A Smooth Regularization of the Projection Formula for Constrained Parabolic Optimal Control Problems
We present a smooth, that is, differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We summarize the optimality conditions in function spaces for unconstrained and control-constrained problems subject to a class of parabolic partial di...
Saved in:
| Published in: | Numerical functional analysis and optimization Vol. 32; no. 12; pp. 1283 - 1315 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia, PA
Taylor & Francis Group
01.12.2011
Taylor & Francis |
| Subjects: | |
| ISSN: | 0163-0563, 1532-2467 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present a smooth, that is, differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We summarize the optimality conditions in function spaces for unconstrained and control-constrained problems subject to a class of parabolic partial differential equations. The optimality conditions are then given by coupled systems of parabolic PDEs. For constrained problems, a non-smooth projection operator occurs in the optimality conditions. For this projection operator, we present in detail a regularization method based on smoothed sign, minimum and maximum functions. For all three cases, that is, (1) the unconstrained problem, (2) the constrained problem including the projection, and (3) the regularized projection, we verify that the optimality conditions can be equivalently expressed by an elliptic boundary value problem in the space-time domain. For this problem and all three cases we discuss existence and uniqueness issues. Motivated by this elliptic problem, we use a simultaneous space-time discretization for numerical tests. Here, we show how a standard finite element software environment allows to solve the problem and, thus, to verify the applicability of this approach without much implementation effort. We present numerical results for an example problem. |
|---|---|
| AbstractList | We present a smooth, that is, differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We summarize the optimality conditions in function spaces for unconstrained and control-constrained problems subject to a class of parabolic partial differential equations. The optimality conditions are then given by coupled systems of parabolic PDEs. For constrained problems, a non-smooth projection operator occurs in the optimality conditions. For this projection operator, we present in detail a regularization method based on smoothed sign, minimum and maximum functions. For all three cases, that is, (1) the unconstrained problem, (2) the constrained problem including the projection, and (3) the regularized projection, we verify that the optimality conditions can be equivalently expressed by an elliptic boundary value problem in the space-time domain. For this problem and all three cases we discuss existence and uniqueness issues. Motivated by this elliptic problem, we use a simultaneous space-time discretization for numerical tests. Here, we show how a standard finite element software environment allows to solve the problem and, thus, to verify the applicability of this approach without much implementation effort. We present numerical results for an example problem. |
| Author | Slawig, Thomas Prüfert, Uwe Neitzel, Ira |
| Author_xml | – sequence: 1 givenname: Ira surname: Neitzel fullname: Neitzel, Ira email: neitzel@ma.tum.de organization: Technische Universität Berlin , Fakultät II-Mathematik und Naturwissenschaften – sequence: 2 givenname: Uwe surname: Prüfert fullname: Prüfert, Uwe organization: Technische Universität Bergakademie Freiberg , ZIK Virtuhcon, Institut für Energieverfahrenstechnik und Chemieingenieurwesen – sequence: 3 givenname: Thomas surname: Slawig fullname: Slawig, Thomas organization: Christian-Albrechts-Universität zu Kiel , Institut für Informatik |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25362895$$DView record in Pascal Francis |
| BookMark | eNqFkM1KxDAURoMoOI6-gYtsXHZMcpO0dSPD4KgwoPizDmnaaCVthiQi49PbOs7Gha4CN-f7uPccof3e9w1Cp5TMKCnIOaESiJAwY4TSmSjzkoo9NKECWMa4zPfRZESykTlERzG-EUKAlcUE1XP82HmfXvFD8_LudGg_dWp9j73F6bXB98G_NeZ7svShGwhsfcAL38cUdNs3Nb7XQVfetQbfrVPbaTf-puDdGK5c08VjdGC1i83JzztFz8urp8VNtrq7vl3MV5kByFPGa6hrWnFTSS44h6rgBUipi1pUnFEgeZ5zUwsLtqyAC8a0lWBNCVpYWZUwRWfb3rWORjsbdG_aqNZh2CpsFBMgWVGKgbvYcib4GENjlWnT99njTU5RokavaudVjV7V1usQ5r_Cu_5_YpfbWNsPAjv94YOrVdIb58NuUfiz4Qt9u5D4 |
| CODEN | NFAODL |
| CitedBy_id | crossref_primary_10_1016_j_cam_2016_02_010 crossref_primary_10_1051_m2an_2018009 crossref_primary_10_1137_20M1332980 crossref_primary_10_1016_j_cam_2013_11_006 crossref_primary_10_1002_oca_2079 crossref_primary_10_1007_s10915_021_01647_0 crossref_primary_10_1007_s10915_025_02995_x crossref_primary_10_1016_j_cam_2017_06_008 crossref_primary_10_1016_j_apnum_2015_03_001 crossref_primary_10_1007_s10589_018_0053_8 crossref_primary_10_1111_nrm_12089 crossref_primary_10_1080_01630563_2013_811600 crossref_primary_10_1515_jnma_2021_0059 crossref_primary_10_1007_s10589_015_9759_z |
| Cites_doi | 10.1090/mmono/023 10.1007/978-1-4612-0985-0 10.1007/BF00249052 10.1007/978-3-642-65024-6 10.1002/zamm.200610337 10.1007/s10107-007-0196-3 10.1007/978-3-662-09205-7 10.1016/S0377-0427(03)00417-5 10.1137/S0036142999356719 10.1007/s10589-005-4559-5 10.1007/s11075-008-9225-4 10.1137/1021028 10.1002/zamm.200310030 10.1090/S0025-5718-98-00932-6 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2011 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2011 – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1080/01630563.2011.597915 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1532-2467 |
| EndPage | 1315 |
| ExternalDocumentID | 25362895 10_1080_01630563_2011_597915 597915 |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTCW ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGCQS AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EAP EBS EDO EJD EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UT5 UU3 YNT YQT ZGOLN ~S~ 07G 1TA AAIKQ AAKBW AAYXX ABEFU ACAGQ ACGEE AEUMN AGLEN AGROQ AHMOU ALCKM AMEWO AMXXU BCCOT BPLKW C06 CITATION CRFIH DMQIW DWIFK IVXBP LJTGL NHB NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q ADYSH IQODW |
| ID | FETCH-LOGICAL-c337t-4d3dd1b4cb645443b848366a8d5b421307774cd5f3f9b34522af63fc93a5f6b93 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299751500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0163-0563 |
| IngestDate | Mon Jul 21 09:14:58 EDT 2025 Tue Nov 18 20:48:58 EST 2025 Sat Nov 29 01:37:29 EST 2025 Mon Oct 20 23:44:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Numerical linear algebra Initial value problem Partial differential equation Implementation Discretization method Parabolic PDEs Regularization method Finite element method Projection operator Parabolic equation Numerical analysis Elliptic equation Boundary value problem Optimal control Smooth function Optimality condition Software Ill posed problem Regularization Optimal PDE control Smooth projection operator |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-4d3dd1b4cb645443b848366a8d5b421307774cd5f3f9b34522af63fc93a5f6b93 |
| PageCount | 33 |
| ParticipantIDs | crossref_citationtrail_10_1080_01630563_2011_597915 crossref_primary_10_1080_01630563_2011_597915 pascalfrancis_primary_25362895 informaworld_taylorfrancis_310_1080_01630563_2011_597915 |
| PublicationCentury | 2000 |
| PublicationDate | 12/1/2011 |
| PublicationDateYYYYMMDD | 2011-12-01 |
| PublicationDate_xml | – month: 12 year: 2011 text: 12/1/2011 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Philadelphia, PA |
| PublicationPlace_xml | – name: Philadelphia, PA |
| PublicationTitle | Numerical functional analysis and optimization |
| PublicationYear | 2011 |
| Publisher | Taylor & Francis Group Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis |
| References | Neitzel I. (CIT0018) 2008; 50 Evans L. C. (CIT0007) 1998 Hinze M. (CIT0013) 2008 Hintermüller M. (CIT0010) 2003; 83 Lions J. L. (CIT0017) 1971 Wloka J. (CIT0023) 1992 Prüfert U. (CIT0019) 2007; 87 Chen C. (CIT0003) 1996; 5 Ladyzhenskaya O. A. (CIT0016) 1968 Borzi A. (CIT0001) 2003; 157 Zeidler E. (CIT0024) 1990 Glowinski R. (CIT0008) 1979; 21 Tröltzsch F. (CIT0022) 2010 AB COMSOL (CIT0006) 2007 Grisvard P. (CIT0009) 1985 Selvadurai A. P. S. (CIT0020) 2000 Chen X. (CIT0004) 1998; 67 Ito K. (CIT0015) 2009; 118 Tröltzsch F. (CIT0021) 2000; 7 Hinze M. (CIT0011) 2005; 30 Chen X. (CIT0005) 2000; 38 |
| References_xml | – volume-title: Partial Differential Equations year: 1992 ident: CIT0023 – volume-title: Partial Differential Equations year: 1998 ident: CIT0007 – volume-title: COMSOL Multiphysics Reference Guide year: 2007 ident: CIT0006 – volume-title: Linear and Quasilinear Equations of Parabolic Type year: 1968 ident: CIT0016 doi: 10.1090/mmono/023 – volume-title: Nonlinear Functional Analysis and Its Application II/B: Nonlinear Monotone Operators year: 1990 ident: CIT0024 doi: 10.1007/978-1-4612-0985-0 – volume: 5 start-page: 97 year: 1996 ident: CIT0003 publication-title: Comput. Optim. Appl. doi: 10.1007/BF00249052 – volume-title: Optimal Control of Systems Governed by Partial Differential Equations year: 1971 ident: CIT0017 doi: 10.1007/978-3-642-65024-6 – volume: 87 start-page: 564 year: 2007 ident: CIT0019 publication-title: ZAMM doi: 10.1002/zamm.200610337 – volume-title: Optimization with PDE Constraints year: 2008 ident: CIT0013 – volume: 118 start-page: 347 year: 2009 ident: CIT0015 publication-title: Math. Program. doi: 10.1007/s10107-007-0196-3 – volume-title: Partial Differential Equations in Mechanics 2. The Biharmonic Equation, Poisson's Equation year: 2000 ident: CIT0020 doi: 10.1007/978-3-662-09205-7 – volume: 157 start-page: 365 year: 2003 ident: CIT0001 publication-title: J. Comp. Appl. Math. doi: 10.1016/S0377-0427(03)00417-5 – volume: 7 start-page: 289 year: 2000 ident: CIT0021 publication-title: Dyn. Contin. Discrete Impulsive Syst. – volume-title: Optimal Control of Partial Differential Equations: Theory, Methods and Applications year: 2010 ident: CIT0022 – volume: 38 start-page: 1200 year: 2000 ident: CIT0005 publication-title: SIAM Journal on Numerical Analysis doi: 10.1137/S0036142999356719 – volume-title: Elliptic Problems in Nonsmooth Domains year: 1985 ident: CIT0009 – volume: 30 start-page: 45 year: 2005 ident: CIT0011 publication-title: J. Compu. Optim. Appl. doi: 10.1007/s10589-005-4559-5 – volume: 50 start-page: 241 year: 2008 ident: CIT0018 publication-title: Numerical Algorithms doi: 10.1007/s11075-008-9225-4 – volume: 21 start-page: 167 year: 1979 ident: CIT0008 publication-title: SIAM REV. doi: 10.1137/1021028 – volume: 83 start-page: 219 year: 2003 ident: CIT0010 publication-title: ZAMM doi: 10.1002/zamm.200310030 – volume: 67 start-page: 519 year: 1998 ident: CIT0004 publication-title: Math. Comp. doi: 10.1090/S0025-5718-98-00932-6 |
| SSID | ssj0003298 |
| Score | 1.9922264 |
| Snippet | We present a smooth, that is, differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We... |
| SourceID | pascalfrancis crossref informaworld |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 1283 |
| SubjectTerms | Calculus of variations and optimal control Exact sciences and technology Mathematical analysis Mathematics Numerical analysis Numerical analysis in abstract spaces Numerical analysis. Scientific computation Numerical linear algebra Optimal PDE control Parabolic PDEs Partial differential equations Sciences and techniques of general use Smooth projection operator |
| Title | A Smooth Regularization of the Projection Formula for Constrained Parabolic Optimal Control Problems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01630563.2011.597915 |
| Volume | 32 |
| WOSCitedRecordID | wos000299751500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1532-2467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003298 issn: 0163-0563 databaseCode: TFW dateStart: 19790101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QxAEOvBHjMeXANWKt09dxmpi4MCYYYrcqj0aatAdaB78fO-2m7QBIcK3iNI2d2Ent72PsNtMy0UmRCGOlElLZttBBoESRJU7aNGgrZz3ZRNLvp6NRNtio4qe0SjpDuwoowu_VtLiVLlcZcXcYpVDgCxUAJ0bEma8yR89PK3PYe1tvxRB6MlwSECSxqp37ppMt37SFXEopk6rEWXMV3cWGD-od_n_0R-ygjj95pzKYY7ZTzE7Y_uMavLU8ZbbDX6Zz1CB_9kT1i7pUk88dx2Z8UF3e0JMeDh1bcPwETtSfnnCisHygFmhck7HhT7glTfGF3SolnoSJwKY8Y6-9-2H3QdRkDMIAJEshLVgbaGk0YYBJ0KlMIY5VaiMtQ_SECQaSxkYOXKaBcNqVi8GZDFTkYp3BOWvM5rPignE8AOPBuIBIhyBVEiqwaBhxaLRK6bdsk8FKDbmpkcpp_JM8WAGa1nOY0xzm1Rw2mVhLvVdIHb-0Tzc1nC_9DUmt3xx-Fm1tWcP6fWGE8UCaRZd_7_uK7flra58xc80ay8VHccN2zedyXC5a3ry_AGYG9ds |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6ignrwLb7NwWvQ3cm-jiKWilqLVvS25LGBQh_Srf5-Z7Lb0h5UEK9LJslmZjOT2cn3MXaeaZnopEiEsVIJqeyl0EGgRJElTto0uFTOerKJpNVK396ydl1NWNZllXSGdhVQhN-r6eOmZPSkJO4CwxSKfKFC4MSQOKNr5ksRulqCz-80XqebMYSeDpckBIlMbs9908ucd5rDLqWiSVXiurmK8GLGCzU2_mH-m2y9DkH5VWUzW2yhGGyztYcpfmu5w-wVf-4PUYn8yXPVj-rbmnzoODbj7Sp_Q08aOHdswfEdOLF_es6JwvK2GqF99bqGP-Ku1McBr6uqeBImDptyl700bjrXTVHzMQgDkIyFtGBtoKXRBAMmQacyhThWqY20DNEZJhhLGhs5cJkGgmpXLgZnMlCRi3UGe2xxMBwU-4zjGRjPxgVEOgSpklCBRduIQ6NVSn9mDxhM9JCbGqyc5t_Lgwmmab2GOa1hXq3hARNTqfcKrOOX9umsivOxT5LUCs7hZ9HTOXOYjhdGGBKkWXT4977P2Eqz83Cf39-27o7Yqs9i-wKaY7Y4Hn0UJ2zZfI675ejU2_oXAYb6BQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QQAgOvBFvcuAasdbp64iACgSMiYfgVuXRSJPGhrbB78dOu2k7ABJcqzhJbTdxUvv7GDvJtEx0UibCWKmEVLYpdBAoUWaJkzYNmspZTzaRtFrp62vWnqrip7RKOkO7CijCr9X0cb9bN86IO8UohQJfqAA4MSLOqMp8HiPnmHz8KX-ZrMUQejZckhAkMi6e-6aXmc1pBrqUcibVENXmKr6LqU0oX_3_9NfYSh2A8rPKY9bZXNnbYMt3E_TW4SazZ_zxrY8m5A-eqX5Q12ryvuPYjLer2xt6kuPUsQXHV-DE_ekZJ0rL22qA3tXtGH6Pa9IbDnhe5cSTMDHYDLfYc375dH4lajYGYQCSkZAWrA20NJpAwCToVKYQxyq1kZYhboUJRpLGRg5cpoGA2pWLwZkMVORincE2a_T6vXKHcTwB48m4hEiHIFUSKrDoGXFotErpv-wug7EZClNDldP8u0UwRjStdViQDotKh7tMTKTeK6iOX9qn0xYuRv6KpLZvAT-LHs14w2S8MMKAIM2ivb_3fcwW2xd5cXvdutlnS_4K22fPHLDGaPBRHrIF8znqDAdH3tO_AA1U-Lc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Smooth+Regularization+of+the+Projection+Formula+for+Constrained+Parabolic+Optimal+Control+Problems&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Neitzel%2C+Ira&rft.au=Pr%C3%BCfert%2C+Uwe&rft.au=Slawig%2C+Thomas&rft.date=2011-12-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=32&rft.issue=12&rft.spage=1283&rft.epage=1315&rft_id=info:doi/10.1080%2F01630563.2011.597915&rft.externalDocID=597915 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon |