An Individual-oriented Algorithm for Stress Detection in Wearable Sensor Measurements
Accurately measuring a person's level of stress can have a wide variety of impacts, not only for human health, but also for the perceived feeling of safety when going after daily habits, such as walking, cycling, or driving from one place to another. While there is a vast amount of research don...
Saved in:
| Published in: | IEEE sensors journal Vol. 23; no. 19; p. 1 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurately measuring a person's level of stress can have a wide variety of impacts, not only for human health, but also for the perceived feeling of safety when going after daily habits, such as walking, cycling, or driving from one place to another. While there is a vast amount of research done on stress and the related physiological responses of the human body, there is no go-to method when it comes to measuring acute stress in a live setting. This work proposes an advancement of the rule-based stress detection algorithm proposed in [1], to identify moments of stress (MOS) more reliably, through an adaptation and an individualization of the rules proposed in the original paper. The proposed algorithm leverages electrodermal activity and skin temperature, both recorded by the Empatica E4 wristband, for the assessment of an individual's stress when exposed to an audible stimulus. The algorithm achieves an average recall of 81.31%, with a precision of 46.23%, and an accuracy of 92.74%, measured on 16 test subjects. The trade-off between precision and recall can be controlled by adjusting the MOS threshold that needs to be reached for a MOS to be detected. |
|---|---|
| AbstractList | Accurately measuring a person's level of stress can have a wide variety of impacts, not only for human health, but also for the perceived feeling of safety when going after daily habits, such as walking, cycling, or driving from one place to another. While there is a vast amount of research done on stress and the related physiological responses of the human body, there is no go-to method when it comes to measuring acute stress in a live setting. This work proposes an advancement of the rule-based stress detection algorithm proposed in [1], to identify moments of stress (MOS) more reliably, through an adaptation and an individualization of the rules proposed in the original paper. The proposed algorithm leverages electrodermal activity and skin temperature, both recorded by the Empatica E4 wristband, for the assessment of an individual's stress when exposed to an audible stimulus. The algorithm achieves an average recall of 81.31%, with a precision of 46.23%, and an accuracy of 92.74%, measured on 16 test subjects. The trade-off between precision and recall can be controlled by adjusting the MOS threshold that needs to be reached for a MOS to be detected. Accurately measuring a person’s level of stress can have a wide variety of impacts, not only on human health, but also on the perceived feeling of safety when going after daily habits, such as walking, cycling, or driving from one place to another. While there is a vast amount of research done on stress and the related physiological responses of the human body, there is no go-to method when it comes to measuring acute stress in a live setting. This work proposes an advancement of the rule-based stress detection algorithm proposed by Kyriakou et al., to identify moments of stress (MOS) more reliably, through an adaptation, and individualization of the rules proposed in the original paper. The proposed algorithm leverages electrodermal activity (EDA) and skin temperature (ST), both recorded by the Empatica E4 wristband, for the assessment of an individual’s stress when exposed to an audible stimulus. The algorithm achieves an average recall of 81.31%, with a precision of 46.23%, and an accuracy of 92.74%, measured on 16 test subjects. The tradeoff between precision and recall can be controlled by adjusting the MOS threshold that needs to be reached for an MOS to be detected. |
| Author | Moser, Martin Karl Resch, Bernd Ehrhart, Maximilian |
| Author_xml | – sequence: 1 givenname: Martin Karl orcidid: 0009-0006-2681-2666 surname: Moser fullname: Moser, Martin Karl organization: Department of Geoinformatics, University of Salzburg, Salzburg, Austria – sequence: 2 givenname: Bernd surname: Resch fullname: Resch, Bernd organization: Department of Geoinformatics, University of Salzburg, Salzburg, Austria – sequence: 3 givenname: Maximilian surname: Ehrhart fullname: Ehrhart, Maximilian organization: Department of Geoinformatics, University of Salzburg, Salzburg, Austria |
| BookMark | eNp9kD1PwzAQhi0EEm3hByAxWGJO8VdsZ6xKgaICQ4tgi5zkAq5Sp9guEv-eRO2AGJjuHd7nTvcM0bFrHSB0QcmYUpJdPyxnT2NGGB9zToRg7AgNaJrqhCqhj_vMSSK4ejtFwxDWhNBMpWqAXiYOz11lv2y1M03SegsuQoUnzXuX48cG163Hy-ghBHwDEcpoW4etw69gvCkawEtwoes8ggk7D5uOD2fopDZNgPPDHKHV7Ww1vU8Wz3fz6WSRlJyrmIiCFzWRUJlKZaUsJZOalZUUhTa64AI0CMVEwYBWhVaZKDMpVUp4xkjNOR-hq_3arW8_dxBivm533nUXc6Y7UBAp0q5F963StyF4qPOttxvjv3NK8l5e3svLe3n5QV7HqD9MaaPpX4_e2OZf8nJPWgD4dYkxqjThP2S0fpA |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_3390_s24165085 crossref_primary_10_3389_fpsyg_2024_1409086 crossref_primary_10_1080_21650020_2023_2267636 crossref_primary_10_1109_TVCG_2024_3385637 crossref_primary_10_3389_fcomp_2024_1478851 crossref_primary_10_1109_ACCESS_2025_3588384 crossref_primary_10_1016_j_future_2025_108058 crossref_primary_10_1016_j_trf_2025_07_004 crossref_primary_10_1016_j_compeleceng_2025_110478 crossref_primary_10_3390_s24103221 |
| Cites_doi | 10.1589/jpts.24.1341 10.1109/TAFFC.2019.2927337 10.1109/T-AFFC.2011.25 10.1109/ACCESS.2021.3097038 10.1109/SmartWorld.2018.00091 10.3390/s19204509 10.1553/giscience2016_01_s204 10.1109/TBME.2017.2758643 10.3389/fict.2018.00023 10.3390/s22166120 10.1088/1742-6596/1372/1/012001 10.3390/s19173805 10.3390/bios8020030 10.1145/3411764.3445370 10.1177/1096348020944436 10.1080/23328940.2019.1632145 10.1177/00187208211040889 10.1109/CBMS.2013.6627790 10.3390/e21050442 10.28991/esj-2021-01267 10.1016/j.biopsycho.2013.09.010 10.3390/s18061905 10.3414/ME9108 10.3390/fi14110328 10.1109/TBME.2015.2474131 10.3390/s21155015 10.1007/978-1-4614-1126-0 10.1007/978-1-4471-4555-4_10 10.1061/(ASCE)CO.1943-7862.0001729 10.1152/ajpregu.1997.273.3.R1173 10.1177/1754073914565517 10.1016/j.bspc.2021.102756 10.1016/j.physbeh.2015.09.032 10.1145/3123021.3123054 10.18178/joig.4.2.116-121 10.3109/10253890.2013.807243 10.1016/0301-0511(78)90046-7 10.1109/IEMBS.2006.259421 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2023.3304422 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JSEN_2023_3304422 10221780 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Austrian Science Fund grantid: I-3022 (Urban Emotions) funderid: 10.13039/501100002428 – fundername: German Federal Ministry for Digital and Transport (BMDV) grantid: 19F2195A (ESSEM) |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS ESBDL F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c337t-4b3bf06edad79c6c62682cd64b8a8b34e8e4724b2e1db8794c9667503920f333 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001087769200077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 08:42:14 EDT 2025 Sat Nov 29 06:39:40 EST 2025 Tue Nov 18 22:23:38 EST 2025 Wed Aug 27 02:25:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-4b3bf06edad79c6c62682cd64b8a8b34e8e4724b2e1db8794c9667503920f333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0006-2681-2666 0000-0002-9554-0231 0000-0002-2233-6926 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10221780 |
| PQID | 2872440645 |
| PQPubID | 75733 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10221780 proquest_journals_2872440645 crossref_citationtrail_10_1109_JSEN_2023_3304422 crossref_primary_10_1109_JSEN_2023_3304422 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 alrahawe (ref40) 2019; 8 ref24 sánchez-reolid (ref6) 2020 ref26 ref25 (ref15) 2015 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 yamakoshi (ref23) 2008 ref8 ref7 ref9 ref4 schumm (ref35) 2008; 47 ref3 ref5 |
| References_xml | – ident: ref9 doi: 10.1589/jpts.24.1341 – ident: ref4 doi: 10.1109/TAFFC.2019.2927337 – ident: ref33 doi: 10.1109/T-AFFC.2011.25 – ident: ref32 doi: 10.1109/ACCESS.2021.3097038 – start-page: 1076 year: 2008 ident: ref23 article-title: Feasibility study on driver's stress detection from differential skin temperature measurement publication-title: Proc 30th Annu Int Conf IEEE Eng Med Biol Soc – ident: ref27 doi: 10.1109/SmartWorld.2018.00091 – ident: ref31 doi: 10.3390/s19204509 – ident: ref13 doi: 10.1553/giscience2016_01_s204 – ident: ref28 doi: 10.1109/TBME.2017.2758643 – ident: ref5 doi: 10.3389/fict.2018.00023 – ident: ref34 doi: 10.3390/s22166120 – ident: ref20 doi: 10.1088/1742-6596/1372/1/012001 – ident: ref1 doi: 10.3390/s19173805 – ident: ref42 doi: 10.3390/bios8020030 – ident: ref17 doi: 10.1145/3411764.3445370 – ident: ref21 doi: 10.1177/1096348020944436 – ident: ref7 doi: 10.1080/23328940.2019.1632145 – ident: ref25 doi: 10.1177/00187208211040889 – ident: ref18 doi: 10.1109/CBMS.2013.6627790 – ident: ref29 doi: 10.3390/e21050442 – ident: ref2 doi: 10.28991/esj-2021-01267 – ident: ref37 doi: 10.1016/j.biopsycho.2013.09.010 – ident: ref26 doi: 10.3390/s18061905 – start-page: 1 year: 2020 ident: ref6 article-title: Machine learning for stress detection from electrodermal activity: A scoping rev- iew publication-title: MDPI Appl Sci – volume: 8 start-page: 307 year: 2019 ident: ref40 article-title: An analysis on biometric traits recognition publication-title: International Journal of Innovative Technology and Exploring Engineering – volume: 47 start-page: 186 year: 2008 ident: ref35 article-title: Effect of movements on the electrodermal response after a startle event publication-title: Methods Inf Med doi: 10.3414/ME9108 – ident: ref41 doi: 10.3390/fi14110328 – ident: ref38 doi: 10.1109/TBME.2015.2474131 – year: 2015 ident: ref15 publication-title: E4 Wristband Real-Time Physiological Signals Wearable PPG EDA Temperature Motion Sensors – ident: ref16 doi: 10.3390/s21155015 – ident: ref8 doi: 10.1007/978-1-4614-1126-0 – ident: ref36 doi: 10.1007/978-1-4471-4555-4_10 – ident: ref30 doi: 10.1061/(ASCE)CO.1943-7862.0001729 – ident: ref39 doi: 10.1152/ajpregu.1997.273.3.R1173 – ident: ref12 doi: 10.1177/1754073914565517 – ident: ref19 doi: 10.1016/j.bspc.2021.102756 – ident: ref14 doi: 10.1016/j.physbeh.2015.09.032 – ident: ref22 doi: 10.1145/3123021.3123054 – ident: ref3 doi: 10.18178/joig.4.2.116-121 – ident: ref10 doi: 10.3109/10253890.2013.807243 – ident: ref11 doi: 10.1016/0301-0511(78)90046-7 – ident: ref24 doi: 10.1109/IEMBS.2006.259421 |
| SSID | ssj0019757 |
| Score | 2.4538476 |
| Snippet | Accurately measuring a person's level of stress can have a wide variety of impacts, not only for human health, but also for the perceived feeling of safety... Accurately measuring a person’s level of stress can have a wide variety of impacts, not only on human health, but also on the perceived feeling of safety when... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Electrodermal Activity Individual-specific Physiological Responses Physiological responses Recall Rule-based Algorithm Skin Temperature Stress Detection |
| Title | An Individual-oriented Algorithm for Stress Detection in Wearable Sensor Measurements |
| URI | https://ieeexplore.ieee.org/document/10221780 https://www.proquest.com/docview/2872440645 |
| Volume | 23 |
| WOSCitedRecordID | wos001087769200077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46BPXBy5w4nZIHn4RuXZM16ePQDRUcwiburTSXusHsZOsE_70naTYnouBDIYWTUvL1NOfLuSF02aKMtZgGdpKw1KNpIjwuIgG3QdTUCVzKt80mWK_Hh8Po0SWr21wYrbUNPtN1M7S-fDWVC3NU1jDspMk4MPRNxliRrLVyGUTMlvUEDfY9StjQuTCbftS473d6ddMnvG7YOw2Cb5uQ7ary41ds95fu_j_f7ADtOUMStwvkD9GGzspod628YBltuw7no48j9NTO8N0q-cqbmvLGYGzi9uQFxvnoFYP1ivs2cwTf6NxGaGV4nOFn0AWTX4X7wHhB5uHrVHFeQYNuZ3B967mWCp4khOUeFUSkfqhVolgkQwl0hgdShVTwhAtCNdeUBVQEuqkEB12VQIeMqzMK_JQQcoxK2TTTJwiDacBDmoJsCiaVEiKhCSxAmpKQKa1UFfnLJY6lKzduul5MYks7_Cg2qMQGldihUkVXqylvRa2Nv4QrBoY1wQKBKqotgYydOs5joIVgxpjSfKe_TDtDO-bpRZheDZXy2UKfoy35no_nswv7pX0CwubQKg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6ICtMHL1NxXvPgk9DZNlmTPg7dmLchbOLeStOkbjA7cVXw33uS1jkRBR8KKZzQkq-nOV_ODeCkwThvcI3sJOapw9JYOkKGEm_90NMxXsq1zSZ4tysGg_CuTFa3uTBaaxt8putmaH35apK8mqOyM8NOPC6QoS81GPO9Il1r5jQIuS3siTrsOozyQenE9Nzw7KrX6tZNp_C64e_M979tQ7avyo-fsd1h2uv_fLcNWCtNSdIssN-EBZ1VYXWuwGAVKmWP8-H7Ftw3M3I5S79yJqbAMZqbpDl-xHE-fCJov5KezR0hFzq3MVoZGWXkAbXBZFiRHnJelLn9OlecbkO_3eqfd5yyqYKTUMpzh0kqUzfQKlY8TIIECY3wExUwKWIhKdNCM-4z6WtPSYHamiAhMs7O0HdTSukOLGaTTO8CQeNABCxF2RSNKiVlzGJcgDSlAVdaqRq4n0scJWXBcdP3YhxZ4uGGkUElMqhEJSo1OJ1NeS6qbfwlvG1gmBMsEKjBwSeQUamQ0wiJIRoypjjf3i_TjqHS6d_eRDeX3et9WDFPKoL2DmAxf3nVh7CcvOWj6cuR_eo-AMEv03E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Individual-Oriented+Algorithm+for+Stress+Detection+in+Wearable+Sensor+Measurements&rft.jtitle=IEEE+sensors+journal&rft.au=Moser%2C+Martin+Karl&rft.au=Resch%2C+Bernd&rft.au=Ehrhart%2C+Maximilian&rft.date=2023-10-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=19&rft.spage=22845&rft.epage=22856&rft_id=info:doi/10.1109%2FJSEN.2023.3304422&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3304422 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |