProQuest - Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1530-8677 |
| Editor | Lakshmanna, Kuruva |
| Editor_xml | – sequence: 1 givenname: Kuruva surname: Lakshmanna fullname: Lakshmanna, Kuruva |
| ExternalDocumentID | 10_1155_2022_2027981 |
| GrantInformation_xml | – fundername: Postdoctoral Scientific Research Development Fund of Heilongjiang Province grantid: LBH-Q18110 – fundername: Natural Science Foundation of Heilongjiang Province grantid: ZD2021F004 |
| GroupedDBID | .3N .4S .DC .GA 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 52M 52O 52T 52U 52W 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABIJN ABPVW ACGFO ADBBV ADIZJ AENEX AEUQT AFBPY AFKRA AIAGR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ARCSS ASPBG ATUGU AVWKF AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BROTX BRXPI CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBS EDO F00 F01 F04 F21 G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ H.T H.X HCIFZ HZ~ I-F IAO ITC ITG ITH IX1 JPC K7- KQQ LAW LITHE LP6 LP7 M0N MK4 MY~ N04 N05 NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PIMPY Q.N QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS UB1 W8V W99 WBKPD WIH WLBEL XPP XV2 ~IA ~WT .Y3 24P 31~ 5VS AAEVG AAMMB AANHP AAYXX AAZKR ACBWZ ACCMX ACRPL ACXQS ACYXJ ADNMO AEFGJ AEIMD AEUCX AFFHD AFZJQ AGQPQ AGXDD AIDQK AIDYY ALUQN AZFZN BDRZF BFHJK CITATION EJD FEDTE H13 HF~ HVGLF LH4 LW6 O8X PHGZM PHGZT PQGLB ROL WYUIH 7SC 7SP 7XB 8FD 8FE 8FG ABUWG JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c337t-68036e69d5e5c9322e8ca9c2b291b6c96ca3f888c931d74a678ba84f3f37d3133 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881352000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-8669 |
| IngestDate | Fri Jul 25 09:32:02 EDT 2025 Sat Nov 29 07:31:10 EST 2025 Tue Nov 18 22:13:25 EST 2025 Sun Jun 02 19:21:13 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-68036e69d5e5c9322e8ca9c2b291b6c96ca3f888c931d74a678ba84f3f37d3133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4783-4566 0000-0002-1555-4108 0000-0002-2551-816X |
| OpenAccessLink | https://dx.doi.org/10.1155/2022/2027981 |
| PQID | 2717517260 |
| PQPubID | 2034344 |
| ParticipantIDs | proquest_journals_2717517260 crossref_citationtrail_10_1155_2022_2027981 crossref_primary_10_1155_2022_2027981 hindawi_primary_10_1155_2022_2027981 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Wireless communications and mobile computing |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_47_2 Vinh N. X. (e_1_2_8_48_2) 2010; 11 e_1_2_8_9_2 e_1_2_8_1_2 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_30_2 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_25_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_40_2 Bäcklund H. (e_1_2_8_42_2) 2011; 33 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_31_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_50_2 |
| References_xml | – ident: e_1_2_8_27_2 doi: 10.1109/LGRS.2011.2128854 – ident: e_1_2_8_35_2 doi: 10.1109/TGRS.2019.2913004 – ident: e_1_2_8_40_2 doi: 10.1109/tgrs.2014.2358615 – ident: e_1_2_8_7_2 doi: 10.1016/j.scitotenv.2019.134584 – ident: e_1_2_8_31_2 doi: 10.1016/j.isprsjprs.2014.04.006 – ident: e_1_2_8_26_2 doi: 10.1109/IGARSS.2016.7729792 – ident: e_1_2_8_33_2 doi: 10.1109/tgrs.2017.2675902 – ident: e_1_2_8_50_2 doi: 10.1016/j.epsr.2010.10.036 – ident: e_1_2_8_36_2 doi: 10.1016/j.ins.2019.02.008 – ident: e_1_2_8_30_2 doi: 10.1109/TGRS.2018.2828029 – ident: e_1_2_8_39_2 doi: 10.1109/tsmcb.2012.2208744 – ident: e_1_2_8_8_2 doi: 10.1016/j.compag.2020.105618 – volume: 33 start-page: 11 year: 2011 ident: e_1_2_8_42_2 article-title: A density-based spatial clustering of application with noise publication-title: Data Mining TNM033 – ident: e_1_2_8_14_2 doi: 10.1109/ECONF.2015.39 – ident: e_1_2_8_3_2 – volume: 11 start-page: 2837 year: 2010 ident: e_1_2_8_48_2 article-title: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance publication-title: The Journal of Machine Learning Research – ident: e_1_2_8_25_2 – ident: e_1_2_8_17_2 doi: 10.1080/2150704X.2016.1249295 – ident: e_1_2_8_22_2 doi: 10.1007/s00530-015-0450-0 – ident: e_1_2_8_37_2 doi: 10.1109/LGRS.2019.2943001 – ident: e_1_2_8_44_2 – ident: e_1_2_8_23_2 doi: 10.1109/TGRS.2016.2524557 – ident: e_1_2_8_47_2 doi: 10.1007/BF01908075 – ident: e_1_2_8_45_2 doi: 10.1109/ICPR.2010.579 – ident: e_1_2_8_1_2 doi: 10.1109/TIP.2018.2878958 – ident: e_1_2_8_6_2 doi: 10.3390/min9020122 – ident: e_1_2_8_20_2 doi: 10.1109/TSMCA.2007.909595 – ident: e_1_2_8_21_2 doi: 10.1007/s11222-007-9033-z – ident: e_1_2_8_10_2 doi: 10.1016/j.rama.2018.10.005 – ident: e_1_2_8_19_2 doi: 10.1109/36.377930 – ident: e_1_2_8_2_2 doi: 10.1016/j.rse.2007.08.014 – ident: e_1_2_8_41_2 doi: 10.1109/TGRS.2020.2987955 – ident: e_1_2_8_38_2 doi: 10.1109/lgrs.2019.2960945 – ident: e_1_2_8_46_2 doi: 10.2307/2288123 – ident: e_1_2_8_24_2 doi: 10.1109/tcsvt.2020.3027616 – ident: e_1_2_8_9_2 doi: 10.1016/j.isprsjprs.2011.09.013 – ident: e_1_2_8_34_2 doi: 10.1109/jstars.2013.2240655 – ident: e_1_2_8_11_2 doi: 10.1016/j.jag.2011.03.007 – ident: e_1_2_8_18_2 doi: 10.1109/IGARSS.2003.1295256 – ident: e_1_2_8_4_2 doi: 10.1109/TGRS.2019.2908756 – ident: e_1_2_8_15_2 doi: 10.1007/s11227-016-1896-3 – ident: e_1_2_8_13_2 doi: 10.1109/mgrs.2020.3032575 – ident: e_1_2_8_5_2 doi: 10.1109/TGRS.2003.812908 – ident: e_1_2_8_12_2 doi: 10.1109/MGRS.2019.2902525 – ident: e_1_2_8_49_2 doi: 10.1109/TPAMI.1979.4766909 – ident: e_1_2_8_16_2 doi: 10.1126/science.1242072 – ident: e_1_2_8_28_2 doi: 10.1109/AIPR.2003.1284255 – ident: e_1_2_8_43_2 doi: 10.1007/s41664-018-0068-2 – ident: e_1_2_8_29_2 doi: 10.3390/rs9060548 – ident: e_1_2_8_32_2 doi: 10.1109/JSTARS.2014.2329330 |
| SSID | ssj0003021 |
| Score | 2.3199418 |
| Snippet | Due to the complex properties of hyperspectral images (HSI), such as spatial-spectral structure, high dimension, and great spectral variability, HSI clustering... Due to the complex properties of hyperspectral images (HSI), such as spatial‐spectral structure, high dimension, and great spectral variability, HSI clustering... |
| SourceID | proquest crossref hindawi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Asymmetry Clustering Coders Discriminant analysis Feature extraction Hyperspectral imaging Methods Remote sensing Representations Spatial data |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60KujBt1itsod6ksUmm90kJ6nVoiClB5XiJWw2Eyz2ZV_iv3cn2VZF1IO3wA5LYCYz8012v4-QMqjA0SrGoXvqMS9IgKmYaya0F0LK4xiyuzAPt36jEbRaYdMO3Eb2WOUsJ2aJOulrnJGfuQZ3CFNtZeV88MJQNQr_rloJjUWyhCwJKN3QFI_zTMwrruVLrbBAynB28F0IxPxuBvzDwPlSklaeEAu_tr_l5qzg1Df--6qbZN22mrSax8YWWYDeNln7REC4Q54vAQa01u9NbQSi_eit20WdLU2rk3EfiS4TGLILU-4SigrGJmIZytbjjITWOhOkWjC70UZ-opyaNpheG3ib3-JEo5uuyVq75L5-dVe7ZlZ-gWnO_TGTgaluIMNEgNCmzXMh0CrUbuyGTix1KLXiqQHQZs1JfE-ZsherwEt5yv2EG-y7Rwq9fg_2CYUUkFcPwJHKS4RU5hFE6kjfwDElK0VyOvNApC03OUpkdKIMowgRob8i668iOZlbD3JOjh_sytaZf5iVZm6M7Ac8ij58ePD78iFZxc3yqUyJFMbDCRyRZT0dt0fD4ywe3wHleudy priority: 102 providerName: ProQuest |
| Title | Deep Convolutional Asymmetric Autoencoder-Based Spatial-Spectral Clustering Network for Hyperspectral Image |
| URI | https://dx.doi.org/10.1155/2022/2027981 https://www.proquest.com/docview/2717517260 |
| Volume | 2022 |
| WOSCitedRecordID | wos000881352000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: P5Z dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: K7- dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: PIMPY dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1530-8677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-QQ_iE59LDnqSwLZp0vaoq7KiLkVUVi8lTacouruyD8V_70ybFR-IXkof0xwy05n5psk3jO2CiTxrMiq6F4EIohyEyaQVygYxFDLLoNwLc3MetlpRux0njiRp8PMXPkY7gud-idFj2mI9GSlauXXZbH84XFn3HS1qXURax-P17d_e_RJ5Zu8J8r4-_HDBZVw5WWQLLiHkB5UGl9gEdJfZ_CeawBX2eATwzBu97ouzE5IfvHU61A3L8oPRsEd0lDn0xSEGpZxTn2G0K0HN5amSwRtPIyJEwNF4q1r3zTFZ5U0EodVeSxI67aBvWWXXJ8dXjaZwTRKElTIcCh1hDAId5wqUxWTMh8ia2PqZH3uZtrG2RhYIc_GZl4eBweCUmSgoZCHDXCJCXWNT3V4X1hmHAoj9DsDTJsiVNngKqvB0iKDJ6PoG2x9PYGodgzg1snhKSyShVErTnbrp3mB7H9LPFXPGL3K7Thd_iG2PFZW6z2yQ-ghGFaZgur75v1G22BxdVjWUbTY17I9gh83Yl-HDoF9j04fHreSyxibPQoHHRN3hveT0IrmtlSb3DlwXy60 |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4Q1IgHRcUAovQBTqbjzvR0T8-BGFwku9llYyIabmNPT00ksA_2AeFP-RutmgdqjHriwG2SrnQy01991VVTD4AddDbwLuOgexHJyOYoXaa81D5KsFBZhmUtzJd-PBjYk5Pk4xJ8b2phOK2y4cSSqPOx5xj525D8Dk3W1rTeTS4kT43iv6vNCI0KFj28viKXbbbXPaDz3Q3Dww_H7Y6spwpIr1Q8l8YSaaNJco3a0-0lROtd4sMsTILM-MR4pwryC2ktyOPIEZtnzkaFKlScq4ADoET59yJlY9arXixvmF-1wro_a0taY5Im0V5rjjGEZaAhscFvJvDBN_a9r07_sAWlgTt8ctc-zSo8rq_SYr_C_lNYwtEzePRLg8XncHaAOBHt8eiy1jCWn10PhzxHzIv9xXzMjTxznMr3ZM5zwROaSSPlJy5AnZJ0-3zBrSRoNzGoMuYFXfNFh9z3qkqVhbpDYuU1-Hwrb_sClkfjEa6DwAK5byBiYFyUa-PoEXURmJjcTWdaG_CmOfHU173XeQTIeVr6YFqnjI-0xscG7N5IT6qeI3-R26nB8x-xrQY2aU1Qs_QnZjb_vbwNDzvHR_203x30XsIKb1xFoLZgeT5d4Cu47y_np7Pp61IXBHy9bYT9AMFuQw0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5SF6KK-ilhbwoT0hq5s4dpIDQmWXVVetVivxUMUlOM5EXbX76D5a9a_x65hJnAJCwKkHbpE8spT4mxl_k3kA7KJNAmdzDrqXkYySAqXNlZPaRSmWKs-xqoX5fBz3-8nJSTpYgW9NLQynVTY2sTLUxcRxjHw_JN6hydua1n7p0yIGne7b6YXkCVL8p7UZp1FD5Aivr4i-zd_0OnTWe2HYff-xfSj9hAHplIoX0iRkwNGkhUbt6CYTYuJs6sI8TIPcuNQ4q0riiLQWFHFkybLnNolKVaq4UAEHQ8n834mJY3I64UB_ufECqhX6Xq0tmRiTNkn3WnO8IayCDmkS_OIO750yD78a_uYXKmfXffg_f6ZHsO6v2OKg1onHsILjJ7D2U-PFp3DWQZyK9mR86TWP5efXoxHPF3PiYLmYcIPPAmfyHbn5QvDkZtJU-YELU2ck3T5fcosJ2k3060x6Qdd_cUi0vq5eZaHeiKz1Bny6lbd9BqvjyRg3QWCJ3E8QMTA2KrSx9Ii6DExMNNSa1ha8bk4_c74nO48GOc8qbqZ1xljJPFa2YO9Gelr3IvmD3K4H0j_EdhoIZd5wzbMf-Hn-9-VXcJ-AlR33-kfb8ID3rQNTO7C6mC3xBdx1l4vhfPayUgsBX28bYN8BSwtMMQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Asymmetric+Autoencoder-Based+Spatial-Spectral+Clustering+Network+for+Hyperspectral+Image&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Liu%2C+Baisen&rft.au=Kong%2C+Weili&rft.au=Wang%2C+Yan&rft.date=2022&rft.pub=Hindawi&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F2027981&rft.externalDocID=10_1155_2022_2027981 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon |