Future energy-optimised buildings — Addressing the impact of climate change on buildings

•Climate change and building load variations may impact optimised building designs.•A method using climate models and optimisation is used to optimise future buildings.•A case study is conducted on two cities in Australia: Canberra and Brisbane.•Results show that optimising for future climates can s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy and buildings Ročník 231; s. 110610
Hlavní autori: Bamdad, Keivan, Cholette, Michael E., Omrani, Sara, Bell, John
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Lausanne Elsevier B.V 15.01.2021
Elsevier BV
Predmet:
ISSN:0378-7788, 1872-6178
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Climate change and building load variations may impact optimised building designs.•A method using climate models and optimisation is used to optimise future buildings.•A case study is conducted on two cities in Australia: Canberra and Brisbane.•Results show that optimising for future climates can save energy for Canberra.•For Brisbane, savings are small and the present-optimised design seems acceptable. Building energy optimisation is generally performed under present climate conditions with fixed simulation parameters (e.g. internal loads). However, climate change and variations in simulation parameters over the building’s life span may impact the optimised design. A key question is whether a particular energy-optimised design under present climate conditions would remain energy-optimised in the future. Accordingly, in this paper, a new simulation-based optimisation method is developed, which uses climate models and Ant Colony Optimisation to compare the energy-optimised designs under present and future climates. To demonstrate its potential, this method is applied to a typical office building in two Australian cities, Brisbane and Canberra. The results show that optimising under future climate conditions can lead to different optimal building designs. For Brisbane, the energy difference between optimising under present and future climate conditions is small, but in Canberra the cooling load is increased by up to 6%. This suggests that optimising the studied office building under present climate conditions is acceptable for Brisbane, while considering future climate may yield some savings in Canberra. Results also show that the energy-optimised building configuration for both future and present climates in Brisbane is less sensitive to changes in the load scenario than in Canberra.
AbstractList •Climate change and building load variations may impact optimised building designs.•A method using climate models and optimisation is used to optimise future buildings.•A case study is conducted on two cities in Australia: Canberra and Brisbane.•Results show that optimising for future climates can save energy for Canberra.•For Brisbane, savings are small and the present-optimised design seems acceptable. Building energy optimisation is generally performed under present climate conditions with fixed simulation parameters (e.g. internal loads). However, climate change and variations in simulation parameters over the building’s life span may impact the optimised design. A key question is whether a particular energy-optimised design under present climate conditions would remain energy-optimised in the future. Accordingly, in this paper, a new simulation-based optimisation method is developed, which uses climate models and Ant Colony Optimisation to compare the energy-optimised designs under present and future climates. To demonstrate its potential, this method is applied to a typical office building in two Australian cities, Brisbane and Canberra. The results show that optimising under future climate conditions can lead to different optimal building designs. For Brisbane, the energy difference between optimising under present and future climate conditions is small, but in Canberra the cooling load is increased by up to 6%. This suggests that optimising the studied office building under present climate conditions is acceptable for Brisbane, while considering future climate may yield some savings in Canberra. Results also show that the energy-optimised building configuration for both future and present climates in Brisbane is less sensitive to changes in the load scenario than in Canberra.
Building energy optimisation is generally performed under present climate conditions with fixed simulation parameters (e.g. internal loads). However, climate change and variations in simulation parameters over the building's life span may impact the optimised design. A key question is whether a particular energy-optimised design under present climate conditions would remain energy-optimised in the future. Accordingly, in this paper, a new simulation-based optimisation method is developed, which uses climate models and Ant Colony Optimisation to compare the energy-optimised designs under present and future climates. To demonstrate its potential, this method is applied to a typical office building in two Australian cities, Brisbane and Canberra. The results show that optimising under future climate conditions can lead to different optimal building designs. For Brisbane, the energy difference between optimising under present and future climate conditions is small, but in Canberra the cooling load is increased by up to 6%. This suggests that optimising the studied office building under present climate conditions is acceptable for Brisbane, while considering future climate may yield some savings in Canberra. Results also show that the energy-optimised building configuration for both future and present climates in Brisbane is less sensitive to changes in the load scenario than in Canberra.
ArticleNumber 110610
Author Bell, John
Cholette, Michael E.
Bamdad, Keivan
Omrani, Sara
Author_xml – sequence: 1
  givenname: Keivan
  surname: Bamdad
  fullname: Bamdad, Keivan
  email: keivan.bamdadmasouleh@vu.edu.au
  organization: College of Engineering & Science, Victoria University, Melbourne, Australia
– sequence: 2
  givenname: Michael E.
  surname: Cholette
  fullname: Cholette, Michael E.
  organization: School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
– sequence: 3
  givenname: Sara
  surname: Omrani
  fullname: Omrani, Sara
  organization: School of Built Environment, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
– sequence: 4
  givenname: John
  surname: Bell
  fullname: Bell, John
  organization: School of Chemistry & Physics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
BookMark eNqFkMFKAzEQhoNUsK0-ghDwvDXJbpMUD1KKVUHwohcvIZudbVO2SU2yQm8-hE_ok7i1BcFLT8MM8_3DfAPUc94BQpeUjCih_Ho1Ale2tqlGjLBuRgmn5AT1qRQs41TIHuqTXMhMCCnP0CDGFSGEjwXto7d5m9oAGByExTbzm2TXNkKFfwOtW0T8_fmFp1UVIMaux2kJ2K432iTsa2wau9YJsFlqtwDs3R94jk5r3US4ONQhep3fvcwesqfn-8fZ9CkzeS5SVnDBdVGIktWEM0lKWplyMmFclHRS0tqQ3BS0LqU2BYxzY8ZEU0aM5EBFLlg-RFf73E3w7y3EpFa-Da47qVghRcE5kXm3dbPfMsHHGKBWxiadrHcpaNsoStROplqpg0y1k6n2Mjt6_I_ehO7xsD3K3e456AR8WAgqGgvOQGUDmKQqb48k_ADk5pRW
CitedBy_id crossref_primary_10_1016_j_rser_2024_115213
crossref_primary_10_1016_j_enbuild_2024_114809
crossref_primary_10_3390_buildings12122171
crossref_primary_10_3390_su13168793
crossref_primary_10_3390_en14144100
crossref_primary_10_1016_j_apenergy_2025_125331
crossref_primary_10_3390_buildings12101519
crossref_primary_10_3390_buildings14051311
crossref_primary_10_1016_j_enconman_2022_116554
crossref_primary_10_1016_j_buildenv_2021_108071
crossref_primary_10_1016_j_jclepro_2024_141255
crossref_primary_10_1016_j_jobe_2023_108295
crossref_primary_10_1016_j_buildenv_2025_113229
crossref_primary_10_3390_en16176283
crossref_primary_10_1016_j_solener_2023_112276
crossref_primary_10_1016_j_buildenv_2022_108990
crossref_primary_10_1016_j_buildenv_2022_109688
crossref_primary_10_1016_j_buildenv_2023_110271
crossref_primary_10_3390_su13179815
crossref_primary_10_1016_j_jclepro_2023_137345
crossref_primary_10_1016_j_csite_2025_106219
crossref_primary_10_1016_j_apenergy_2021_117584
crossref_primary_10_1016_j_jobe_2024_108527
crossref_primary_10_1016_j_nexres_2025_100671
crossref_primary_10_3390_en14154390
crossref_primary_10_1016_j_culher_2024_10_005
crossref_primary_10_1016_j_rser_2024_114476
crossref_primary_10_1038_s42949_024_00159_8
crossref_primary_10_3390_buildings13040977
crossref_primary_10_1016_j_egyr_2024_01_042
crossref_primary_10_1016_j_energy_2025_136489
crossref_primary_10_1016_j_enbuild_2023_113820
crossref_primary_10_1016_j_enbuild_2024_114813
crossref_primary_10_1177_1420326X241244525
crossref_primary_10_1016_j_apenergy_2021_116807
crossref_primary_10_1016_j_enbuild_2024_114739
crossref_primary_10_1016_j_jobe_2024_111536
crossref_primary_10_3390_su16124958
crossref_primary_10_1016_j_enbuild_2024_115025
crossref_primary_10_1016_j_buildenv_2023_110104
crossref_primary_10_1016_j_apenergy_2023_121146
crossref_primary_10_1016_j_buildenv_2021_108662
crossref_primary_10_1016_j_buildenv_2024_112423
crossref_primary_10_1016_j_apenergy_2024_123867
crossref_primary_10_1016_j_energy_2021_121641
crossref_primary_10_1016_j_enbuild_2023_112971
crossref_primary_10_1016_j_energy_2022_125945
crossref_primary_10_1016_j_scs_2021_102843
crossref_primary_10_1016_j_jobe_2023_105966
crossref_primary_10_1016_j_jobe_2024_111722
crossref_primary_10_1016_j_enbuild_2021_111556
crossref_primary_10_1016_j_apenergy_2021_117246
crossref_primary_10_1016_j_jer_2024_03_017
crossref_primary_10_1088_1755_1315_1123_1_012020
crossref_primary_10_1016_j_enbuild_2022_112004
crossref_primary_10_1016_j_jobe_2021_102570
crossref_primary_10_1016_j_apenergy_2023_122360
crossref_primary_10_1016_j_renene_2025_122882
crossref_primary_10_1016_j_energy_2025_134956
crossref_primary_10_3390_en17102362
crossref_primary_10_1016_j_buildenv_2021_108010
crossref_primary_10_1016_j_buildenv_2023_110655
crossref_primary_10_1016_j_egyr_2022_08_224
crossref_primary_10_1016_j_jobe_2021_103057
crossref_primary_10_1016_j_buildenv_2023_110133
crossref_primary_10_1016_j_enbuild_2021_111351
crossref_primary_10_1109_TSG_2025_3535734
crossref_primary_10_3390_su13116375
crossref_primary_10_1016_j_jclepro_2024_142910
crossref_primary_10_1016_j_energy_2024_132644
crossref_primary_10_3390_buildings13040836
crossref_primary_10_1016_j_jobe_2022_105332
crossref_primary_10_1016_j_apenergy_2025_125441
crossref_primary_10_1016_j_egyr_2023_01_049
crossref_primary_10_1016_j_enbuild_2025_115748
crossref_primary_10_1016_j_enbuild_2024_115004
crossref_primary_10_1016_j_jobe_2021_103247
crossref_primary_10_1016_j_buildenv_2024_111358
crossref_primary_10_1016_j_enbuild_2023_113761
crossref_primary_10_1016_j_rineng_2025_106545
crossref_primary_10_1016_j_jobe_2023_106919
crossref_primary_10_1108_IJBPA_10_2021_0134
crossref_primary_10_3390_en17163905
crossref_primary_10_3390_en15010354
Cites_doi 10.1016/j.rser.2018.04.080
10.26868/25222708.2015.2707
10.1016/j.enbuild.2017.08.071
10.1016/j.enconman.2016.04.037
10.1016/j.buildenv.2009.04.006
10.1016/j.buildenv.2018.10.023
10.1016/j.rser.2014.08.039
10.1109/3477.484436
10.1177/0143624417705937
10.1007/s12273-018-0475-3
10.1007/s10113-014-0605-0
10.1016/j.ejor.2006.06.046
10.1016/j.buildenv.2012.11.005
10.1016/j.enbuild.2019.109690
10.1016/j.enbuild.2016.07.034
10.1016/j.buildenv.2014.01.008
10.3390/a12070141
10.1016/j.apenergy.2013.08.061
10.1016/j.renene.2012.12.049
10.1016/j.enbuild.2013.01.016
10.1016/j.solener.2019.04.048
10.1016/j.rser.2013.02.004
10.1016/j.scs.2020.102300
10.1016/j.enbuild.2019.109666
10.1109/TEVC.2013.2281531
10.3354/cr01403
10.1016/j.jclepro.2018.11.128
10.1016/j.enbuild.2016.04.012
10.1016/j.enbuild.2019.01.048
10.1016/j.egypro.2017.09.020
10.1016/j.apenergy.2019.113683
10.3390/en10101463
10.1016/j.rser.2019.109681
10.1016/j.buildenv.2011.11.013
10.1016/j.scs.2019.101688
10.1016/j.enbuild.2018.02.053
10.1016/j.enbuild.2015.01.017
10.3390/en10070849
10.1016/j.buildenv.2010.10.016
10.1080/19401490903494597
10.1016/j.enbuild.2020.109874
10.1016/j.enbuild.2008.06.005
10.1191/0143624405bt112oa
10.1016/j.scs.2018.10.043
10.1016/j.apenergy.2016.05.107
10.1016/j.enbuild.2015.08.019
10.1016/j.buildenv.2018.01.029
10.1016/j.apenergy.2019.01.085
10.1016/j.energy.2016.08.021
10.1109/4235.585893
10.52842/conf.caadria.2017.283
10.1016/j.rser.2016.10.011
10.1201/9780429402296-6
10.1016/j.enbuild.2014.03.066
10.3390/en13020409
10.1016/j.rser.2016.07.050
10.1016/j.enbuild.2012.02.043
10.1016/j.buildenv.2010.01.022
10.1080/09613210802611025
10.1016/j.cosust.2013.05.004
10.1080/19401493.2020.1821094
10.1016/j.enbuild.2017.11.022
10.1109/CEC.2015.7257170
10.1016/j.buildenv.2004.01.022
10.1016/j.enbuild.2014.02.028
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Jan 15, 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 15, 2021
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2020.110610
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
ExternalDocumentID 10_1016_j_enbuild_2020_110610
S037877882033396X
GeographicLocations Australia
Canberra Australian Capital Territory Australia
GeographicLocations_xml – name: Canberra Australian Capital Territory Australia
– name: Australia
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
~HD
7ST
8FD
AGCQF
C1K
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c337t-4676a447b2f06280b1dcb99267b19b1fc03c41fb8ac4e53cc50a120c86e173723
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604965300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7788
IngestDate Wed Aug 13 06:50:08 EDT 2025
Sat Nov 29 02:27:52 EST 2025
Tue Nov 18 20:43:05 EST 2025
Sat Aug 24 15:41:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Ant colony optimization
Climate change impacts on buildings
Energy-efficient buildings in Australia
Metaheuristics
Simulation-based optimization
Future energy optimized buildings
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-4676a447b2f06280b1dcb99267b19b1fc03c41fb8ac4e53cc50a120c86e173723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2487466083
PQPubID 2045483
ParticipantIDs proquest_journals_2487466083
crossref_citationtrail_10_1016_j_enbuild_2020_110610
crossref_primary_10_1016_j_enbuild_2020_110610
elsevier_sciencedirect_doi_10_1016_j_enbuild_2020_110610
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Berardi, Jafarpur (b0395) 2020; 121
Andrić, Koc, Al-Ghamdi (b0040) 2019; 211
Jiang (b0145) 2018; 14
Cabeza, Chàfer, Mata (b0020) 2020; 13
Guan (b0165) 2012; 55
Li, Wang, Tang (b0300) 2019; 254
National Australian Built Environment Rating Scheme, NABERS Energy Guide to Building Energy Estimation, 2011.
K. Bamdad, et al., Building energy retrofits using ant colony optimisation, in Healthy Buildings 2017 Europe. 2017: Lublin, Poland.
Asimakopoulos (b0130) 2012; 49
Wetter, Wright (b0240) 2004; 39
Herrera (b0410) 2017; 38
Jentsch (b0120) 2013; 55
de Rubeis (b0180) 2020; 61
Wolpert, Macready (b0235) 1997; 1
Gang (b0295) 2016; 122
Rubio-Bellido, Pérez-Fargallo, Pulido-Arcas (b0170) 2016; 114
Urge-Vorsatz (b0025) 2013; 5
IPCC, Climate Change 2007: Mitigation of Climate Change, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007, Cambridge University Press.
Tian (b0370) 2018; 158
Verichev, Zamorano, Carpio (b0320) 2020; 215
IPCC (b0090) 2014
T. Wortmann, Opossum: Introducing and Evaluating a Model-based Optimization Tool for Grasshopper, 2017.
IPCC (b0335) 2013
de Wilde, Rafiq, Beck (b0385) 2008; 29
Socha, Dorigo (b0305) 2008; 185
Belcher, Hacker, Powell (b0115) 2005; 26
Y. Ma, et al., Comparison of Different Solar-Assisted Air Conditioning Systems for Australian Office Buildings. 2017. 10(10): p. 1463.
Bamdad, Cholette, Bell (b0275) 2020; 13
Nik (b0105) 2016; 177
Kirimtat (b0220) 2019; 185
Yoon (b0380) 2019; 12
Guan (b0050) 2006
Arima (b0140) 2016; 114
Radhi (b0135) 2009; 44
D. Crawley, L. Lawrie, Rethinking the TMY: Is the 'Typical' Meteorological Year Best for Building Performance Simulation? 2015.
IPCC, IPCC fourth assessment report (AR4), 2007.
K. Bamdad Masouleh, et al., Building energy optimisation using artificial neural network and ant colony optimisation, in AIRAH and IBPSA’s Australasian Building Simulation 2017 Conference, 2017, Melbourne, Vic.
Bamdad (b0070) 2018; 167
Kämpf, Wetter, Robinson (b0245) 2010; 3
Futrell, Ozelkan, Brentrup (b0250) 2015; 92
R. Vierlinger, A. Hofmann, A Framework for Flexible Search and Optimization in Parametric Design, 2013.
Jiang (b0030) 2019; 50
Wang, Chen, Ren (b0155) 2010; 45
Costa-Carrapiço, Raslan, González (b0365) 2020; 210
Jacobeit (b0095) 2014; 14
Santamouris (b0110) 2016; 128
Attia (b0230) 2013; 60
Daly, Cooper, Ma (b0035) 2014; 74
Shi (b0205) 2016; 65
Ekici (b0185) 2019; 147
Waibel (b0270) 2019; 187
D. Crawley, L. Lawrie, Should We Be Using Just 'Typical' Weather Data in Building Performance Simulation? 2019.
K. Bamdad Masouleh, et al., Optimisation of HVAC systems using ACOr algorithm, in The Future of HVAC 2019 Conference. 2019: Brisbane, Qld.
Nguyen, Reiter, Rigo (b0065) 2014; 113
Whang, Kim (b0375) 2014; 77
Ürge-Vorsatz (b0015) 2015; 41
Lapisa (b0175) 2018; 132
Pitt&Sherry, Pathway to 2020 for Increased Stringency in New Building Energy Efficiency Standards: Benefit Cost Analysis. January 2012.
Liao (b0315) 2014; 18
Nik, Sasic Kalagasidis (b0390) 2013; 60
Olson (b0330) 2016; 69
Australian Building Code Board, ABCB Energy Modelling of Office Buildings For Climate Zoning (Class 5 Climate Zoning Consultancy) Stages 1, 2 & 3. 2002, Australian Building Codes Board.
Bamdad (b0075) 2017; 154
Evins (b0190) 2013; 22
I. Chatzikonstantinou, et al., Multi-objective diagrid façade optimization using differential evolution, 2015. 2311–2318.
Guan (b0045) 2009; 37
Wang, Chen, Ren (b0160) 2011; 46
Moazami (b0150) 2019; 238
Daly, Cooper, Ma (b0285) 2014; 75
N. Nakicenovic, et al., Special Report on Emissions Scenarios (SRES), A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. 2000, Cambridge University Press.
Dorigo, Maniezzo, Colorni (b0310) 1996; 26
Cubukcuoglu (b0265) 2019; 12
Kheiri (b0200) 2018; 92
Giouri, Tenpierik, Turrin (b0210) 2020; 209
Jentsch, Bahaj, James (b0100) 2008; 40
K. Bamdad Masouleh, et al., Building energy optimisation using artificial neural network and ant colony optimisation, in AIRAH and IBPSA's Australasian Building Simulation 2017 Conference, 2017, Melbourne, Vic.
Jia, Srinivasan, Raheem (b0280) 2017; 68
Bamdad Masouleh (b0195) 2018
Zhai, Helman (b0010) 2019; 44
Sabunas, Kanapickas (b0125) 2017; 128
Ma (b0355) 2017; 10
Herrando (b0290) 2016; 125
Radhi (10.1016/j.enbuild.2020.110610_b0135) 2009; 44
Liao (10.1016/j.enbuild.2020.110610_b0315) 2014; 18
Giouri (10.1016/j.enbuild.2020.110610_b0210) 2020; 209
10.1016/j.enbuild.2020.110610_b0340
10.1016/j.enbuild.2020.110610_b0225
Jiang (10.1016/j.enbuild.2020.110610_b0030) 2019; 50
Bamdad (10.1016/j.enbuild.2020.110610_b0275) 2020; 13
10.1016/j.enbuild.2020.110610_b0345
Daly (10.1016/j.enbuild.2020.110610_b0285) 2014; 75
Dorigo (10.1016/j.enbuild.2020.110610_b0310) 1996; 26
Bamdad Masouleh (10.1016/j.enbuild.2020.110610_b0195) 2018
Guan (10.1016/j.enbuild.2020.110610_b0045) 2009; 37
Belcher (10.1016/j.enbuild.2020.110610_b0115) 2005; 26
IPCC (10.1016/j.enbuild.2020.110610_b0090) 2014
Shi (10.1016/j.enbuild.2020.110610_b0205) 2016; 65
Wetter (10.1016/j.enbuild.2020.110610_b0240) 2004; 39
Verichev (10.1016/j.enbuild.2020.110610_b0320) 2020; 215
Tian (10.1016/j.enbuild.2020.110610_b0370) 2018; 158
10.1016/j.enbuild.2020.110610_b0060
Jiang (10.1016/j.enbuild.2020.110610_b0145) 2018; 14
Costa-Carrapiço (10.1016/j.enbuild.2020.110610_b0365) 2020; 210
Herrando (10.1016/j.enbuild.2020.110610_b0290) 2016; 125
Berardi (10.1016/j.enbuild.2020.110610_b0395) 2020; 121
Jacobeit (10.1016/j.enbuild.2020.110610_b0095) 2014; 14
Whang (10.1016/j.enbuild.2020.110610_b0375) 2014; 77
10.1016/j.enbuild.2020.110610_b0260
10.1016/j.enbuild.2020.110610_b0255
10.1016/j.enbuild.2020.110610_b0055
10.1016/j.enbuild.2020.110610_b0215
Nik (10.1016/j.enbuild.2020.110610_b0105) 2016; 177
Attia (10.1016/j.enbuild.2020.110610_b0230) 2013; 60
Daly (10.1016/j.enbuild.2020.110610_b0035) 2014; 74
Cabeza (10.1016/j.enbuild.2020.110610_b0020) 2020; 13
Wang (10.1016/j.enbuild.2020.110610_b0155) 2010; 45
Futrell (10.1016/j.enbuild.2020.110610_b0250) 2015; 92
Waibel (10.1016/j.enbuild.2020.110610_b0270) 2019; 187
Kheiri (10.1016/j.enbuild.2020.110610_b0200) 2018; 92
de Wilde (10.1016/j.enbuild.2020.110610_b0385) 2008; 29
Ürge-Vorsatz (10.1016/j.enbuild.2020.110610_b0015) 2015; 41
Jia (10.1016/j.enbuild.2020.110610_b0280) 2017; 68
Rubio-Bellido (10.1016/j.enbuild.2020.110610_b0170) 2016; 114
IPCC (10.1016/j.enbuild.2020.110610_b0335) 2013
Moazami (10.1016/j.enbuild.2020.110610_b0150) 2019; 238
Arima (10.1016/j.enbuild.2020.110610_b0140) 2016; 114
10.1016/j.enbuild.2020.110610_b0325
10.1016/j.enbuild.2020.110610_b0005
10.1016/j.enbuild.2020.110610_b0400
Evins (10.1016/j.enbuild.2020.110610_b0190) 2013; 22
Jentsch (10.1016/j.enbuild.2020.110610_b0120) 2013; 55
10.1016/j.enbuild.2020.110610_b0405
Nik (10.1016/j.enbuild.2020.110610_b0390) 2013; 60
Kirimtat (10.1016/j.enbuild.2020.110610_b0220) 2019; 185
Lapisa (10.1016/j.enbuild.2020.110610_b0175) 2018; 132
Ekici (10.1016/j.enbuild.2020.110610_b0185) 2019; 147
Kämpf (10.1016/j.enbuild.2020.110610_b0245) 2010; 3
Asimakopoulos (10.1016/j.enbuild.2020.110610_b0130) 2012; 49
Bamdad (10.1016/j.enbuild.2020.110610_b0075) 2017; 154
Zhai (10.1016/j.enbuild.2020.110610_b0010) 2019; 44
10.1016/j.enbuild.2020.110610_b0080
Socha (10.1016/j.enbuild.2020.110610_b0305) 2008; 185
Olson (10.1016/j.enbuild.2020.110610_b0330) 2016; 69
10.1016/j.enbuild.2020.110610_b0085
10.1016/j.enbuild.2020.110610_b0360
Herrera (10.1016/j.enbuild.2020.110610_b0410) 2017; 38
Wolpert (10.1016/j.enbuild.2020.110610_b0235) 1997; 1
Andrić (10.1016/j.enbuild.2020.110610_b0040) 2019; 211
Gang (10.1016/j.enbuild.2020.110610_b0295) 2016; 122
de Rubeis (10.1016/j.enbuild.2020.110610_b0180) 2020; 61
Jentsch (10.1016/j.enbuild.2020.110610_b0100) 2008; 40
Sabunas (10.1016/j.enbuild.2020.110610_b0125) 2017; 128
Nguyen (10.1016/j.enbuild.2020.110610_b0065) 2014; 113
Urge-Vorsatz (10.1016/j.enbuild.2020.110610_b0025) 2013; 5
Cubukcuoglu (10.1016/j.enbuild.2020.110610_b0265) 2019; 12
Yoon (10.1016/j.enbuild.2020.110610_b0380) 2019; 12
Li (10.1016/j.enbuild.2020.110610_b0300) 2019; 254
Wang (10.1016/j.enbuild.2020.110610_b0160) 2011; 46
Ma (10.1016/j.enbuild.2020.110610_b0355) 2017; 10
Bamdad (10.1016/j.enbuild.2020.110610_b0070) 2018; 167
Guan (10.1016/j.enbuild.2020.110610_b0165) 2012; 55
Santamouris (10.1016/j.enbuild.2020.110610_b0110) 2016; 128
10.1016/j.enbuild.2020.110610_b0350
Guan (10.1016/j.enbuild.2020.110610_b0050) 2006
References_xml – reference: Australian Building Code Board, ABCB Energy Modelling of Office Buildings For Climate Zoning (Class 5 Climate Zoning Consultancy) Stages 1, 2 & 3. 2002, Australian Building Codes Board.
– volume: 187
  start-page: 218
  year: 2019
  end-page: 240
  ident: b0270
  article-title: Building energy optimization: an extensive benchmark of global search algorithms
  publication-title: Energy Build.
– volume: 38
  start-page: 602
  year: 2017
  end-page: 627
  ident: b0410
  article-title: A review of current and future weather data for building simulation
  publication-title: Build. Serv. Eng. Res. Technol.
– volume: 55
  start-page: 8
  year: 2012
  end-page: 19
  ident: b0165
  article-title: Energy use, indoor temperature and possible adaptation strategies for air-conditioned office buildings in face of global warming
  publication-title: Build. Environ.
– volume: 122
  start-page: 11
  year: 2016
  end-page: 22
  ident: b0295
  article-title: Robust optimal design of district cooling systems and the impacts of uncertainty and reliability
  publication-title: Energy Build.
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: b0310
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: Syst., Man, Cybern., Part B
– volume: 44
  start-page: 2451
  year: 2009
  end-page: 2462
  ident: b0135
  article-title: Evaluating the potential impact of global warming on the UAE residential buildings – A contribution to reduce the CO2 emissions
  publication-title: Build. Environ.
– volume: 92
  start-page: 897
  year: 2018
  end-page: 920
  ident: b0200
  article-title: A review on optimization methods applied in energy-efficient building geometry and envelope design
  publication-title: Renew. Sustain. Energy Rev.
– reference: D. Crawley, L. Lawrie, Should We Be Using Just 'Typical' Weather Data in Building Performance Simulation? 2019.
– reference: IPCC, IPCC fourth assessment report (AR4), 2007.
– volume: 45
  start-page: 1663
  year: 2010
  end-page: 1682
  ident: b0155
  article-title: Assessment of climate change impact on residential building heating and cooling energy requirement in Australia
  publication-title: Build. Environ.
– volume: 13
  start-page: 760
  year: 2020
  end-page: 776
  ident: b0275
  article-title: Building energy optimization using surrogate model and active sampling
  publication-title: J. Build. Perform. Simul.
– volume: 12
  start-page: 259
  year: 2019
  end-page: 271
  ident: b0380
  article-title: Impacts of HVACR temperature sensor offsets on building energy performance and occupant thermal comfort
  publication-title: Build. Simul.
– reference: Y. Ma, et al., Comparison of Different Solar-Assisted Air Conditioning Systems for Australian Office Buildings. 2017. 10(10): p. 1463.
– reference: IPCC, Climate Change 2007: Mitigation of Climate Change, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007, Cambridge University Press.
– volume: 68
  start-page: 525
  year: 2017
  end-page: 540
  ident: b0280
  article-title: From occupancy to occupant behavior: An analytical survey of data acquisition technologies, modeling methodologies and simulation coupling mechanisms for building energy efficiency
  publication-title: Renew. Sustain. Energy Rev.
– volume: 14
  start-page: 22
  year: 2018
  end-page: 45
  ident: b0145
  article-title: Effects of global climate change on building energy consumption and its implications in Florida
  publication-title: Int. J. Constr. Educ. Res.
– volume: 114
  start-page: 123
  year: 2016
  end-page: 129
  ident: b0140
  article-title: Effect of climate change on building cooling loads in Tokyo in the summers of the 2030s using dynamically downscaled GCM data
  publication-title: Energy Build.
– volume: 65
  start-page: 872
  year: 2016
  end-page: 884
  ident: b0205
  article-title: A review on building energy efficient design optimization rom the perspective of architects
  publication-title: Renew. Sustain. Energy Rev.
– volume: 121
  year: 2020
  ident: b0395
  article-title: Assessing the impact of climate change on building heating and cooling energy demand in Canada
  publication-title: Renew. Sustain. Energy Rev.
– volume: 147
  start-page: 356
  year: 2019
  end-page: 371
  ident: b0185
  article-title: Performative computational architecture using swarm and evolutionary optimisation: a review
  publication-title: Build. Environ.
– volume: 18
  start-page: 503
  year: 2014
  end-page: 518
  ident: b0315
  article-title: Ant colony optimization for mixed-variable optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 125
  start-page: 141
  year: 2016
  end-page: 153
  ident: b0290
  article-title: Energy performance certification of faculty buildings in Spain: the gap between estimated and real energy consumption
  publication-title: Energy Convers. Manage.
– volume: 158
  start-page: 1306
  year: 2018
  end-page: 1316
  ident: b0370
  article-title: Towards adoption of building energy simulation and optimization for passive building design: a survey and a review
  publication-title: Energy Build.
– volume: 177
  start-page: 204
  year: 2016
  end-page: 226
  ident: b0105
  article-title: Making energy simulation easier for future climate – synthesizing typical and extreme weather data sets out of regional climate models (RCMs)
  publication-title: Appl. Energy
– reference: K. Bamdad Masouleh, et al., Building energy optimisation using artificial neural network and ant colony optimisation, in AIRAH and IBPSA's Australasian Building Simulation 2017 Conference, 2017, Melbourne, Vic.
– volume: 75
  start-page: 382
  year: 2014
  end-page: 393
  ident: b0285
  article-title: Understanding the risks and uncertainties introduced by common assumptions in energy simulations for Australian commercial buildings
  publication-title: Energy Build.
– volume: 50
  year: 2019
  ident: b0030
  article-title: Hourly weather data projection due to climate change for impact assessment on building and infrastructure
  publication-title: Sustainable Cities Soc.
– volume: 238
  start-page: 696
  year: 2019
  end-page: 720
  ident: b0150
  article-title: Impacts of future weather data typology on building energy performance – investigating long-term patterns of climate change and extreme weather conditions
  publication-title: Appl. Energy
– volume: 39
  start-page: 989
  year: 2004
  end-page: 999
  ident: b0240
  article-title: A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization
  publication-title: Build. Environ.
– reference: T. Wortmann, Opossum: Introducing and Evaluating a Model-based Optimization Tool for Grasshopper, 2017.
– volume: 167
  start-page: 322
  year: 2018
  end-page: 333
  ident: b0070
  article-title: Building energy optimisation under uncertainty using ACOMV algorithm
  publication-title: Energy Build.
– reference: K. Bamdad Masouleh, et al., Optimisation of HVAC systems using ACOr algorithm, in The Future of HVAC 2019 Conference. 2019: Brisbane, Qld.
– reference: D. Crawley, L. Lawrie, Rethinking the TMY: Is the 'Typical' Meteorological Year Best for Building Performance Simulation? 2015.
– volume: 60
  start-page: 291
  year: 2013
  end-page: 304
  ident: b0390
  article-title: Impact study of the climate change on the energy performance of the building stock in Stockholm considering four climate uncertainties
  publication-title: Build. Environ.
– volume: 22
  start-page: 230
  year: 2013
  end-page: 245
  ident: b0190
  article-title: A review of computational optimisation methods applied to sustainable building design
  publication-title: Renew. Sustain. Energy Rev.
– year: 2018
  ident: b0195
  article-title: Building Energy Optimisation using Machine Learning and Metaheuristic Algorithms
– year: 2014
  ident: b0090
  article-title: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 55
  start-page: 514
  year: 2013
  end-page: 524
  ident: b0120
  article-title: Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates
  publication-title: Renewable Energy
– volume: 13
  start-page: 409
  year: 2020
  ident: b0020
  article-title: Comparative analysis of web of science and scopus on the energy efficiency and climate impact of buildings
  publication-title: Energies
– volume: 211
  start-page: 83
  year: 2019
  end-page: 102
  ident: b0040
  article-title: A review of climate change implications for built environment: impacts, mitigation measures and associated challenges in developed and developing countries
  publication-title: J. Cleaner Prod.
– volume: 185
  start-page: 1155
  year: 2008
  end-page: 1173
  ident: b0305
  article-title: Ant colony optimization for continuous domains
  publication-title: Eur. J. Oper. Res.
– reference: N. Nakicenovic, et al., Special Report on Emissions Scenarios (SRES), A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. 2000, Cambridge University Press.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0235
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 5
  start-page: 141
  year: 2013
  end-page: 151
  ident: b0025
  article-title: Energy use in buildings in a long-term perspective
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 46
  start-page: 871
  year: 2011
  end-page: 883
  ident: b0160
  article-title: Global warming and its implication to emission reduction strategies for residential buildings
  publication-title: Build. Environ.
– volume: 37
  start-page: 43
  year: 2009
  end-page: 54
  ident: b0045
  article-title: Implication of global warming on air-conditioned office buildings in Australia
  publication-title: Build. Res. Inf.
– start-page: 1535
  year: 2013
  ident: b0335
  article-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 154
  start-page: 404
  year: 2017
  end-page: 414
  ident: b0075
  article-title: Ant colony algorithm for building energy optimisation problems and comparison with benchmark algorithms
  publication-title: Energy Build.
– reference: K. Bamdad Masouleh, et al., Building energy optimisation using artificial neural network and ant colony optimisation, in AIRAH and IBPSA’s Australasian Building Simulation 2017 Conference, 2017, Melbourne, Vic.
– volume: 26
  start-page: 49
  year: 2005
  end-page: 61
  ident: b0115
  article-title: Constructing design weather data for future climates
  publication-title: Build. Serv. Eng. Res. Technol.
– year: 2006
  ident: b0050
  article-title: The implication of global warming on the energy performance and indoor thermal environment of air-conditioned office buildings in Australia
  publication-title: Build. Res. Inf.
– volume: 254
  year: 2019
  ident: b0300
  article-title: Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions
  publication-title: Appl. Energy
– volume: 49
  start-page: 488
  year: 2012
  end-page: 498
  ident: b0130
  article-title: Modelling the energy demand projection of the building sector in Greece in the 21st century
  publication-title: Energy Build.
– volume: 44
  start-page: 511
  year: 2019
  end-page: 519
  ident: b0010
  article-title: Implications of climate changes to building energy and design
  publication-title: Sustain. Cities Soc.
– volume: 74
  start-page: 86
  year: 2014
  end-page: 95
  ident: b0035
  article-title: Implications of global warming for commercial building retrofitting in Australian cities
  publication-title: Build. Environ.
– volume: 128
  start-page: 92
  year: 2017
  end-page: 99
  ident: b0125
  article-title: Estimation of climate change impact on energy consumption in a residential building in Kaunas, Lithuania, using HEED Software
  publication-title: Energy Procedia
– reference: I. Chatzikonstantinou, et al., Multi-objective diagrid façade optimization using differential evolution, 2015. 2311–2318.
– reference: Pitt&Sherry, Pathway to 2020 for Increased Stringency in New Building Energy Efficiency Standards: Benefit Cost Analysis. January 2012.
– volume: 69
  year: 2016
  ident: b0330
  article-title: The NARCliM project: Model agreement and significance of climate projections
  publication-title: Climate Research
– volume: 210
  year: 2020
  ident: b0365
  article-title: A systematic review of genetic algorithm-based multi-objective optimisation for building retrofitting strategies towards energy efficiency
  publication-title: Energy Build.
– volume: 132
  start-page: 83
  year: 2018
  end-page: 95
  ident: b0175
  article-title: Optimized design of low-rise commercial buildings under various climates – energy performance and passive cooling strategies
  publication-title: Build. Environ.
– volume: 185
  start-page: 100
  year: 2019
  end-page: 111
  ident: b0220
  article-title: Multi-objective energy and daylight optimization of amorphous shading devices in buildings
  publication-title: Sol. Energy
– volume: 29
  start-page: 7
  year: 2008
  end-page: 26
  ident: b0385
  article-title: Uncertainties in predicting the impact of climate change on thermal performance of domestic buildings in the UK
  publication-title: J. Index. Metrics
– volume: 215
  year: 2020
  ident: b0320
  article-title: Effects of climate change on variations in climatic zones and heating energy consumption of residential buildings in the southern Chile
  publication-title: Energy Build.
– volume: 40
  start-page: 2148
  year: 2008
  end-page: 2168
  ident: b0100
  article-title: Climate change future proofing of buildings—generation and assessment of building simulation weather files
  publication-title: Energy Build.
– volume: 92
  start-page: 234
  year: 2015
  end-page: 245
  ident: b0250
  article-title: Optimizing complex building design for annual daylighting performance and evaluation of optimization algorithms
  publication-title: Energy Build.
– volume: 61
  year: 2020
  ident: b0180
  article-title: Sensitivity of heating performance of an energy self-sufficient building to climate zone, climate change and HVAC system solutions
  publication-title: Sustain. Cities Soc.
– volume: 12
  year: 2019
  ident: b0265
  article-title: OPTIMUS: self-adaptive differential evolution with ensemble of mutation strategies for grasshopper algorithmic modeling
  publication-title: Algorithms
– reference: National Australian Built Environment Rating Scheme, NABERS Energy Guide to Building Energy Estimation, 2011.
– volume: 14
  start-page: 1891
  year: 2014
  end-page: 1906
  ident: b0095
  article-title: Statistical downscaling for climate change projections in the Mediterranean region: methods and results
  publication-title: Reg. Environ. Change
– reference: R. Vierlinger, A. Hofmann, A Framework for Flexible Search and Optimization in Parametric Design, 2013.
– volume: 10
  start-page: 849
  year: 2017
  ident: b0355
  article-title: Parametric analysis of design parameter effects on the performance of a solar desiccant evaporative Cooling System in Brisbane Australia
  publication-title: Energies
– volume: 77
  start-page: 304
  year: 2014
  end-page: 312
  ident: b0375
  article-title: Determining sustainable design management using passive design elements for a zero emission house during the schematic design
  publication-title: Energy Build.
– volume: 41
  start-page: 85
  year: 2015
  end-page: 98
  ident: b0015
  article-title: Heating and cooling energy trends and drivers in buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 113
  start-page: 1043
  year: 2014
  end-page: 1058
  ident: b0065
  article-title: A review on simulation-based optimization methods applied to building performance analysis
  publication-title: Appl. Energy
– volume: 114
  start-page: 569
  year: 2016
  end-page: 585
  ident: b0170
  article-title: Optimization of annual energy demand in office buildings under the influence of climate change in Chile
  publication-title: Energy
– reference: K. Bamdad, et al., Building energy retrofits using ant colony optimisation, in Healthy Buildings 2017 Europe. 2017: Lublin, Poland.
– volume: 60
  start-page: 110
  year: 2013
  end-page: 124
  ident: b0230
  article-title: Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design
  publication-title: Energy Build.
– volume: 3
  start-page: 103
  year: 2010
  end-page: 120
  ident: b0245
  article-title: A comparison of global optimization algorithms with standard benchmark functions and real-world applications using EnergyPlus
  publication-title: J. Build. Perform. Simul.
– volume: 209
  year: 2020
  ident: b0210
  article-title: Zero energy potential of a high-rise office building in a Mediterranean climate: Using multi-objective optimization to understand the impact of design decisions towards zero-energy high-rise buildings
  publication-title: Energy Build.
– volume: 128
  start-page: 617
  year: 2016
  end-page: 638
  ident: b0110
  article-title: Cooling the buildings – past, present and future
  publication-title: Energy Build.
– volume: 92
  start-page: 897
  year: 2018
  ident: 10.1016/j.enbuild.2020.110610_b0200
  article-title: A review on optimization methods applied in energy-efficient building geometry and envelope design
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.080
– ident: 10.1016/j.enbuild.2020.110610_b0400
  doi: 10.26868/25222708.2015.2707
– volume: 154
  start-page: 404
  issue: Supplement C
  year: 2017
  ident: 10.1016/j.enbuild.2020.110610_b0075
  article-title: Ant colony algorithm for building energy optimisation problems and comparison with benchmark algorithms
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.08.071
– ident: 10.1016/j.enbuild.2020.110610_b0005
– year: 2018
  ident: 10.1016/j.enbuild.2020.110610_b0195
– volume: 125
  start-page: 141
  year: 2016
  ident: 10.1016/j.enbuild.2020.110610_b0290
  article-title: Energy performance certification of faculty buildings in Spain: the gap between estimated and real energy consumption
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.04.037
– volume: 44
  start-page: 2451
  issue: 12
  year: 2009
  ident: 10.1016/j.enbuild.2020.110610_b0135
  article-title: Evaluating the potential impact of global warming on the UAE residential buildings – A contribution to reduce the CO2 emissions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.04.006
– volume: 147
  start-page: 356
  year: 2019
  ident: 10.1016/j.enbuild.2020.110610_b0185
  article-title: Performative computational architecture using swarm and evolutionary optimisation: a review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.10.023
– volume: 41
  start-page: 85
  year: 2015
  ident: 10.1016/j.enbuild.2020.110610_b0015
  article-title: Heating and cooling energy trends and drivers in buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.08.039
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/j.enbuild.2020.110610_b0310
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: Syst., Man, Cybern., Part B
  doi: 10.1109/3477.484436
– volume: 38
  start-page: 602
  issue: 5
  year: 2017
  ident: 10.1016/j.enbuild.2020.110610_b0410
  article-title: A review of current and future weather data for building simulation
  publication-title: Build. Serv. Eng. Res. Technol.
  doi: 10.1177/0143624417705937
– volume: 12
  start-page: 259
  issue: 2
  year: 2019
  ident: 10.1016/j.enbuild.2020.110610_b0380
  article-title: Impacts of HVACR temperature sensor offsets on building energy performance and occupant thermal comfort
  publication-title: Build. Simul.
  doi: 10.1007/s12273-018-0475-3
– volume: 14
  start-page: 1891
  issue: 5
  year: 2014
  ident: 10.1016/j.enbuild.2020.110610_b0095
  article-title: Statistical downscaling for climate change projections in the Mediterranean region: methods and results
  publication-title: Reg. Environ. Change
  doi: 10.1007/s10113-014-0605-0
– volume: 185
  start-page: 1155
  issue: 3
  year: 2008
  ident: 10.1016/j.enbuild.2020.110610_b0305
  article-title: Ant colony optimization for continuous domains
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.06.046
– volume: 60
  start-page: 291
  year: 2013
  ident: 10.1016/j.enbuild.2020.110610_b0390
  article-title: Impact study of the climate change on the energy performance of the building stock in Stockholm considering four climate uncertainties
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.11.005
– start-page: 1535
  year: 2013
  ident: 10.1016/j.enbuild.2020.110610_b0335
– volume: 210
  year: 2020
  ident: 10.1016/j.enbuild.2020.110610_b0365
  article-title: A systematic review of genetic algorithm-based multi-objective optimisation for building retrofitting strategies towards energy efficiency
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109690
– volume: 128
  start-page: 617
  year: 2016
  ident: 10.1016/j.enbuild.2020.110610_b0110
  article-title: Cooling the buildings – past, present and future
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.07.034
– ident: 10.1016/j.enbuild.2020.110610_b0345
– volume: 74
  start-page: 86
  year: 2014
  ident: 10.1016/j.enbuild.2020.110610_b0035
  article-title: Implications of global warming for commercial building retrofitting in Australian cities
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.01.008
– volume: 12
  issue: 7
  year: 2019
  ident: 10.1016/j.enbuild.2020.110610_b0265
  article-title: OPTIMUS: self-adaptive differential evolution with ensemble of mutation strategies for grasshopper algorithmic modeling
  publication-title: Algorithms
  doi: 10.3390/a12070141
– volume: 113
  start-page: 1043
  year: 2014
  ident: 10.1016/j.enbuild.2020.110610_b0065
  article-title: A review on simulation-based optimization methods applied to building performance analysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.061
– volume: 55
  start-page: 514
  year: 2013
  ident: 10.1016/j.enbuild.2020.110610_b0120
  article-title: Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2012.12.049
– volume: 60
  start-page: 110
  year: 2013
  ident: 10.1016/j.enbuild.2020.110610_b0230
  article-title: Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.01.016
– volume: 185
  start-page: 100
  year: 2019
  ident: 10.1016/j.enbuild.2020.110610_b0220
  article-title: Multi-objective energy and daylight optimization of amorphous shading devices in buildings
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.04.048
– volume: 22
  start-page: 230
  year: 2013
  ident: 10.1016/j.enbuild.2020.110610_b0190
  article-title: A review of computational optimisation methods applied to sustainable building design
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.02.004
– volume: 61
  year: 2020
  ident: 10.1016/j.enbuild.2020.110610_b0180
  article-title: Sensitivity of heating performance of an energy self-sufficient building to climate zone, climate change and HVAC system solutions
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102300
– volume: 209
  year: 2020
  ident: 10.1016/j.enbuild.2020.110610_b0210
  article-title: Zero energy potential of a high-rise office building in a Mediterranean climate: Using multi-objective optimization to understand the impact of design decisions towards zero-energy high-rise buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109666
– volume: 18
  start-page: 503
  issue: 4
  year: 2014
  ident: 10.1016/j.enbuild.2020.110610_b0315
  article-title: Ant colony optimization for mixed-variable optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281531
– ident: 10.1016/j.enbuild.2020.110610_b0055
– volume: 69
  year: 2016
  ident: 10.1016/j.enbuild.2020.110610_b0330
  article-title: The NARCliM project: Model agreement and significance of climate projections
  publication-title: Climate Research
  doi: 10.3354/cr01403
– volume: 211
  start-page: 83
  year: 2019
  ident: 10.1016/j.enbuild.2020.110610_b0040
  article-title: A review of climate change implications for built environment: impacts, mitigation measures and associated challenges in developed and developing countries
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.11.128
– volume: 14
  start-page: 22
  issue: 1
  year: 2018
  ident: 10.1016/j.enbuild.2020.110610_b0145
  article-title: Effects of global climate change on building energy consumption and its implications in Florida
  publication-title: Int. J. Constr. Educ. Res.
– volume: 122
  start-page: 11
  year: 2016
  ident: 10.1016/j.enbuild.2020.110610_b0295
  article-title: Robust optimal design of district cooling systems and the impacts of uncertainty and reliability
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.04.012
– volume: 187
  start-page: 218
  year: 2019
  ident: 10.1016/j.enbuild.2020.110610_b0270
  article-title: Building energy optimization: an extensive benchmark of global search algorithms
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.01.048
– volume: 128
  start-page: 92
  year: 2017
  ident: 10.1016/j.enbuild.2020.110610_b0125
  article-title: Estimation of climate change impact on energy consumption in a residential building in Kaunas, Lithuania, using HEED Software
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.020
– volume: 254
  year: 2019
  ident: 10.1016/j.enbuild.2020.110610_b0300
  article-title: Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113683
– ident: 10.1016/j.enbuild.2020.110610_b0225
– ident: 10.1016/j.enbuild.2020.110610_b0350
  doi: 10.3390/en10101463
– ident: 10.1016/j.enbuild.2020.110610_b0080
– year: 2014
  ident: 10.1016/j.enbuild.2020.110610_b0090
– ident: 10.1016/j.enbuild.2020.110610_b0340
– volume: 121
  year: 2020
  ident: 10.1016/j.enbuild.2020.110610_b0395
  article-title: Assessing the impact of climate change on building heating and cooling energy demand in Canada
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109681
– volume: 55
  start-page: 8
  year: 2012
  ident: 10.1016/j.enbuild.2020.110610_b0165
  article-title: Energy use, indoor temperature and possible adaptation strategies for air-conditioned office buildings in face of global warming
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2011.11.013
– volume: 50
  year: 2019
  ident: 10.1016/j.enbuild.2020.110610_b0030
  article-title: Hourly weather data projection due to climate change for impact assessment on building and infrastructure
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2019.101688
– volume: 167
  start-page: 322
  year: 2018
  ident: 10.1016/j.enbuild.2020.110610_b0070
  article-title: Building energy optimisation under uncertainty using ACOMV algorithm
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.02.053
– volume: 92
  start-page: 234
  year: 2015
  ident: 10.1016/j.enbuild.2020.110610_b0250
  article-title: Optimizing complex building design for annual daylighting performance and evaluation of optimization algorithms
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.01.017
– volume: 10
  start-page: 849
  issue: 7
  year: 2017
  ident: 10.1016/j.enbuild.2020.110610_b0355
  article-title: Parametric analysis of design parameter effects on the performance of a solar desiccant evaporative Cooling System in Brisbane Australia
  publication-title: Energies
  doi: 10.3390/en10070849
– volume: 46
  start-page: 871
  issue: 4
  year: 2011
  ident: 10.1016/j.enbuild.2020.110610_b0160
  article-title: Global warming and its implication to emission reduction strategies for residential buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.10.016
– volume: 3
  start-page: 103
  issue: 2
  year: 2010
  ident: 10.1016/j.enbuild.2020.110610_b0245
  article-title: A comparison of global optimization algorithms with standard benchmark functions and real-world applications using EnergyPlus
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401490903494597
– volume: 215
  year: 2020
  ident: 10.1016/j.enbuild.2020.110610_b0320
  article-title: Effects of climate change on variations in climatic zones and heating energy consumption of residential buildings in the southern Chile
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.109874
– volume: 40
  start-page: 2148
  issue: 12
  year: 2008
  ident: 10.1016/j.enbuild.2020.110610_b0100
  article-title: Climate change future proofing of buildings—generation and assessment of building simulation weather files
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2008.06.005
– volume: 26
  start-page: 49
  issue: 1
  year: 2005
  ident: 10.1016/j.enbuild.2020.110610_b0115
  article-title: Constructing design weather data for future climates
  publication-title: Build. Serv. Eng. Res. Technol.
  doi: 10.1191/0143624405bt112oa
– ident: 10.1016/j.enbuild.2020.110610_b0085
– ident: 10.1016/j.enbuild.2020.110610_b0360
– volume: 44
  start-page: 511
  year: 2019
  ident: 10.1016/j.enbuild.2020.110610_b0010
  article-title: Implications of climate changes to building energy and design
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.10.043
– ident: 10.1016/j.enbuild.2020.110610_b0060
– volume: 177
  start-page: 204
  year: 2016
  ident: 10.1016/j.enbuild.2020.110610_b0105
  article-title: Making energy simulation easier for future climate – synthesizing typical and extreme weather data sets out of regional climate models (RCMs)
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.107
– ident: 10.1016/j.enbuild.2020.110610_b0255
– volume: 114
  start-page: 123
  year: 2016
  ident: 10.1016/j.enbuild.2020.110610_b0140
  article-title: Effect of climate change on building cooling loads in Tokyo in the summers of the 2030s using dynamically downscaled GCM data
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.08.019
– volume: 132
  start-page: 83
  year: 2018
  ident: 10.1016/j.enbuild.2020.110610_b0175
  article-title: Optimized design of low-rise commercial buildings under various climates – energy performance and passive cooling strategies
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.01.029
– year: 2006
  ident: 10.1016/j.enbuild.2020.110610_b0050
  article-title: The implication of global warming on the energy performance and indoor thermal environment of air-conditioned office buildings in Australia
  publication-title: Build. Res. Inf.
– volume: 238
  start-page: 696
  year: 2019
  ident: 10.1016/j.enbuild.2020.110610_b0150
  article-title: Impacts of future weather data typology on building energy performance – investigating long-term patterns of climate change and extreme weather conditions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.085
– volume: 114
  start-page: 569
  year: 2016
  ident: 10.1016/j.enbuild.2020.110610_b0170
  article-title: Optimization of annual energy demand in office buildings under the influence of climate change in Chile
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.021
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.enbuild.2020.110610_b0235
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.585893
– ident: 10.1016/j.enbuild.2020.110610_b0260
  doi: 10.52842/conf.caadria.2017.283
– volume: 68
  start-page: 525
  issue: Part 1
  year: 2017
  ident: 10.1016/j.enbuild.2020.110610_b0280
  article-title: From occupancy to occupant behavior: An analytical survey of data acquisition technologies, modeling methodologies and simulation coupling mechanisms for building energy efficiency
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.10.011
– ident: 10.1016/j.enbuild.2020.110610_b0405
  doi: 10.1201/9780429402296-6
– ident: 10.1016/j.enbuild.2020.110610_b0325
– volume: 77
  start-page: 304
  year: 2014
  ident: 10.1016/j.enbuild.2020.110610_b0375
  article-title: Determining sustainable design management using passive design elements for a zero emission house during the schematic design
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.03.066
– volume: 13
  start-page: 409
  issue: 2
  year: 2020
  ident: 10.1016/j.enbuild.2020.110610_b0020
  article-title: Comparative analysis of web of science and scopus on the energy efficiency and climate impact of buildings
  publication-title: Energies
  doi: 10.3390/en13020409
– volume: 65
  start-page: 872
  year: 2016
  ident: 10.1016/j.enbuild.2020.110610_b0205
  article-title: A review on building energy efficient design optimization rom the perspective of architects
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.07.050
– volume: 49
  start-page: 488
  year: 2012
  ident: 10.1016/j.enbuild.2020.110610_b0130
  article-title: Modelling the energy demand projection of the building sector in Greece in the 21st century
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.02.043
– volume: 45
  start-page: 1663
  issue: 7
  year: 2010
  ident: 10.1016/j.enbuild.2020.110610_b0155
  article-title: Assessment of climate change impact on residential building heating and cooling energy requirement in Australia
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.01.022
– volume: 29
  start-page: 7
  issue: 1
  year: 2008
  ident: 10.1016/j.enbuild.2020.110610_b0385
  article-title: Uncertainties in predicting the impact of climate change on thermal performance of domestic buildings in the UK
  publication-title: J. Index. Metrics
– volume: 37
  start-page: 43
  issue: 1
  year: 2009
  ident: 10.1016/j.enbuild.2020.110610_b0045
  article-title: Implication of global warming on air-conditioned office buildings in Australia
  publication-title: Build. Res. Inf.
  doi: 10.1080/09613210802611025
– volume: 5
  start-page: 141
  issue: 2
  year: 2013
  ident: 10.1016/j.enbuild.2020.110610_b0025
  article-title: Energy use in buildings in a long-term perspective
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2013.05.004
– volume: 13
  start-page: 760
  issue: 6
  year: 2020
  ident: 10.1016/j.enbuild.2020.110610_b0275
  article-title: Building energy optimization using surrogate model and active sampling
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401493.2020.1821094
– volume: 158
  start-page: 1306
  year: 2018
  ident: 10.1016/j.enbuild.2020.110610_b0370
  article-title: Towards adoption of building energy simulation and optimization for passive building design: a survey and a review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.022
– ident: 10.1016/j.enbuild.2020.110610_b0215
  doi: 10.1109/CEC.2015.7257170
– volume: 39
  start-page: 989
  issue: 8
  year: 2004
  ident: 10.1016/j.enbuild.2020.110610_b0240
  article-title: A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2004.01.022
– volume: 75
  start-page: 382
  year: 2014
  ident: 10.1016/j.enbuild.2020.110610_b0285
  article-title: Understanding the risks and uncertainties introduced by common assumptions in energy simulations for Australian commercial buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.02.028
SSID ssj0006571
Score 2.5865252
Snippet •Climate change and building load variations may impact optimised building designs.•A method using climate models and optimisation is used to optimise future...
Building energy optimisation is generally performed under present climate conditions with fixed simulation parameters (e.g. internal loads). However, climate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110610
SubjectTerms Ant colony optimization
Buildings
Climate change
Climate change impacts on buildings
Climate models
Climatic conditions
Cooling loads
Cooling systems
Design optimization
Energy
Energy-efficient buildings in Australia
Environmental impact
Future energy optimized buildings
Life span
Metaheuristics
Office buildings
Parameters
Simulation
Simulation-based optimization
Title Future energy-optimised buildings — Addressing the impact of climate change on buildings
URI https://dx.doi.org/10.1016/j.enbuild.2020.110610
https://www.proquest.com/docview/2487466083
Volume 231
WOSCitedRecordID wos000604965300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6178
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006571
  issn: 0378-7788
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RKMgHbisvceLEyXGFtuIhVRyKtOJixY4jtdom1e5S9Yj6G_oL-SWMn-muCqUHLlGUxCPvzhd7ZjLfDELvapXKpmgVSXJVEcaVJKWSNQHvomA51zzPa9tsgh8elvN59XU0ugxcmPMF77ry4qI6-6-qhmugbEOdvYO6o1C4AOegdDiC2uH4T4o_sFVCxtqS-kgPSwKo0tiZvgH2ahwSHNh42jQ2D9ZTpgbKpFocgymrPS_YfFGIwzdi-Y45aILvm_dtbPS0cfj5os3npiGRoF-Y_KJrSfvj2SQGe0-XrsuUjVVHWSEXJyQO-zhFaoIUxDE1Az8L_FXOXRO_sPamfgtwqyc1_mly48LuYgwnE1MQAn4OOPappTD45zcLaW9tcDHtMGS0nQgvRhgxwom5h3ZTnlewuO9OP83mn-N-XuTWbY_zH3hg72-cz58snK293howR4_RI-954KlDzBM00t1T9PBaPcpn6LvDDt7GDo7Kxb9-XuEBNRhQgx1qcN9ijxrsUIP7bhj4HH07mB19-Eh88w2isoyvCWygRc0Yl2lraLaJpI2SVZUWXNJK0lYlmWK0lWWtmM4zpfKkpmmiykJT0_ooe4F2ur7TLxGmcJdTRTXY4izTxsVXdZaBvJontNR7iIU_TChfmd40SFmIvypsD03isDNXmuW2AWXQhvD2pbMbBaDstqH7QXvCv-srkYKzz4oCnJhXd53Ka_RgeEf20c56-UO_QffV-fp4tXzrEfgb7WOoqA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+energy-optimised+buildings+%E2%80%94+Addressing+the+impact+of+climate+change+on+buildings&rft.jtitle=Energy+and+buildings&rft.au=Bamdad%2C+Keivan&rft.au=Cholette%2C+Michael+E.&rft.au=Omrani%2C+Sara&rft.au=Bell%2C+John&rft.date=2021-01-15&rft.issn=0378-7788&rft.volume=231&rft.spage=110610&rft_id=info:doi/10.1016%2Fj.enbuild.2020.110610&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2020_110610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon