An Individual-oriented Algorithm for Stress Detection in Wearable Sensor Measurements

Accurately measuring a person's level of stress can have a wide variety of impacts, not only for human health, but also for the perceived feeling of safety when going after daily habits, such as walking, cycling, or driving from one place to another. While there is a vast amount of research don...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 23; no. 19; p. 1
Main Authors: Moser, Martin Karl, Resch, Bernd, Ehrhart, Maximilian
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1530-437X, 1558-1748
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurately measuring a person's level of stress can have a wide variety of impacts, not only for human health, but also for the perceived feeling of safety when going after daily habits, such as walking, cycling, or driving from one place to another. While there is a vast amount of research done on stress and the related physiological responses of the human body, there is no go-to method when it comes to measuring acute stress in a live setting. This work proposes an advancement of the rule-based stress detection algorithm proposed in [1], to identify moments of stress (MOS) more reliably, through an adaptation and an individualization of the rules proposed in the original paper. The proposed algorithm leverages electrodermal activity and skin temperature, both recorded by the Empatica E4 wristband, for the assessment of an individual's stress when exposed to an audible stimulus. The algorithm achieves an average recall of 81.31%, with a precision of 46.23%, and an accuracy of 92.74%, measured on 16 test subjects. The trade-off between precision and recall can be controlled by adjusting the MOS threshold that needs to be reached for a MOS to be detected.
AbstractList Accurately measuring a person's level of stress can have a wide variety of impacts, not only for human health, but also for the perceived feeling of safety when going after daily habits, such as walking, cycling, or driving from one place to another. While there is a vast amount of research done on stress and the related physiological responses of the human body, there is no go-to method when it comes to measuring acute stress in a live setting. This work proposes an advancement of the rule-based stress detection algorithm proposed in [1], to identify moments of stress (MOS) more reliably, through an adaptation and an individualization of the rules proposed in the original paper. The proposed algorithm leverages electrodermal activity and skin temperature, both recorded by the Empatica E4 wristband, for the assessment of an individual's stress when exposed to an audible stimulus. The algorithm achieves an average recall of 81.31%, with a precision of 46.23%, and an accuracy of 92.74%, measured on 16 test subjects. The trade-off between precision and recall can be controlled by adjusting the MOS threshold that needs to be reached for a MOS to be detected.
Accurately measuring a person’s level of stress can have a wide variety of impacts, not only on human health, but also on the perceived feeling of safety when going after daily habits, such as walking, cycling, or driving from one place to another. While there is a vast amount of research done on stress and the related physiological responses of the human body, there is no go-to method when it comes to measuring acute stress in a live setting. This work proposes an advancement of the rule-based stress detection algorithm proposed by Kyriakou et al., to identify moments of stress (MOS) more reliably, through an adaptation, and individualization of the rules proposed in the original paper. The proposed algorithm leverages electrodermal activity (EDA) and skin temperature (ST), both recorded by the Empatica E4 wristband, for the assessment of an individual’s stress when exposed to an audible stimulus. The algorithm achieves an average recall of 81.31%, with a precision of 46.23%, and an accuracy of 92.74%, measured on 16 test subjects. The tradeoff between precision and recall can be controlled by adjusting the MOS threshold that needs to be reached for an MOS to be detected.
Author Moser, Martin Karl
Resch, Bernd
Ehrhart, Maximilian
Author_xml – sequence: 1
  givenname: Martin Karl
  orcidid: 0009-0006-2681-2666
  surname: Moser
  fullname: Moser, Martin Karl
  organization: Department of Geoinformatics, University of Salzburg, Salzburg, Austria
– sequence: 2
  givenname: Bernd
  surname: Resch
  fullname: Resch, Bernd
  organization: Department of Geoinformatics, University of Salzburg, Salzburg, Austria
– sequence: 3
  givenname: Maximilian
  surname: Ehrhart
  fullname: Ehrhart, Maximilian
  organization: Department of Geoinformatics, University of Salzburg, Salzburg, Austria
BookMark eNp9kD1PwzAQhi0EEm3hByAxWGJO8VdsZ6xKgaICQ4tgi5zkAq5Sp9guEv-eRO2AGJjuHd7nTvcM0bFrHSB0QcmYUpJdPyxnT2NGGB9zToRg7AgNaJrqhCqhj_vMSSK4ejtFwxDWhNBMpWqAXiYOz11lv2y1M03SegsuQoUnzXuX48cG163Hy-ghBHwDEcpoW4etw69gvCkawEtwoes8ggk7D5uOD2fopDZNgPPDHKHV7Ww1vU8Wz3fz6WSRlJyrmIiCFzWRUJlKZaUsJZOalZUUhTa64AI0CMVEwYBWhVaZKDMpVUp4xkjNOR-hq_3arW8_dxBivm533nUXc6Y7UBAp0q5F963StyF4qPOttxvjv3NK8l5e3svLe3n5QV7HqD9MaaPpX4_e2OZf8nJPWgD4dYkxqjThP2S0fpA
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3390_s24165085
crossref_primary_10_3389_fpsyg_2024_1409086
crossref_primary_10_1080_21650020_2023_2267636
crossref_primary_10_1109_TVCG_2024_3385637
crossref_primary_10_3389_fcomp_2024_1478851
crossref_primary_10_1109_ACCESS_2025_3588384
crossref_primary_10_1016_j_future_2025_108058
crossref_primary_10_1016_j_trf_2025_07_004
crossref_primary_10_1016_j_compeleceng_2025_110478
crossref_primary_10_3390_s24103221
Cites_doi 10.1589/jpts.24.1341
10.1109/TAFFC.2019.2927337
10.1109/T-AFFC.2011.25
10.1109/ACCESS.2021.3097038
10.1109/SmartWorld.2018.00091
10.3390/s19204509
10.1553/giscience2016_01_s204
10.1109/TBME.2017.2758643
10.3389/fict.2018.00023
10.3390/s22166120
10.1088/1742-6596/1372/1/012001
10.3390/s19173805
10.3390/bios8020030
10.1145/3411764.3445370
10.1177/1096348020944436
10.1080/23328940.2019.1632145
10.1177/00187208211040889
10.1109/CBMS.2013.6627790
10.3390/e21050442
10.28991/esj-2021-01267
10.1016/j.biopsycho.2013.09.010
10.3390/s18061905
10.3414/ME9108
10.3390/fi14110328
10.1109/TBME.2015.2474131
10.3390/s21155015
10.1007/978-1-4614-1126-0
10.1007/978-1-4471-4555-4_10
10.1061/(ASCE)CO.1943-7862.0001729
10.1152/ajpregu.1997.273.3.R1173
10.1177/1754073914565517
10.1016/j.bspc.2021.102756
10.1016/j.physbeh.2015.09.032
10.1145/3123021.3123054
10.18178/joig.4.2.116-121
10.3109/10253890.2013.807243
10.1016/0301-0511(78)90046-7
10.1109/IEMBS.2006.259421
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3304422
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2023_3304422
10221780
Genre orig-research
GrantInformation_xml – fundername: Austrian Science Fund
  grantid: I-3022 (Urban Emotions)
  funderid: 10.13039/501100002428
– fundername: German Federal Ministry for Digital and Transport (BMDV)
  grantid: 19F2195A (ESSEM)
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
ESBDL
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c337t-4b3bf06edad79c6c62682cd64b8a8b34e8e4724b2e1db8794c9667503920f333
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001087769200077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 08:42:14 EDT 2025
Sat Nov 29 06:39:40 EST 2025
Tue Nov 18 22:23:38 EST 2025
Wed Aug 27 02:25:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-4b3bf06edad79c6c62682cd64b8a8b34e8e4724b2e1db8794c9667503920f333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-2681-2666
0000-0002-9554-0231
0000-0002-2233-6926
OpenAccessLink https://ieeexplore.ieee.org/document/10221780
PQID 2872440645
PQPubID 75733
PageCount 1
ParticipantIDs ieee_primary_10221780
proquest_journals_2872440645
crossref_citationtrail_10_1109_JSEN_2023_3304422
crossref_primary_10_1109_JSEN_2023_3304422
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
alrahawe (ref40) 2019; 8
ref24
sánchez-reolid (ref6) 2020
ref26
ref25
(ref15) 2015
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
yamakoshi (ref23) 2008
ref8
ref7
ref9
ref4
schumm (ref35) 2008; 47
ref3
ref5
References_xml – ident: ref9
  doi: 10.1589/jpts.24.1341
– ident: ref4
  doi: 10.1109/TAFFC.2019.2927337
– ident: ref33
  doi: 10.1109/T-AFFC.2011.25
– ident: ref32
  doi: 10.1109/ACCESS.2021.3097038
– start-page: 1076
  year: 2008
  ident: ref23
  article-title: Feasibility study on driver's stress detection from differential skin temperature measurement
  publication-title: Proc 30th Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref27
  doi: 10.1109/SmartWorld.2018.00091
– ident: ref31
  doi: 10.3390/s19204509
– ident: ref13
  doi: 10.1553/giscience2016_01_s204
– ident: ref28
  doi: 10.1109/TBME.2017.2758643
– ident: ref5
  doi: 10.3389/fict.2018.00023
– ident: ref34
  doi: 10.3390/s22166120
– ident: ref20
  doi: 10.1088/1742-6596/1372/1/012001
– ident: ref1
  doi: 10.3390/s19173805
– ident: ref42
  doi: 10.3390/bios8020030
– ident: ref17
  doi: 10.1145/3411764.3445370
– ident: ref21
  doi: 10.1177/1096348020944436
– ident: ref7
  doi: 10.1080/23328940.2019.1632145
– ident: ref25
  doi: 10.1177/00187208211040889
– ident: ref18
  doi: 10.1109/CBMS.2013.6627790
– ident: ref29
  doi: 10.3390/e21050442
– ident: ref2
  doi: 10.28991/esj-2021-01267
– ident: ref37
  doi: 10.1016/j.biopsycho.2013.09.010
– ident: ref26
  doi: 10.3390/s18061905
– start-page: 1
  year: 2020
  ident: ref6
  article-title: Machine learning for stress detection from electrodermal activity: A scoping rev- iew
  publication-title: MDPI Appl Sci
– volume: 8
  start-page: 307
  year: 2019
  ident: ref40
  article-title: An analysis on biometric traits recognition
  publication-title: International Journal of Innovative Technology and Exploring Engineering
– volume: 47
  start-page: 186
  year: 2008
  ident: ref35
  article-title: Effect of movements on the electrodermal response after a startle event
  publication-title: Methods Inf Med
  doi: 10.3414/ME9108
– ident: ref41
  doi: 10.3390/fi14110328
– ident: ref38
  doi: 10.1109/TBME.2015.2474131
– year: 2015
  ident: ref15
  publication-title: E4 Wristband Real-Time Physiological Signals Wearable PPG EDA Temperature Motion Sensors
– ident: ref16
  doi: 10.3390/s21155015
– ident: ref8
  doi: 10.1007/978-1-4614-1126-0
– ident: ref36
  doi: 10.1007/978-1-4471-4555-4_10
– ident: ref30
  doi: 10.1061/(ASCE)CO.1943-7862.0001729
– ident: ref39
  doi: 10.1152/ajpregu.1997.273.3.R1173
– ident: ref12
  doi: 10.1177/1754073914565517
– ident: ref19
  doi: 10.1016/j.bspc.2021.102756
– ident: ref14
  doi: 10.1016/j.physbeh.2015.09.032
– ident: ref22
  doi: 10.1145/3123021.3123054
– ident: ref3
  doi: 10.18178/joig.4.2.116-121
– ident: ref10
  doi: 10.3109/10253890.2013.807243
– ident: ref11
  doi: 10.1016/0301-0511(78)90046-7
– ident: ref24
  doi: 10.1109/IEMBS.2006.259421
SSID ssj0019757
Score 2.4538476
Snippet Accurately measuring a person's level of stress can have a wide variety of impacts, not only for human health, but also for the perceived feeling of safety...
Accurately measuring a person’s level of stress can have a wide variety of impacts, not only on human health, but also on the perceived feeling of safety when...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Electrodermal Activity
Individual-specific Physiological Responses
Physiological responses
Recall
Rule-based Algorithm
Skin Temperature
Stress Detection
Title An Individual-oriented Algorithm for Stress Detection in Wearable Sensor Measurements
URI https://ieeexplore.ieee.org/document/10221780
https://www.proquest.com/docview/2872440645
Volume 23
WOSCitedRecordID wos001087769200077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46BPXBy5w4nZIHn4RuXZM16ePQDRUcwiburTSXusHsZOsE_70naTYnouBDIYWTUvL1NOfLuSF02aKMtZgGdpKw1KNpIjwuIgG3QdTUCVzKt80mWK_Hh8Po0SWr21wYrbUNPtN1M7S-fDWVC3NU1jDspMk4MPRNxliRrLVyGUTMlvUEDfY9StjQuTCbftS473d6ddMnvG7YOw2Cb5uQ7ary41ds95fu_j_f7ADtOUMStwvkD9GGzspod628YBltuw7no48j9NTO8N0q-cqbmvLGYGzi9uQFxvnoFYP1ivs2cwTf6NxGaGV4nOFn0AWTX4X7wHhB5uHrVHFeQYNuZ3B967mWCp4khOUeFUSkfqhVolgkQwl0hgdShVTwhAtCNdeUBVQEuqkEB12VQIeMqzMK_JQQcoxK2TTTJwiDacBDmoJsCiaVEiKhCSxAmpKQKa1UFfnLJY6lKzduul5MYks7_Cg2qMQGldihUkVXqylvRa2Nv4QrBoY1wQKBKqotgYydOs5joIVgxpjSfKe_TDtDO-bpRZheDZXy2UKfoy35no_nswv7pX0CwubQKg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6ICtMHL1NxXvPgk9DZNlmTPg7dmLchbOLeStOkbjA7cVXw33uS1jkRBR8KKZzQkq-nOV_ODeCkwThvcI3sJOapw9JYOkKGEm_90NMxXsq1zSZ4tysGg_CuTFa3uTBaaxt8putmaH35apK8mqOyM8NOPC6QoS81GPO9Il1r5jQIuS3siTrsOozyQenE9Nzw7KrX6tZNp_C64e_M979tQ7avyo-fsd1h2uv_fLcNWCtNSdIssN-EBZ1VYXWuwGAVKmWP8-H7Ftw3M3I5S79yJqbAMZqbpDl-xHE-fCJov5KezR0hFzq3MVoZGWXkAbXBZFiRHnJelLn9OlecbkO_3eqfd5yyqYKTUMpzh0kqUzfQKlY8TIIECY3wExUwKWIhKdNCM-4z6WtPSYHamiAhMs7O0HdTSukOLGaTTO8CQeNABCxF2RSNKiVlzGJcgDSlAVdaqRq4n0scJWXBcdP3YhxZ4uGGkUElMqhEJSo1OJ1NeS6qbfwlvG1gmBMsEKjBwSeQUamQ0wiJIRoypjjf3i_TjqHS6d_eRDeX3et9WDFPKoL2DmAxf3nVh7CcvOWj6cuR_eo-AMEv03E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Individual-Oriented+Algorithm+for+Stress+Detection+in+Wearable+Sensor+Measurements&rft.jtitle=IEEE+sensors+journal&rft.au=Moser%2C+Martin+Karl&rft.au=Resch%2C+Bernd&rft.au=Ehrhart%2C+Maximilian&rft.date=2023-10-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=19&rft.spage=22845&rft.epage=22856&rft_id=info:doi/10.1109%2FJSEN.2023.3304422&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3304422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon