A Smooth Regularization of the Projection Formula for Constrained Parabolic Optimal Control Problems

We present a smooth, that is, differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We summarize the optimality conditions in function spaces for unconstrained and control-constrained problems subject to a class of parabolic partial di...

Full description

Saved in:
Bibliographic Details
Published in:Numerical functional analysis and optimization Vol. 32; no. 12; pp. 1283 - 1315
Main Authors: Neitzel, Ira, Prüfert, Uwe, Slawig, Thomas
Format: Journal Article
Language:English
Published: Philadelphia, PA Taylor & Francis Group 01.12.2011
Taylor & Francis
Subjects:
ISSN:0163-0563, 1532-2467
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a smooth, that is, differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We summarize the optimality conditions in function spaces for unconstrained and control-constrained problems subject to a class of parabolic partial differential equations. The optimality conditions are then given by coupled systems of parabolic PDEs. For constrained problems, a non-smooth projection operator occurs in the optimality conditions. For this projection operator, we present in detail a regularization method based on smoothed sign, minimum and maximum functions. For all three cases, that is, (1) the unconstrained problem, (2) the constrained problem including the projection, and (3) the regularized projection, we verify that the optimality conditions can be equivalently expressed by an elliptic boundary value problem in the space-time domain. For this problem and all three cases we discuss existence and uniqueness issues. Motivated by this elliptic problem, we use a simultaneous space-time discretization for numerical tests. Here, we show how a standard finite element software environment allows to solve the problem and, thus, to verify the applicability of this approach without much implementation effort. We present numerical results for an example problem.
AbstractList We present a smooth, that is, differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We summarize the optimality conditions in function spaces for unconstrained and control-constrained problems subject to a class of parabolic partial differential equations. The optimality conditions are then given by coupled systems of parabolic PDEs. For constrained problems, a non-smooth projection operator occurs in the optimality conditions. For this projection operator, we present in detail a regularization method based on smoothed sign, minimum and maximum functions. For all three cases, that is, (1) the unconstrained problem, (2) the constrained problem including the projection, and (3) the regularized projection, we verify that the optimality conditions can be equivalently expressed by an elliptic boundary value problem in the space-time domain. For this problem and all three cases we discuss existence and uniqueness issues. Motivated by this elliptic problem, we use a simultaneous space-time discretization for numerical tests. Here, we show how a standard finite element software environment allows to solve the problem and, thus, to verify the applicability of this approach without much implementation effort. We present numerical results for an example problem.
Author Slawig, Thomas
Prüfert, Uwe
Neitzel, Ira
Author_xml – sequence: 1
  givenname: Ira
  surname: Neitzel
  fullname: Neitzel, Ira
  email: neitzel@ma.tum.de
  organization: Technische Universität Berlin , Fakultät II-Mathematik und Naturwissenschaften
– sequence: 2
  givenname: Uwe
  surname: Prüfert
  fullname: Prüfert, Uwe
  organization: Technische Universität Bergakademie Freiberg , ZIK Virtuhcon, Institut für Energieverfahrenstechnik und Chemieingenieurwesen
– sequence: 3
  givenname: Thomas
  surname: Slawig
  fullname: Slawig, Thomas
  organization: Christian-Albrechts-Universität zu Kiel , Institut für Informatik
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25362895$$DView record in Pascal Francis
BookMark eNqFkM1KxDAURoMoOI6-gYtsXHZMcpO0dSPD4KgwoPizDmnaaCVthiQi49PbOs7Gha4CN-f7uPccof3e9w1Cp5TMKCnIOaESiJAwY4TSmSjzkoo9NKECWMa4zPfRZESykTlERzG-EUKAlcUE1XP82HmfXvFD8_LudGg_dWp9j73F6bXB98G_NeZ7svShGwhsfcAL38cUdNs3Nb7XQVfetQbfrVPbaTf-puDdGK5c08VjdGC1i83JzztFz8urp8VNtrq7vl3MV5kByFPGa6hrWnFTSS44h6rgBUipi1pUnFEgeZ5zUwsLtqyAC8a0lWBNCVpYWZUwRWfb3rWORjsbdG_aqNZh2CpsFBMgWVGKgbvYcib4GENjlWnT99njTU5RokavaudVjV7V1usQ5r_Cu_5_YpfbWNsPAjv94YOrVdIb58NuUfiz4Qt9u5D4
CODEN NFAODL
CitedBy_id crossref_primary_10_1016_j_cam_2016_02_010
crossref_primary_10_1051_m2an_2018009
crossref_primary_10_1137_20M1332980
crossref_primary_10_1016_j_cam_2013_11_006
crossref_primary_10_1002_oca_2079
crossref_primary_10_1007_s10915_021_01647_0
crossref_primary_10_1007_s10915_025_02995_x
crossref_primary_10_1016_j_cam_2017_06_008
crossref_primary_10_1016_j_apnum_2015_03_001
crossref_primary_10_1007_s10589_018_0053_8
crossref_primary_10_1111_nrm_12089
crossref_primary_10_1080_01630563_2013_811600
crossref_primary_10_1515_jnma_2021_0059
crossref_primary_10_1007_s10589_015_9759_z
Cites_doi 10.1090/mmono/023
10.1007/978-1-4612-0985-0
10.1007/BF00249052
10.1007/978-3-642-65024-6
10.1002/zamm.200610337
10.1007/s10107-007-0196-3
10.1007/978-3-662-09205-7
10.1016/S0377-0427(03)00417-5
10.1137/S0036142999356719
10.1007/s10589-005-4559-5
10.1007/s11075-008-9225-4
10.1137/1021028
10.1002/zamm.200310030
10.1090/S0025-5718-98-00932-6
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2011
2015 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2011
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1080/01630563.2011.597915
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-2467
EndPage 1315
ExternalDocumentID 25362895
10_1080_01630563_2011_597915
597915
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTCW
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UT5
UU3
YNT
YQT
ZGOLN
~S~
07G
1TA
AAIKQ
AAKBW
AAYXX
ABEFU
ACAGQ
ACGEE
AEUMN
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMXXU
BCCOT
BPLKW
C06
CITATION
CRFIH
DMQIW
DWIFK
IVXBP
LJTGL
NHB
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
ADYSH
IQODW
ID FETCH-LOGICAL-c337t-4d3dd1b4cb645443b848366a8d5b421307774cd5f3f9b34522af63fc93a5f6b93
IEDL.DBID TFW
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299751500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0163-0563
IngestDate Mon Jul 21 09:14:58 EDT 2025
Tue Nov 18 20:48:58 EST 2025
Sat Nov 29 01:37:29 EST 2025
Mon Oct 20 23:44:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Numerical linear algebra
Initial value problem
Partial differential equation
Implementation
Discretization method
Parabolic PDEs
Regularization method
Finite element method
Projection operator
Parabolic equation
Numerical analysis
Elliptic equation
Boundary value problem
Optimal control
Smooth function
Optimality condition
Software
Ill posed problem
Regularization
Optimal PDE control
Smooth projection operator
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-4d3dd1b4cb645443b848366a8d5b421307774cd5f3f9b34522af63fc93a5f6b93
PageCount 33
ParticipantIDs crossref_citationtrail_10_1080_01630563_2011_597915
crossref_primary_10_1080_01630563_2011_597915
pascalfrancis_primary_25362895
informaworld_taylorfrancis_310_1080_01630563_2011_597915
PublicationCentury 2000
PublicationDate 12/1/2011
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 12/1/2011
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
PublicationTitle Numerical functional analysis and optimization
PublicationYear 2011
Publisher Taylor & Francis Group
Taylor & Francis
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
References Neitzel I. (CIT0018) 2008; 50
Evans L. C. (CIT0007) 1998
Hinze M. (CIT0013) 2008
Hintermüller M. (CIT0010) 2003; 83
Lions J. L. (CIT0017) 1971
Wloka J. (CIT0023) 1992
Prüfert U. (CIT0019) 2007; 87
Chen C. (CIT0003) 1996; 5
Ladyzhenskaya O. A. (CIT0016) 1968
Borzi A. (CIT0001) 2003; 157
Zeidler E. (CIT0024) 1990
Glowinski R. (CIT0008) 1979; 21
Tröltzsch F. (CIT0022) 2010
AB COMSOL (CIT0006) 2007
Grisvard P. (CIT0009) 1985
Selvadurai A. P. S. (CIT0020) 2000
Chen X. (CIT0004) 1998; 67
Ito K. (CIT0015) 2009; 118
Tröltzsch F. (CIT0021) 2000; 7
Hinze M. (CIT0011) 2005; 30
Chen X. (CIT0005) 2000; 38
References_xml – volume-title: Partial Differential Equations
  year: 1992
  ident: CIT0023
– volume-title: Partial Differential Equations
  year: 1998
  ident: CIT0007
– volume-title: COMSOL Multiphysics Reference Guide
  year: 2007
  ident: CIT0006
– volume-title: Linear and Quasilinear Equations of Parabolic Type
  year: 1968
  ident: CIT0016
  doi: 10.1090/mmono/023
– volume-title: Nonlinear Functional Analysis and Its Application II/B: Nonlinear Monotone Operators
  year: 1990
  ident: CIT0024
  doi: 10.1007/978-1-4612-0985-0
– volume: 5
  start-page: 97
  year: 1996
  ident: CIT0003
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/BF00249052
– volume-title: Optimal Control of Systems Governed by Partial Differential Equations
  year: 1971
  ident: CIT0017
  doi: 10.1007/978-3-642-65024-6
– volume: 87
  start-page: 564
  year: 2007
  ident: CIT0019
  publication-title: ZAMM
  doi: 10.1002/zamm.200610337
– volume-title: Optimization with PDE Constraints
  year: 2008
  ident: CIT0013
– volume: 118
  start-page: 347
  year: 2009
  ident: CIT0015
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0196-3
– volume-title: Partial Differential Equations in Mechanics 2. The Biharmonic Equation, Poisson's Equation
  year: 2000
  ident: CIT0020
  doi: 10.1007/978-3-662-09205-7
– volume: 157
  start-page: 365
  year: 2003
  ident: CIT0001
  publication-title: J. Comp. Appl. Math.
  doi: 10.1016/S0377-0427(03)00417-5
– volume: 7
  start-page: 289
  year: 2000
  ident: CIT0021
  publication-title: Dyn. Contin. Discrete Impulsive Syst.
– volume-title: Optimal Control of Partial Differential Equations: Theory, Methods and Applications
  year: 2010
  ident: CIT0022
– volume: 38
  start-page: 1200
  year: 2000
  ident: CIT0005
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/S0036142999356719
– volume-title: Elliptic Problems in Nonsmooth Domains
  year: 1985
  ident: CIT0009
– volume: 30
  start-page: 45
  year: 2005
  ident: CIT0011
  publication-title: J. Compu. Optim. Appl.
  doi: 10.1007/s10589-005-4559-5
– volume: 50
  start-page: 241
  year: 2008
  ident: CIT0018
  publication-title: Numerical Algorithms
  doi: 10.1007/s11075-008-9225-4
– volume: 21
  start-page: 167
  year: 1979
  ident: CIT0008
  publication-title: SIAM REV.
  doi: 10.1137/1021028
– volume: 83
  start-page: 219
  year: 2003
  ident: CIT0010
  publication-title: ZAMM
  doi: 10.1002/zamm.200310030
– volume: 67
  start-page: 519
  year: 1998
  ident: CIT0004
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-98-00932-6
SSID ssj0003298
Score 1.9923322
Snippet We present a smooth, that is, differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We...
SourceID pascalfrancis
crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 1283
SubjectTerms Calculus of variations and optimal control
Exact sciences and technology
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis in abstract spaces
Numerical analysis. Scientific computation
Numerical linear algebra
Optimal PDE control
Parabolic PDEs
Partial differential equations
Sciences and techniques of general use
Smooth projection operator
Title A Smooth Regularization of the Projection Formula for Constrained Parabolic Optimal Control Problems
URI https://www.tandfonline.com/doi/abs/10.1080/01630563.2011.597915
Volume 32
WOSCitedRecordID wos000299751500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1532-2467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: TFW
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QxAEOvBHjMeXANWJt0jY5ThMTF8YEQ-xWJWkjTdoDtYXfj5O01XYAJLhVVZymtmM7kf0Zods-SyR4CU5iqmLCMi6ICBNFuDQQzcKTDIxrNpGMx3w2E5ONKn6bVmnP0MYDRThbbTe3VGWTEXcHUYoNfKkH4ISIWLgqc_D8dmdOR2-tKaaha4ZrCYilaGrnvplkyzdtIZfalElZAteMb3ex4YNGh_9f_RE6qONPPPAKc4x28tUJ2n9swVvLU5QN8MtyDRLEz65RfVGXauK1wTAMT_zljX0zgqXDCAy_gG3rT9dwIs_wRBagXIu5xk9gkpbwwaFPibfEtoFNeYZeR_fT4QOpmzEQTWlSgRhplgWKaWUxwBhVnHEax5JnkWIheMIEAkmdRYYaoajFaZcmpkYLKiMTK0HPUWe1XuUXCAcyCJXsg2XLQwYRimIMzjWSS6YUj7TqItqIIdU1Urld_yINGkDTmoep5WHqedhFpKV690gdv4znmxJOK3dDUss3pT-T9ra0of1eGEE8wEV0-fe5r9Ceu7Z2GTPXqFMVH_kN2tWf1bwsek69vwCaGPTv
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-igvrgtzg_Zh58La5N2qaPY1gmbnPoxL2VpG1gsA9pq3-_d2k7tgcVxLdSckl6d727HJffEXLb4r4ELyEsjynP4okIrMDxlSWkhmgWnqStTbMJfzAQ43EwrKoJ86qsEs_QugSKMLYaf25MRtclcXcQpmDky0oETgiJA7xmvuWCq0X4_FH4tjTGzDHtcJHCQpL69tw3s6x5pzXsUiyalDnwTZcNL1a8UHjwD_s_JPtVCErbpc4ckY10fkz2-kv81vyEJG36MluAEOmz6VWfVbc16UJTGEaHZf4G34SwdxhB4Rsodv80PSfShA5lBvo1ncT0CazSDBbslFXxSIw9bPJT8hrejzpdq-rHYMWM-QVIkiWJrXisEAaMMyW4YJ4nReIq7oAz9CGWjBNXMx0ohlDtUntMxwGTrvZUwM7I5nwxT88JtaXtKNkC45Y6HIIUxTkcbaSQXCnhxqpBWC2HKK7AynH_08iuMU0rHkbIw6jkYYNYS6r3Eqzjl_FiVcRRYZIklYAj9jNpc00dlus5LoQEInAv_j73Ddnpjvq9qPcweLwkuyaLbQporshmkX2k12Q7_iwmedY0uv4FJr_5GQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRfTBb3F-zDz4WlybtE0fx7Qo6hw6cW8laRoY7Itu-vd7l7Zje1BB30rJJWnuevdLuPyOkKsmDyVECeEETAUO1yJyIi9UjpAG0Cw8SdfYYhNhpyP6_ai7dIsf0ypxD20Kogjrq_HnnmpTZcRdA0pB4MsKAk5AxBHeMl8H5Bygjffi94UvZp6thosSDopUl-e-6WUlOK1Ql2LOpJzBspmi3sVSEIp3_z_9PbJTAlDaKixmn6xl4wOy_bRgb50dEt2ir6MJqJC-2Er1eXlXk04MhWa0W5ze4JsYpg4tKHwCxdqftuJEpmlX5mBdw0FKn8EnjWDAdpETj8JYwWZ2RN7i2177zimrMTgpY-Ec9Mi0dhVPFZKAcaYEFywIpNC-4h6EwhCQZKp9w0ykGBK1SxMwk0ZM-iZQETsmtfFknJ0Q6krXU7IJri3zOEAUxTlsbKSQXCnhp6pOWKWGJC2pynH-w8StGE3LNUxwDZNiDevEWUhNC6qOX9qLZQ0nc3tEUuo3YT-LNlasYTGe5wMgEJF_-ve-L8lm9yZOHu87D2dkyx5h2-yZc1Kb5x_ZBdlIP-eDWd6wlv4FNf_3yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Smooth+Regularization+of+the+Projection+Formula+for+Constrained+Parabolic+Optimal+Control+Problems&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Neitzel%2C+Ira&rft.au=Pr%C3%BCfert%2C+Uwe&rft.au=Slawig%2C+Thomas&rft.date=2011-12-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=32&rft.issue=12&rft.spage=1283&rft.epage=1315&rft_id=info:doi/10.1080%2F01630563.2011.597915&rft.externalDocID=597915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon