On a fuzzy set approach to solving multiple objective linear fractional programming problem

In 1984, Luhandjula used a linguistic variable approach in order to present a procedure for solving multiple objective linear fractional programming problem (MOLFPP). In 1992, Dutta et al. (Fuzzy Sets and Systems 52 (1) (1992) 39–45) modified the linguistic approach of Luhandjula such as to obtain e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Fuzzy sets and systems Ročník 134; číslo 3; s. 397 - 405
Hlavní autori: Stancu-Minasian, I.M., Pop, Bogdana
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 16.03.2003
Elsevier
Predmet:
ISSN:0165-0114, 1872-6801
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In 1984, Luhandjula used a linguistic variable approach in order to present a procedure for solving multiple objective linear fractional programming problem (MOLFPP). In 1992, Dutta et al. (Fuzzy Sets and Systems 52 (1) (1992) 39–45) modified the linguistic approach of Luhandjula such as to obtain efficient solution to problem MOLFPP. The aim of this paper is to point out certain shortcomings in the work of Dutta et al. and give the correct proof of theorem which validates the obtaining of the efficient solutions. We notice that the method presented there as a general one does only work efficiently if certain hypotheses (restrictive enough and hardly verified) are satisfied. The example considered by Dutta et al. is again used to illustrate the approach.
AbstractList In 1984, Luhandjula used a linguistic variable approach in order to present a procedure for solving multiple objective linear fractional programming problem (MOLFPP). In 1992, Dutta et al. (Fuzzy Sets and Systems 52 (1) (1992) 39–45) modified the linguistic approach of Luhandjula such as to obtain efficient solution to problem MOLFPP. The aim of this paper is to point out certain shortcomings in the work of Dutta et al. and give the correct proof of theorem which validates the obtaining of the efficient solutions. We notice that the method presented there as a general one does only work efficiently if certain hypotheses (restrictive enough and hardly verified) are satisfied. The example considered by Dutta et al. is again used to illustrate the approach.
Author Stancu-Minasian, I.M.
Pop, Bogdana
Author_xml – sequence: 1
  givenname: I.M.
  surname: Stancu-Minasian
  fullname: Stancu-Minasian, I.M.
  organization: The Romanian Academy, Centre for Mathematical Statistics, Calea 13 Septembrie 13, RO-76100 Bucharest 5, Romania
– sequence: 2
  givenname: Bogdana
  surname: Pop
  fullname: Pop, Bogdana
  email: bogdana@info.unitbv.ro
  organization: Department of Computer Science, “ Transilvania” University of Brasov, Iuliu Maniu 50, 2200 Brasov, Romania
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14570899$$DView record in Pascal Francis
BookMark eNqFkMlKBDEUAIMoOC6fIOQi6KH1JZ3e8CAibiDMQT15COn0i2ZILyTtgPP1ph1R8DKXLFD1SGqPbHd9h4QcMThjwPLzp7hkCTAmToCfAjDBE75FZqwseJKXwLbJ7BfZJXshLCBSLIcZeZ13VFHzsVp90oAjVcPge6Xf6djT0Lul7d5o--FGOzikfb1APdolUmc7VJ4ar-K975SjUXvzqm0nIZ5rh-0B2THKBTz82ffJy-3N8_V98ji_e7i-ekx0mhZjkuWszkWGyKFuRFWJBkEhgoAMawFCpWiqGnNd5tgYXja84TnqQhtTC2HqdJ8cr-cOKmjl4qM6bYMcvG2V_5RMZAWUVRW5bM1p34fg0fwhIKeS8ruknDJJ4PK7pOTRu_jnaTuq6d-jV9ZttC_XNsYES4teBm2x09hYH2vKprcbJnwBUYWROg
CODEN FSSYD8
CitedBy_id crossref_primary_10_1007_s12190_008_0052_5
crossref_primary_10_1016_j_mcm_2006_05_008
crossref_primary_10_1080_02331930600819613
crossref_primary_10_1155_2013_435030
crossref_primary_10_1007_s40747_021_00535_2
crossref_primary_10_3233_JIFS_152087
crossref_primary_10_1016_j_measurement_2018_07_061
crossref_primary_10_1007_s12597_024_00864_z
crossref_primary_10_1016_j_fiae_2014_12_006
crossref_primary_10_1061__ASCE_WR_1943_5452_0000681
crossref_primary_10_1007_s10700_006_0021_0
crossref_primary_10_1016_j_matcom_2018_11_013
crossref_primary_10_1016_j_apm_2013_01_041
crossref_primary_10_1016_j_fss_2021_04_010
crossref_primary_10_1080_00207720902974538
crossref_primary_10_1007_s11269_010_9683_z
crossref_primary_10_1007_s40819_016_0261_9
crossref_primary_10_2166_ws_2024_254
crossref_primary_10_1016_j_fiae_2014_08_008
Cites_doi 10.1016/0165-0114(84)90023-X
10.1016/0020-0255(75)90046-8
10.1016/0020-0255(75)90036-5
10.1016/0020-0255(75)90017-1
10.1016/0165-0114(92)90034-2
10.1016/0165-0114(93)90025-D
10.1016/S0165-0114(96)00294-1
ContentType Journal Article
Copyright 2002 Elsevier Science B.V.
2003 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science B.V.
– notice: 2003 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0165-0114(02)00142-2
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1872-6801
EndPage 405
ExternalDocumentID 14570899
10_1016_S0165_0114_02_00142_2
S0165011402001422
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29H
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY1
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c337t-561b645ee20bd4994de0aee0405eb404a3ef9be6c86edf28d2d26ec7cffb44fb3
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000181528200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-0114
IngestDate Wed Apr 02 07:33:43 EDT 2025
Sat Nov 29 02:00:08 EST 2025
Tue Nov 18 21:46:43 EST 2025
Fri Feb 23 02:27:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fuzzy mathematical programming
Multiple objective linear fractional programming
Linguistic variable
Optimal solution
Multiobjective programming
Linear programming
Fuzzy programming
Fractional programming
Fuzzy set
Linguistic model
Mathematical programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-561b645ee20bd4994de0aee0405eb404a3ef9be6c86edf28d2d26ec7cffb44fb3
PageCount 9
ParticipantIDs pascalfrancis_primary_14570899
crossref_primary_10_1016_S0165_0114_02_00142_2
crossref_citationtrail_10_1016_S0165_0114_02_00142_2
elsevier_sciencedirect_doi_10_1016_S0165_0114_02_00142_2
PublicationCentury 2000
PublicationDate 2003-03-16
PublicationDateYYYYMMDD 2003-03-16
PublicationDate_xml – month: 03
  year: 2003
  text: 2003-03-16
  day: 16
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Fuzzy sets and systems
PublicationYear 2003
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zadeh (BIB8) 1975; 8
Stancu-Minasian (BIB5) 1997
I.M. Stancu-Minasian, B. Pop, Fuzzy fractional programming—some recent results, Paper Presented at 2nd Internat. Conf. on Symmetry and Antisymmetry in Mathematics, Formal Languages and Computer Science, Braşov, Romania, June 29–July 1, 2000.
Wang, Qiao (BIB7) 1993; 57
Luhandjula (BIB2) 1984; 13
Zadeh (BIB10) 1975; 9
Stancu-Minasian (BIB4) 1984
Dutta, Tiwari, Rao (BIB1) 1992; 52
Zadeh (BIB9) 1975; 8
Ravi, Reddy (BIB3) 1998; 96
Stancu-Minasian (10.1016/S0165-0114(02)00142-2_BIB5) 1997
Zadeh (10.1016/S0165-0114(02)00142-2_BIB8) 1975; 8
Ravi (10.1016/S0165-0114(02)00142-2_BIB3) 1998; 96
Zadeh (10.1016/S0165-0114(02)00142-2_BIB9) 1975; 8
Wang (10.1016/S0165-0114(02)00142-2_BIB7) 1993; 57
Zadeh (10.1016/S0165-0114(02)00142-2_BIB10) 1975; 9
Dutta (10.1016/S0165-0114(02)00142-2_BIB1) 1992; 52
Luhandjula (10.1016/S0165-0114(02)00142-2_BIB2) 1984; 13
10.1016/S0165-0114(02)00142-2_BIB6
Stancu-Minasian (10.1016/S0165-0114(02)00142-2_BIB4) 1984
References_xml – volume: 57
  start-page: 295
  year: 1993
  end-page: 311
  ident: BIB7
  article-title: Fuzzy programming with fuzzy random variable coefficients
  publication-title: Fuzzy Sets Syst.
– volume: 8
  start-page: 199
  year: 1975
  end-page: 249
  ident: BIB8
  article-title: The concept of linguistic variable and its application to approximate reasoning, Part I
  publication-title: Inform. Sci.
– year: 1984
  ident: BIB4
  publication-title: Stochastic Programming with Multiple Objective Functions
– volume: 52
  start-page: 39
  year: 1992
  end-page: 45
  ident: BIB1
  article-title: Multiple objective linear fractional programming problem—a fuzzy set theoretic approach
  publication-title: Fuzzy Sets Syst.
– year: 1997
  ident: BIB5
  publication-title: Fractional Programing, Theory, Methods and Applications
– volume: 8
  start-page: 301
  year: 1975
  end-page: 357
  ident: BIB9
  article-title: The concept of linguistic variable and its application to approximate reasoning, Part II
  publication-title: Inform. Sci.
– volume: 9
  start-page: 43
  year: 1975
  end-page: 80
  ident: BIB10
  article-title: The concept of linguistic variable and its application to approximate reasoning, Part III
  publication-title: Inform. Sci.
– volume: 96
  start-page: 173
  year: 1998
  end-page: 182
  ident: BIB3
  article-title: Fuzzy linear fractional goal programming applied to reffinery operations planning
  publication-title: Fuzzy Sets Syst.
– reference: I.M. Stancu-Minasian, B. Pop, Fuzzy fractional programming—some recent results, Paper Presented at 2nd Internat. Conf. on Symmetry and Antisymmetry in Mathematics, Formal Languages and Computer Science, Braşov, Romania, June 29–July 1, 2000.
– volume: 13
  start-page: 11
  year: 1984
  end-page: 23
  ident: BIB2
  article-title: Fuzzy approaches for multiple objective linear fractional optimization
  publication-title: Fuzzy Sets Syst.
– year: 1984
  ident: 10.1016/S0165-0114(02)00142-2_BIB4
– year: 1997
  ident: 10.1016/S0165-0114(02)00142-2_BIB5
– volume: 13
  start-page: 11
  issue: 1
  year: 1984
  ident: 10.1016/S0165-0114(02)00142-2_BIB2
  article-title: Fuzzy approaches for multiple objective linear fractional optimization
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(84)90023-X
– volume: 8
  start-page: 301
  year: 1975
  ident: 10.1016/S0165-0114(02)00142-2_BIB9
  article-title: The concept of linguistic variable and its application to approximate reasoning, Part II
  publication-title: Inform. Sci.
  doi: 10.1016/0020-0255(75)90046-8
– volume: 8
  start-page: 199
  year: 1975
  ident: 10.1016/S0165-0114(02)00142-2_BIB8
  article-title: The concept of linguistic variable and its application to approximate reasoning, Part I
  publication-title: Inform. Sci.
  doi: 10.1016/0020-0255(75)90036-5
– volume: 9
  start-page: 43
  year: 1975
  ident: 10.1016/S0165-0114(02)00142-2_BIB10
  article-title: The concept of linguistic variable and its application to approximate reasoning, Part III
  publication-title: Inform. Sci.
  doi: 10.1016/0020-0255(75)90017-1
– volume: 52
  start-page: 39
  issue: 1
  year: 1992
  ident: 10.1016/S0165-0114(02)00142-2_BIB1
  article-title: Multiple objective linear fractional programming problem—a fuzzy set theoretic approach
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(92)90034-2
– volume: 57
  start-page: 295
  year: 1993
  ident: 10.1016/S0165-0114(02)00142-2_BIB7
  article-title: Fuzzy programming with fuzzy random variable coefficients
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(93)90025-D
– volume: 96
  start-page: 173
  issue: 2
  year: 1998
  ident: 10.1016/S0165-0114(02)00142-2_BIB3
  article-title: Fuzzy linear fractional goal programming applied to reffinery operations planning
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(96)00294-1
– ident: 10.1016/S0165-0114(02)00142-2_BIB6
SSID ssj0001160
Score 1.851649
Snippet In 1984, Luhandjula used a linguistic variable approach in order to present a procedure for solving multiple objective linear fractional programming problem...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 397
SubjectTerms Applied sciences
Exact sciences and technology
Fuzzy mathematical programming
Linguistic variable
Mathematical programming
Multiple objective linear fractional programming
Operational research and scientific management
Operational research. Management science
Title On a fuzzy set approach to solving multiple objective linear fractional programming problem
URI https://dx.doi.org/10.1016/S0165-0114(02)00142-2
Volume 134
WOSCitedRecordID wos000181528200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6801
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001160
  issn: 0165-0114
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA4y64Mi4hXXy5IHH5TSsZOmlzyusosKsyu4woAPJUmTZUTbYToj6_56Ty5Nu4qu--BLKYVcmO_LyUnmfOcg9DypUyZFruJaZEVMObwJliawrljBZzlnNJO22ERxdFQuFuyDDx3qbDmBomnKszO2-q9QwzcA20hnrwB36BQ-wDuADk-AHZ7_BPxxE_FIb8_Pf0SdGpKGGycTBrb3ByGKsBVfnMGLjLfJ15FeO6GD0We5yK1vTq5uy86MPdnDfgSX5LkbZT73xYnlNp4vG6vStJZoOp8GQ9zasniv29Oau_Ld4eYhNaFXThjZX0bmJvDPiUCDNfV3k8vxadvaxtQF4vptllq19e8W3F0mfAx9g59tcsQyc5YjXil5IWv2L7tZiDEcha_lWWW6qhJS2W4q2LN3SJGxcoJ29t8dLN6HzXs2s8LyMPwg-no1zOlFQl76-fzJnbm14h0sMu2qo4xclpM76LY_a-B9x5G76Jpq7qGb85Cot7uPPh83mGPLFgxY4p4teNNizxbcswUHtmDHFjywBY_Ygj1bHqBPhwcnb97Gvt5GLNO02MTgSoucZkqRRNRwEqa1SrhSYOYzJWhCeao0EyqXZa5qTcqa1CRXspBaC0q1SB-iSdM26hHCUqeCZ1LXnGlK-KxMqCYKXHmZqiLn2S6i_c9WSZ-M3tRE-Vr9FbZdNA3NVi4by2UNyh6TyruUzlWsgG-XNd27gOEwIM0K82f546tO5gm6MSyjp2iyWW_VM3Rdft8su_WeZ-JPHR6fDA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+fuzzy+set+approach+to+solving+multiple+objective+linear+fractional+programming+problem&rft.jtitle=Fuzzy+sets+and+systems&rft.au=Stancu-Minasian%2C+I.M.&rft.au=Pop%2C+Bogdana&rft.date=2003-03-16&rft.issn=0165-0114&rft.volume=134&rft.issue=3&rft.spage=397&rft.epage=405&rft_id=info:doi/10.1016%2FS0165-0114%2802%2900142-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0165_0114_02_00142_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0114&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0114&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0114&client=summon