SAL-Net: Self-Supervised Attribute Learning for Object Recognition and Segmentation

Existing attribute learning methods rely on predefined attributes, which require manual annotations. Due to the limitation of human experience, the predefined attributes are not capable enough of providing enough description. This paper proposes a self-supervised attribute learning (SAL) method, whi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Wireless communications and mobile computing Ročník 2021; číslo 1
Hlavní autori: Yang, Shu, JingWang, Arif, Sheeraz, Jia, Minli, Zhong, Shunan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Hindawi 2021
John Wiley & Sons, Inc
Predmet:
ISSN:1530-8669, 1530-8677
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Existing attribute learning methods rely on predefined attributes, which require manual annotations. Due to the limitation of human experience, the predefined attributes are not capable enough of providing enough description. This paper proposes a self-supervised attribute learning (SAL) method, which automatically generates attribute descriptions by differentially occluding the object region to deal with the above problems. The relationship between attributes is formulated with triplet loss functions and is utilized to supervise the CNN. Attribute learning is used as an auxiliary task of a multitask image classification and segmentation network, in which self-supervision of attributes motivates the CNN to learn more discriminative features for the main semantic tasks. Experimental results on public benchmarks CUB-2011 and Pascal VOC show that the proposed SAL-Net can obtain more accurate classification and segmentation results without additional annotations. Moreover, the SAL-Net is embedded into a multiobject recognition and segmentation system, which realizes instance-aware semantic segmentation with the help of a region proposal algorithm and a fusion nonmaximum suppression algorithm.
AbstractList Existing attribute learning methods rely on predefined attributes, which require manual annotations. Due to the limitation of human experience, the predefined attributes are not capable enough of providing enough description. This paper proposes a self‐supervised attribute learning (SAL) method, which automatically generates attribute descriptions by differentially occluding the object region to deal with the above problems. The relationship between attributes is formulated with triplet loss functions and is utilized to supervise the CNN. Attribute learning is used as an auxiliary task of a multitask image classification and segmentation network, in which self‐supervision of attributes motivates the CNN to learn more discriminative features for the main semantic tasks. Experimental results on public benchmarks CUB‐2011 and Pascal VOC show that the proposed SAL‐Net can obtain more accurate classification and segmentation results without additional annotations. Moreover, the SAL‐Net is embedded into a multiobject recognition and segmentation system, which realizes instance‐aware semantic segmentation with the help of a region proposal algorithm and a fusion nonmaximum suppression algorithm.
Author Jia, Minli
Zhong, Shunan
Arif, Sheeraz
Yang, Shu
JingWang
Author_xml – sequence: 1
  givenname: Shu
  orcidid: 0000-0003-1587-0474
  surname: Yang
  fullname: Yang, Shu
  organization: School of Information and ElectronicsBeijing Institute of TechnologyBeijing 100081Chinabit.edu.cn
– sequence: 2
  orcidid: 0000-0002-3653-9951
  surname: JingWang
  fullname: JingWang
  organization: School of Information and ElectronicsBeijing Institute of TechnologyBeijing 100081Chinabit.edu.cn
– sequence: 3
  givenname: Sheeraz
  orcidid: 0000-0002-3590-9535
  surname: Arif
  fullname: Arif, Sheeraz
  organization: Department of Computer ScienceFaculty of Information TechnologySalim Habib UniversityKarachi 75400Pakistan
– sequence: 4
  givenname: Minli
  orcidid: 0000-0002-8955-4549
  surname: Jia
  fullname: Jia, Minli
  organization: Research Institute of China Mobile Communications Co.Ltd.Beijing 100053China
– sequence: 5
  givenname: Shunan
  orcidid: 0000-0002-2981-0459
  surname: Zhong
  fullname: Zhong, Shunan
  organization: School of Information and ElectronicsBeijing Institute of TechnologyBeijing 100081Chinabit.edu.cn
BookMark eNp9kEtLw0AUhQepYFvd-QMCLjV2nsnEXSm-oFgwug4zyZ06pZ3UyUTx35uQ4kLQ1X3wnXu4Z4JGrnaA0DnB14QIMaOYkhmVGWGYHaExEQzHMknT0U-fZCdo0jQbjDHr4DHK8_kyfoJwE-WwNXHe7sF_2AaqaB6Ct7oNEC1BeWfdOjK1j1Z6A2WInqGs184GW7tIuapTr3fgguoXp-jYqG0DZ4c6Ra93ty-Lh3i5un9cdH4lY2mIuRJGE04M5byiSSkBS86hIoIInRAlDSdYCIFppqnSVGOVaCpJpkQ3aMOm6GK4u_f1ewtNKDZ1611nWVAhsZBpynhHXQ1U6eum8WCKvbc75b8Kgos-tqKPrTjE1uH0F17a4a3gld3-JbocRG_WVerT_m_xDVYxfO0
CitedBy_id crossref_primary_10_1155_2021_8927822
crossref_primary_10_1155_2022_7086599
crossref_primary_10_1155_2022_6014795
Cites_doi 10.1109/CVPRW.2016.99
10.1155/2018/3748141
10.1109/TCSVT.2019.2892802
10.1007/s11063-020-10241-8
10.1109/ICCV.2015.167
10.1007/s11263-015-0816-y
10.1109/CVPRW.2009.5206594
10.1109/tpami.2017.2738004
10.1109/ICCV.1999.790410
10.1109/ICCV.2017.139
10.1007/s11042-020-09316-4
10.1109/ICCV.2015.170
10.1007/978-3-319-10602-1_48
10.1109/TMM.2016.2631122
10.1109/TPAMI.2016.2645157
10.1109/CVPR.2005.177
10.1007/s11263-013-0620-5
10.1109/CVPR.2015.7299046
10.1109/CVPR.2018.00779
10.1016/j.cviu.2021.103184
10.1109/TIP.2017.2751960
10.1007/s11263-009-0275-4
10.1109/ACCESS.2020.3012695
10.1109/TPAMI.2017.2723882
10.1109/CVPR.2015.7298594
10.1109/ITSC.2018.8569372
10.1109/CVPR.2014.411
10.1007/11744023_32
10.1007/978-3-030-68780-9_26
10.1109/CVPR.2016.308
10.1109/TMM.2019.2919469
10.1016/j.patcog.2019.06.006
10.21629/JSEE.2020.01.06
10.1109/TPAMI.2013.128
10.1145/2647868.2654966
10.4018/IJMDEM.2020070103
10.1109/TMM.2015.2438712
10.1155/2020/6689134
10.1109/TPAMI.2017.2781233
10.1109/TPAMI.2011.48
10.1109/CVPRW.2009.5206772
10.1145/3240508.3240550
10.1109/CVPR.2016.90
10.1007/978-3-319-46487-9_40
10.1007/978-3-319-46466-4_6
10.1155/2020/8861886
10.1109/ICPR.2018.8546066
10.1109/TMM.2021.3103605
10.1109/TPAMI.2015.2487986
10.1109/CVPR.2012.6248089
10.1609/aaai.v31i1.11202
ContentType Journal Article
Copyright Copyright © 2021 Shu Yang et al.
Copyright © 2021 Shu Yang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2021 Shu Yang et al.
– notice: Copyright © 2021 Shu Yang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2021/2891303
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Yan, Ming
Editor_xml – sequence: 1
  givenname: Ming
  surname: Yan
  fullname: Yan, Ming
ExternalDocumentID 10_1155_2021_2891303
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61620106002
– fundername: Central Government Guides Local Science and Technology Development Fund Project of China
  grantid: 2021ZY0004
GroupedDBID .3N
.4S
.DC
.GA
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABIJN
ABPVW
ACGFO
ADBBV
ADIZJ
AENEX
AEUQT
AFBPY
AFKRA
AIAGR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ARCSS
ASPBG
ATUGU
AVWKF
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
EDO
F00
F01
F04
F21
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HZ~
I-F
IAO
ITC
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LITHE
LP6
LP7
M0N
MK4
MY~
N04
N05
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WLBEL
XPP
XV2
~IA
~WT
.Y3
24P
31~
5VS
AAEVG
AAMMB
AANHP
AAYXX
AAZKR
ACBWZ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AEUCX
AFFHD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
AZFZN
BDRZF
BFHJK
CITATION
EJD
FEDTE
H13
HF~
HVGLF
LH4
LW6
O8X
PHGZM
PHGZT
PQGLB
ROL
WYUIH
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c337t-4a5fb141f244d26c8e0844ed1515b61a8f410555029b2ab2b0a6b2819a5b2bbf3
IEDL.DBID RHX
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000803809500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-8669
IngestDate Fri Jul 25 09:29:55 EDT 2025
Sat Nov 29 01:44:04 EST 2025
Tue Nov 18 20:55:51 EST 2025
Sun Jun 02 18:51:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-4a5fb141f244d26c8e0844ed1515b61a8f410555029b2ab2b0a6b2819a5b2bbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3590-9535
0000-0003-1587-0474
0000-0002-2981-0459
0000-0002-3653-9951
0000-0002-8955-4549
OpenAccessLink https://dx.doi.org/10.1155/2021/2891303
PQID 2580587734
PQPubID 2034344
ParticipantIDs proquest_journals_2580587734
crossref_primary_10_1155_2021_2891303
crossref_citationtrail_10_1155_2021_2891303
hindawi_primary_10_1155_2021_2891303
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_9_52_2
e_1_2_9_50_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_18_2
e_1_2_9_39_2
e_1_2_9_41_2
e_1_2_9_20_2
e_1_2_9_45_2
e_1_2_9_22_2
e_1_2_9_43_2
e_1_2_9_6_2
e_1_2_9_4_2
e_1_2_9_2_2
e_1_2_9_8_2
e_1_2_9_24_2
e_1_2_9_49_2
e_1_2_9_26_2
e_1_2_9_47_2
e_1_2_9_28_2
e_1_2_9_51_2
e_1_2_9_30_2
e_1_2_9_34_2
e_1_2_9_55_2
e_1_2_9_11_2
e_1_2_9_32_2
e_1_2_9_53_2
Wah C. (e_1_2_9_10_2) 2011
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_59_2
e_1_2_9_15_2
e_1_2_9_57_2
e_1_2_9_17_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_7_2
e_1_2_9_5_2
e_1_2_9_3_2
Chi S. (e_1_2_9_36_2) 2016
e_1_2_9_9_2
e_1_2_9_25_2
e_1_2_9_48_2
e_1_2_9_27_2
e_1_2_9_46_2
Ferrari V. (e_1_2_9_1_2) 2007
e_1_2_9_29_2
References_xml – ident: e_1_2_9_32_2
  doi: 10.1109/CVPRW.2016.99
– ident: e_1_2_9_22_2
  doi: 10.1155/2018/3748141
– ident: e_1_2_9_38_2
– ident: e_1_2_9_52_2
  doi: 10.1109/TCSVT.2019.2892802
– ident: e_1_2_9_20_2
  doi: 10.1007/s11063-020-10241-8
– ident: e_1_2_9_23_2
  doi: 10.1109/ICCV.2015.167
– ident: e_1_2_9_49_2
  doi: 10.1007/s11263-015-0816-y
– start-page: 433
  volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: e_1_2_9_1_2
– ident: e_1_2_9_5_2
  doi: 10.1109/CVPRW.2009.5206594
– ident: e_1_2_9_31_2
  doi: 10.1109/tpami.2017.2738004
– ident: e_1_2_9_46_2
  doi: 10.1109/ICCV.1999.790410
– ident: e_1_2_9_59_2
– ident: e_1_2_9_7_2
  doi: 10.1109/ICCV.2017.139
– ident: e_1_2_9_45_2
  doi: 10.1007/s11042-020-09316-4
– ident: e_1_2_9_53_2
  doi: 10.1109/ICCV.2015.170
– ident: e_1_2_9_29_2
  doi: 10.1007/978-3-319-10602-1_48
– ident: e_1_2_9_56_2
  doi: 10.1109/TMM.2016.2631122
– ident: e_1_2_9_40_2
  doi: 10.1109/TPAMI.2016.2645157
– ident: e_1_2_9_47_2
  doi: 10.1109/CVPR.2005.177
– ident: e_1_2_9_50_2
  doi: 10.1007/s11263-013-0620-5
– ident: e_1_2_9_35_2
  doi: 10.1109/CVPR.2015.7299046
– ident: e_1_2_9_44_2
  doi: 10.1109/CVPR.2018.00779
– ident: e_1_2_9_57_2
  doi: 10.1016/j.cviu.2021.103184
– ident: e_1_2_9_54_2
  doi: 10.1109/TIP.2017.2751960
– ident: e_1_2_9_28_2
  doi: 10.1007/s11263-009-0275-4
– ident: e_1_2_9_18_2
  doi: 10.1109/ACCESS.2020.3012695
– ident: e_1_2_9_43_2
  doi: 10.1109/TPAMI.2017.2723882
– ident: e_1_2_9_12_2
– ident: e_1_2_9_13_2
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_9_41_2
  doi: 10.1109/ITSC.2018.8569372
– ident: e_1_2_9_26_2
– ident: e_1_2_9_39_2
  doi: 10.1109/CVPR.2014.411
– ident: e_1_2_9_48_2
  doi: 10.1007/11744023_32
– ident: e_1_2_9_19_2
  doi: 10.1007/978-3-030-68780-9_26
– ident: e_1_2_9_15_2
  doi: 10.1109/CVPR.2016.308
– ident: e_1_2_9_55_2
  doi: 10.1109/TMM.2019.2919469
– ident: e_1_2_9_37_2
  doi: 10.1016/j.patcog.2019.06.006
– ident: e_1_2_9_34_2
  doi: 10.21629/JSEE.2020.01.06
– ident: e_1_2_9_42_2
  doi: 10.1109/TPAMI.2013.128
– ident: e_1_2_9_9_2
  doi: 10.1145/2647868.2654966
– ident: e_1_2_9_21_2
  doi: 10.4018/IJMDEM.2020070103
– ident: e_1_2_9_3_2
  doi: 10.1109/TMM.2015.2438712
– ident: e_1_2_9_17_2
  doi: 10.1155/2020/6689134
– ident: e_1_2_9_33_2
  doi: 10.1109/TPAMI.2017.2781233
– ident: e_1_2_9_25_2
– ident: e_1_2_9_30_2
  doi: 10.1109/TPAMI.2011.48
– ident: e_1_2_9_8_2
  doi: 10.1109/CVPRW.2009.5206772
– ident: e_1_2_9_4_2
  doi: 10.1145/3240508.3240550
– ident: e_1_2_9_14_2
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_24_2
  doi: 10.1007/978-3-319-46487-9_40
– start-page: 475
  volume-title: European Conference on Computer Vision
  year: 2016
  ident: e_1_2_9_36_2
– ident: e_1_2_9_11_2
  doi: 10.1007/978-3-319-46466-4_6
– ident: e_1_2_9_16_2
  doi: 10.1155/2020/8861886
– ident: e_1_2_9_58_2
  doi: 10.1109/ICPR.2018.8546066
– volume-title: The Caltech-UCSD Birds-200-2011 Dataset
  year: 2011
  ident: e_1_2_9_10_2
– ident: e_1_2_9_27_2
  doi: 10.1109/TMM.2021.3103605
– ident: e_1_2_9_6_2
  doi: 10.1109/TPAMI.2015.2487986
– ident: e_1_2_9_2_2
  doi: 10.1109/CVPR.2012.6248089
– ident: e_1_2_9_51_2
  doi: 10.1609/aaai.v31i1.11202
SSID ssj0003021
Score 2.2788837
Snippet Existing attribute learning methods rely on predefined attributes, which require manual annotations. Due to the limitation of human experience, the predefined...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Annotations
Classification
Datasets
Dictionaries
Image annotation
Image classification
Image segmentation
Learning
Neural networks
Object recognition
Semantic segmentation
Semantics
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86FfTgtzidksM8SVibJmnqRYY4BMcUp7BbSdp0DmY3107_fZM2nYKoB3srfQml7_V95_0AaCpBfN-LE6RowBHBWCAhVYx47EqhL20kipH5Xb_X44NBcG8Tbpltq6x0YqGo40lkcuQtTLlDud6XXE5fkUGNMtVVC6GxDFZcjF0j57c-Wmhiz8F2XqqDOGNB1fhOqYn53RY2NboKLsuapLVnEwu_j77p5sLgdLb--6rbYNO6mrBdysYOWFLpLtj4MoBwD_T77S7qqfwC9tU4Qf351KiOTMWwnZdQWAraCaxDqN1beCdN3gY-VG1HkxSKNNarhy_2EFO6D546149XN8jCLKDI8_wcEUET6RI30ZY-xiziyuGEqNi4OpK5giemFVRHMjiQWEgsHcGkqb8Jqm9k4h2AWjpJ1SGAOjrDgstIyiAiARMi4MycASdMr3Adrw7Oqy8dRnYGuYHCGIdFLEJpaPgSWr7UwdmCelrO3viBrmmZ9gdZo2JXaH_ULPzk1dHvj4_ButmszL40QC2fzdUJWI3e8lE2Oy3k7gPNt9vx
  priority: 102
  providerName: ProQuest
Title SAL-Net: Self-Supervised Attribute Learning for Object Recognition and Segmentation
URI https://dx.doi.org/10.1155/2021/2891303
https://www.proquest.com/docview/2580587734
Volume 2021
WOSCitedRecordID wos000803809500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: K7-
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: PIMPY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8ENdEH42dEkfQBn0zj1rVb5xsaCEbEBTRBX5Z265AEB2FD_31bKEQlRvewpMvdHq7X3l3v-jsAqpITz3PiBEnqM0Qw5ogLGSMW24KrRxmJGWR-y2u3Wa_nBwYkKVtN4Strp8Nz-xLrdJpG9SwwqpW30-wtN1zHwgYW1ULMdf1FffsP3m-WZ_NVh7wfg5UteGZXGrtgxziEsDafwT2wJtN9sP0FJvAAdLu1FmrL_Ap25TBB3elYL_BMxrCWzxtWSWhwUvtQOaHwQejTFdhZFAeNUsjTWHH338xVo_QQPDXqjzdNZJohoMhxvBwRThNhEztR9jjGbsSkxQiRsXZIhGtzluiCTRVvYF9gLrCwuCt0loxTNRCJcwSK6SiVxwCqGApzJiIh_Ij4Luc-c_VNbeIqDttySuBiIagwMkjhumHFMJxFDJSGWqyhEWsJnC-px3OEjF_oqkbmf5CVFxMSmuWUhZgyizKlVOTkf385BVt6OD8rKYNiPpnKM7ARveeDbFIB69f1dtCpgMKdh9Q7oC_qW3B7HzxXZqr1CTlTwGQ
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BTtwwEB1RoAIOFCgIKG19gBOySBw7cZCqCkERaJcFsSBxS-3EASTILmwA8VN8Yz2JA0gIOHFoblHsiRI_zXjGM28Alo3iURRkOTUilpQzpqjSJqMy87WylzUSFWV-O-p05MlJfDAED00tDKZVNjqxUtRZL8UY-RoT0hPSyuW_-1cUu0bh6WrTQqOGRcvc31mXbfBrd8uu7wpj23-ONneo6ypA0yCISsqVyLXP_dwatoyFqTSe5NxkaNl16CuZY-aj3bizWDOlmfZUqPG4SQl7o_PAyv0EIzyQEXL1tyL6qPkDjzl-Vo_KMIybRHshMMbgrzE8E2zaczkT-PkMfe-78xe2oDJw21_-t18zBZNuK002auxPw5ApZmDiGcHiV-h27Vs7plwnXXOR0-5NH1XjwGRko6xbfRniGGZPid2-k32NcSly2KRV9QqiiszOPr10RVrFLBx_yFfNwXDRK8w8EOt9MiV1qnWc8jhUKpYh1rjz0M7wvWABVpuVTVLHsY6tPi6SytcSIkEcJA4HC7DyOLpfc4u8Mm7ZgeSdYUsNPBKniAbJEzYW3378E8Z2jvbaSXu30_oG4yi4jjQtwXB5fWO-w2h6W54Prn9UmCfw96OR9A-J0zei
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xVjnwahFQCj7AqbI2cezEQUIIFVagRQvqthK3YCfOggTZhQ1F_Wv9dXgSB5Aq2hMHcotiO0r8eT7PwzMAW0bxKAqynBoRS8oZU1Rpk1GZ-VrZy5JElTL_JOp25fl5fDYGf5qzMBhW2cjESlBngxRt5C0mpCekHZe3chcWcXbQ3hveUqwghZ7WppxGDZGO-f1g1bfR7vGBnettxtqHP74dUVdhgKZBEJWUK5Frn_u5JbmMhak0nuTcZMjyOvSVzDEK0m7iWayZ0kx7KtToelLC3ug8sOOOw6RlYYFrrBPRJxYIPOZytXpUhmHcBN0LgfYGv8XQP9iU6nJ0OH2JevjD1V-8UJFde_49_6YFmHNbbLJfr4lFGDPFEsy-SLz4EXo9-9auKXdIz1zntHc_RJE5MhnZL-sSYIa4zLN9Yrf15FSjvYp8b8KtBgVRRWZ792_c4a3iE_x8k69aholiUJgVIFYrZUrqVOs45XGoVCxDPPvOQ9vD94JV-NrMcpK63OtYAuQ6qXQwIRLEROIwsQrbT62Hdc6RV9ptOcD8p9l6A5XECahR8oyTtX8_3oQZC6Dk5Ljb-QwfcNzaALUOE-XdvfkCU-mv8mp0t1HBn8DFWwPpEWKDQFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAL%E2%80%90Net%3A+Self%E2%80%90Supervised+Attribute+Learning+for+Object+Recognition+and+Segmentation&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Yang%2C+Shu&rft.au=JingWang&rft.au=Arif%2C+Sheeraz&rft.au=Jia%2C+Minli&rft.date=2021&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1155%2F2021%2F2891303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_2891303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon