Effects of segmented thermal-vibration stress relief process on residual stresses, mechanical properties and microstructures of large 2219 Al alloy rings
•A STVSR process was proposed to stress relief for large 2219 Al-Cu alloy transition rings.•The residual stresses decreased and mechanical properties improved after STVSR.•The underlying mechanisms of residual stress relief by STVSR were quantitatively revealed.•The residual stress relief is attribu...
Uloženo v:
| Vydáno v: | Journal of alloys and compounds Ročník 886; s. 161269 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Elsevier B.V
15.12.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0925-8388, 1873-4669 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A STVSR process was proposed to stress relief for large 2219 Al-Cu alloy transition rings.•The residual stresses decreased and mechanical properties improved after STVSR.•The underlying mechanisms of residual stress relief by STVSR were quantitatively revealed.•The residual stress relief is attributed to the dynamic evolution of dislocations and precipitated phases.•The improvement of mechanical properties mainly depends on the precipitated phases and is also affected by residual stresses.
Large 2219 Al-Cu alloy transition rings are extensively employed in propellant tanks of heavy launch vehicles. These rings have a diameter exceeding 5 m or even reaching 10 m, with a less than 2% thickness-to-radius ratio, and low stiffness which can cause machining deformation due to the residual stress. Thus, residual stress relief of these rings is necessary in their extreme manufacture. A novel effective method is thermal-vibration stress relief (TVSR), which integrates the conventional thermal stress relief (TSR) and vibratory stress relief (VSR); however, the existing TVSR equipment cannot meet the requirements of large rings, and the underlying mechanisms of TVSR remain unclear and a quantitative interpretation is still lacking. Therefore, a segmented TVSR (STVSR) process suitable for large rings was proposed and the corresponding experiment was carried out with a self-made STVSR experiment platform. Then this study investigated the evolution and distribution laws of the residual stresses, tensile properties, Vickers hardness, dislocations, precipitated phases and metallography during STVSR. Based on the experimental results, multi-scale mechanics theory and strengthening mechanisms were applied to quantitatively reveal the underlying mechanisms of residual stress relief by STVSR. The results showed that the circumferential and axial residual stress relief rates can reach 44.43% and 45.14% after STVSR, respectively. The residual stress relief after STVSR is attributed to the dynamic evolution of dislocations and precipitated phases in the material. The improvement of mechanical properties mainly depends on the precipitated phases and is also affected by the residual stress. The findings confirm the significant effects of STVSR on metal plasticity and provide valuable insight into the underlying mechanisms of TVSR. |
|---|---|
| AbstractList | Large 2219 Al-Cu alloy transition rings are extensively employed in propellant tanks of heavy launch vehicles. These rings have a diameter exceeding 5 m or even reaching 10 m, with a less than 2% thickness-to-radius ratio, and low stiffness which can cause machining deformation due to the residual stress. Thus, residual stress relief of these rings is necessary in their extreme manufacture. A novel effective method is thermal-vibration stress relief (TVSR), which integrates the conventional thermal stress relief (TSR) and vibratory stress relief (VSR); however, the existing TVSR equipment cannot meet the requirements of large rings, and the underlying mechanisms of TVSR remain unclear and a quantitative interpretation is still lacking. Therefore, a segmented TVSR (STVSR) process suitable for large rings was proposed and the corresponding experiment was carried out with a self-made STVSR experiment platform. Then this study investigated the evolution and distribution laws of the residual stresses, tensile properties, Vickers hardness, dislocations, precipitated phases and metallography during STVSR. Based on the experimental results, multi-scale mechanics theory and strengthening mechanisms were applied to quantitatively reveal the underlying mechanisms of residual stress relief by STVSR. The results showed that the circumferential and axial residual stress relief rates can reach 44.43% and 45.14% after STVSR, respectively. The residual stress relief after STVSR is attributed to the dynamic evolution of dislocations and precipitated phases in the material. The improvement of mechanical properties mainly depends on the precipitated phases and is also affected by the residual stress. The findings confirm the significant effects of STVSR on metal plasticity and provide valuable insight into the underlying mechanisms of TVSR. •A STVSR process was proposed to stress relief for large 2219 Al-Cu alloy transition rings.•The residual stresses decreased and mechanical properties improved after STVSR.•The underlying mechanisms of residual stress relief by STVSR were quantitatively revealed.•The residual stress relief is attributed to the dynamic evolution of dislocations and precipitated phases.•The improvement of mechanical properties mainly depends on the precipitated phases and is also affected by residual stresses. Large 2219 Al-Cu alloy transition rings are extensively employed in propellant tanks of heavy launch vehicles. These rings have a diameter exceeding 5 m or even reaching 10 m, with a less than 2% thickness-to-radius ratio, and low stiffness which can cause machining deformation due to the residual stress. Thus, residual stress relief of these rings is necessary in their extreme manufacture. A novel effective method is thermal-vibration stress relief (TVSR), which integrates the conventional thermal stress relief (TSR) and vibratory stress relief (VSR); however, the existing TVSR equipment cannot meet the requirements of large rings, and the underlying mechanisms of TVSR remain unclear and a quantitative interpretation is still lacking. Therefore, a segmented TVSR (STVSR) process suitable for large rings was proposed and the corresponding experiment was carried out with a self-made STVSR experiment platform. Then this study investigated the evolution and distribution laws of the residual stresses, tensile properties, Vickers hardness, dislocations, precipitated phases and metallography during STVSR. Based on the experimental results, multi-scale mechanics theory and strengthening mechanisms were applied to quantitatively reveal the underlying mechanisms of residual stress relief by STVSR. The results showed that the circumferential and axial residual stress relief rates can reach 44.43% and 45.14% after STVSR, respectively. The residual stress relief after STVSR is attributed to the dynamic evolution of dislocations and precipitated phases in the material. The improvement of mechanical properties mainly depends on the precipitated phases and is also affected by the residual stress. The findings confirm the significant effects of STVSR on metal plasticity and provide valuable insight into the underlying mechanisms of TVSR. |
| ArticleNumber | 161269 |
| Author | Wu, Qiong Zhang, Yidu Song, Hechuan Gao, Hanjun |
| Author_xml | – sequence: 1 givenname: Hechuan surname: Song fullname: Song, Hechuan organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China – sequence: 2 givenname: Hanjun surname: Gao fullname: Gao, Hanjun email: hjgao@buaa.edu.cn organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China – sequence: 3 givenname: Qiong surname: Wu fullname: Wu, Qiong organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China – sequence: 4 givenname: Yidu surname: Zhang fullname: Zhang, Yidu organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China |
| BookMark | eNqFkc9qHDEMxk1JoJu0j1Aw9NrZWPasZ0wPJYS0KQR6ac7GY8sbD_Nna3sCeZS8bTzdPeWSk5D8-yRL3wU5m-YJCfkCbAsM5FW_7c0w2HnccsZhCxK4VB_IBtpGVLWU6oxsmOK7qhVt-5FcpNQzxkAJ2JCXW-_R5kRnTxPuR5wyOpofMY5mqJ5CF00O80RTjpgSjTgE9PQQZ7um5aGUg1vMcCIwfaMj2kczBVuKBTxgzAETNZOjY7BxLuBi81Lodehg4h4p56Do9UDLHvMzjWHap0_k3Jsh4edTvCQPP2__3txV939-_b65vq-sEE2uakDnmec7U1sOXV0rBR3ahrXOOYYMOmNagJ1QjTTW-wZBddbXorFOydqKS_L12Lf89d-CKet-XuJURmouGRO1AskLtTtS6wIpoteHGEYTnzUwvbqge31yQa8u6KMLRff9jc6G_P-kOZowvKv-cVRjOcBTwKiTDThZdCEW17SbwzsdXgGB1ayO |
| CitedBy_id | crossref_primary_10_1016_j_msea_2022_143014 crossref_primary_10_1016_j_jmmm_2025_173436 crossref_primary_10_1016_j_mtcomm_2024_111295 crossref_primary_10_1016_j_jallcom_2022_167878 crossref_primary_10_1016_j_jallcom_2023_169615 crossref_primary_10_1080_02670836_2023_2195276 crossref_primary_10_1007_s10853_023_08775_y crossref_primary_10_1007_s11223_024_00645_5 crossref_primary_10_1007_s11665_023_08134_7 crossref_primary_10_1007_s12206_025_0428_6 crossref_primary_10_1007_s00339_024_07662_w crossref_primary_10_1016_j_engfailanal_2024_108578 crossref_primary_10_1016_j_jmapro_2023_02_049 crossref_primary_10_1016_j_jmst_2023_06_061 crossref_primary_10_1016_j_mtcomm_2023_105649 crossref_primary_10_1007_s11665_023_08956_5 crossref_primary_10_3390_machines10080598 crossref_primary_10_1007_s00170_023_11068_y crossref_primary_10_1016_j_heliyon_2024_e32052 crossref_primary_10_1016_j_compositesa_2025_109304 crossref_primary_10_1088_2053_1591_ad9240 crossref_primary_10_1007_s00170_024_14174_7 crossref_primary_10_1016_j_vacuum_2024_113990 crossref_primary_10_3390_mi14020354 crossref_primary_10_1515_rams_2022_0019 crossref_primary_10_3390_jmse13030408 crossref_primary_10_1016_j_mtcomm_2024_110072 crossref_primary_10_3390_met14101195 crossref_primary_10_1016_j_istruc_2024_105941 crossref_primary_10_3390_jmmp9050139 crossref_primary_10_1016_j_jmapro_2023_10_040 crossref_primary_10_1016_j_optlastec_2025_113642 crossref_primary_10_46604_aiti_2021_8714 crossref_primary_10_1007_s11665_022_07548_z crossref_primary_10_1142_S2010324724400071 crossref_primary_10_1007_s11665_024_10307_x crossref_primary_10_1016_j_ijmecsci_2023_108446 crossref_primary_10_1016_j_msea_2024_147655 crossref_primary_10_1177_16878132231191381 crossref_primary_10_1016_j_ijfatigue_2025_108993 crossref_primary_10_1016_j_jallcom_2024_176446 crossref_primary_10_1016_j_msea_2023_145555 crossref_primary_10_3390_met13071187 crossref_primary_10_1007_s11661_024_07625_z crossref_primary_10_1016_j_msea_2024_146421 |
| Cites_doi | 10.1016/j.ijfatigue.2016.01.020 10.1007/BF02646449 10.1016/j.ijplas.2014.03.016 10.1115/1.3443340 10.1007/s12540-019-00303-5 10.1016/j.matchar.2019.110094 10.1179/174951410X12851626813177 10.1007/s11665-015-1505-2 10.1111/j.1747-1567.2003.tb00117.x 10.1016/j.jallcom.2016.12.006 10.1007/s40195-019-00941-z 10.1007/s00170-016-8798-7 10.1016/j.ijmecsci.2019.04.040 10.1016/j.msea.2010.01.064 10.1007/s11661-002-0090-9 10.1016/j.jmatprotec.2015.05.025 10.1016/j.optlastec.2015.05.009 10.1016/j.msea.2011.04.078 10.1115/1.3184035 10.1016/j.msea.2006.08.085 10.1016/S0924-0136(03)00387-X 10.1016/j.msea.2011.04.075 10.1016/j.msea.2018.12.051 10.1016/j.msea.2016.03.031 10.1016/j.jclepro.2016.12.003 10.3390/met9040419 10.1007/BF03266717 10.1016/j.matdes.2012.11.023 10.1016/j.jmatprotec.2018.10.034 10.1016/S1359-6454(98)00296-1 10.1016/j.ijfatigue.2017.11.011 10.1016/j.jmst.2018.09.007 10.1016/j.jmatprotec.2006.02.007 10.1016/j.msea.2005.01.069 10.1016/j.msea.2017.09.116 10.1016/S0020-7683(02)00256-1 10.1007/s00170-019-03288-y 10.1016/j.matdes.2015.12.132 10.1016/j.matchar.2014.09.019 10.1016/S0022-5096(97)00086-0 10.3390/ma12122003 10.1007/s11665-002-0014-2 10.1016/j.proeng.2011.04.322 10.1007/s12206-015-0218-7 10.1007/s11661-019-05454-z 10.1016/j.jmatprotec.2010.10.018 10.1016/S0924-0136(97)00280-X 10.1016/j.ijpvp.2003.08.004 10.1016/S1359-6462(01)01201-5 10.1007/s11340-014-9923-x 10.1115/1.3224793 10.1016/j.msea.2021.140737 10.1016/j.pmatsci.2013.06.001 10.1007/s12206-020-0905-x 10.4028/www.scientific.net/AMM.576.143 10.1002/nme.543 10.1007/s40799-016-0071-3 10.3390/met7050158 10.1016/j.ijsolstr.2004.11.017 10.1016/j.matdes.2020.108954 10.1243/0309324011514610 10.1243/PIME_PROC_1995_209_228_02 10.1016/j.jmatprotec.2015.07.017 10.1016/j.actamat.2009.10.058 10.1016/j.msea.2017.11.124 10.1016/S1359-6454(98)00293-6 10.1016/S0924-0136(97)00279-3 10.1016/j.msea.2020.139226 10.1007/s11340-008-9205-6 10.1016/1359-6462(95)00524-2 10.1016/j.msea.2020.140233 10.3390/met9010027 10.1016/j.msea.2017.07.066 10.1016/j.matdes.2013.12.011 10.3390/ma13010105 10.1016/j.msea.2016.07.101 10.3901/JME.2010.14.073 10.1016/j.ijplas.2010.02.007 10.1016/j.jmatprotec.2012.06.019 10.1088/2631-7990/ab22a9 10.1016/j.matdes.2013.08.011 10.1557/jmr.2016.378 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Dec 15, 2021 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Dec 15, 2021 |
| DBID | AAYXX CITATION 8BQ 8FD JG9 |
| DOI | 10.1016/j.jallcom.2021.161269 |
| DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Physics |
| EISSN | 1873-4669 |
| ExternalDocumentID | 10_1016_j_jallcom_2021_161269 S0925838821026785 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS T9H WUQ ~HD 8BQ 8FD AFXIZ AGCQF AGRNS BNPGV JG9 SSH |
| ID | FETCH-LOGICAL-c337t-41edf0f25a4c21b44991bec708ddd0e01baa81153976acff7e19bcf437cd964c3 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697753300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-8388 |
| IngestDate | Fri Jul 25 07:51:12 EDT 2025 Sat Nov 29 07:17:46 EST 2025 Tue Nov 18 21:19:00 EST 2025 Fri Feb 23 02:41:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Segmented thermal-vibration Residual stresses Microstructures Evolution mechanisms Large rings 2219 Aluminum alloys |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c337t-41edf0f25a4c21b44991bec708ddd0e01baa81153976acff7e19bcf437cd964c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2600349162 |
| PQPubID | 2045454 |
| ParticipantIDs | proquest_journals_2600349162 crossref_primary_10_1016_j_jallcom_2021_161269 crossref_citationtrail_10_1016_j_jallcom_2021_161269 elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_161269 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-15 |
| PublicationDateYYYYMMDD | 2021-12-15 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Journal of alloys and compounds |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Prime, Hill (bib45) 2002; 46 Senthilkumar, Rajendran, Pellizzari, Siiriainen (bib28) 2010; 211 Lv, Zhang (bib55) 2015; 17 Kocks (bib81) 1987 Bai, Feng, Si, Pan, Wang (bib88) 2019; 50 Deschamps, Brechet (bib93) 1998; 47 Koç, Culp, Altan (bib71) 2006; 174 Song, Zhang, Wu, Gao (bib13) 2020; 34 Hacini, Lê, Bocher (bib40) 2009; 49 Rahimi, King, Dumont (bib73) 2017; 708 Xie, Jiang, Ji (bib24) 2011; 528 Zhang, Liu, Zhao, Li, Liu, Zhang (bib44) 2005; 42 Walker, Waddell, Johnston (bib17) 1995; 209 Vardanjani, Ghayour, Homami (bib36) 2016; 40 Gu, Hu, Zhao, Kong, Yang, Lai, Pan (bib79) 2017; 143 Lados, Apelian, Wang (bib29) 2010; 527 Senthilkumar (bib26) 2016; 2 Shalvandi, Hojjat, Abdullah, Asadi (bib38) 2013; 46 Wang, Hsieh, Lai, Kuo (bib31) 2015; 99 Gong, Sun, Liu, Wu, Wang, Sun (bib10) 2019; 13 Yang, Park (bib90) 2019; 12 Rossiter, Brahme, Simha, Inala, Mishra (bib80) 2010; 26 Blum, Eisenlohr (bib83) 2015; 510 Ponslet, Steinzig (bib62) 2003; 27 Fu, Jiang (bib23) 2014; 56 Poole, Ashby, Fleck (bib100) 1996; 34 Koç, Culp, Altan (bib47) 2006; 174 Ni, Zhao, Mi, Ye (bib6) 2016; 92 Cai, Huang (bib54) 2011; 528 Gao, Zhang, Wu, Song (bib34) 2017; 7 He, Yi, Huang, Zhang (bib3) 2019; 35 Lu, Tang, Luo, Mei, Fang (bib48) 1998; 74 Wagner, Kampmann, Voorhees (bib94) 2001 Lan, Shen, Liu, Hua (bib76) 2019; 745 Klamecki (bib50) 2003; 141 Eisenlohr, Blum (bib85) 2005; 400–401 Dong, Shao, Jiang, Zhang (bib22) 2015; 24 Li, Fang, Liu, Wei (bib56) 2014; 576 Dunlop, Bréchet, Legras, Estrin (bib67) 2007; 443 Sędek, Brózda, Wang, Withers (bib43) 2003; 80 Blum, Eisenlohr, Breutinger (bib74) 2002; 33 Deschamps, Livet, Brechet (bib92) 1998; 47 Mao, Yi, Huang, Guo, He, Que (bib96) 2021; 804 Ren, Zhou, Xu, Yuan, Ren, Wang, Zhan (bib21) 2015; 74 ASTM E837-20 (bib63) 2020 Ganapathysubramanian, Zabaras (bib89) 2002; 55 Gross, Seeling (bib97) 2018 Baptista, Infante, Branco (bib42) 2011; 10 Babu, Panigrahi, Janaki Ram, Venkitakrishnan, Kumar (bib5) 2019; 266 Mohanty, Arivarasu, Arivazhagan, Phani Prabhakar (bib37) 2017; 703 Wu, Wu, Zhang, Gao, David (bib8) 2019; 157–158 Yuan, Fan (bib9) 2019; 1 Gao, Zhang, Wu, Song, Wen (bib33) 2018; 108 Pan, He, Gu (bib51) 2015; 226 Benedetti, Fontanari, Winiarski, Allahkarami, Hanan (bib60) 2016; 87 Simoneau, Thibault, Fihey (bib41) 2009; 53 Pan, He, Gu (bib52) 2016; 662 Kocks (bib82) 1976; 98 Gong, Sun, Liu, Wu, He, Sun, Zhang (bib35) 2019; 9 Simencio, Canale, Totten (bib30) 2011; 5 Sabar, Berveiller, Favier, Berbenni (bib91) 2002; 39 Antolovich, Armstrong (bib75) 2014; 59 Tang, Lu, Mei, Fang, Luo (bib49) 1998; 74 Wozney, Crawmer (bib15) 1968; 47 Archambault, Azim (bib70) 1995; 4 He, Yi, Huang, Zhang (bib1) 2018; 712 Steinzig, Upshaw, Rasty (bib59) 2014; 54 Gao, Wu, Wu, Li, Gao, Zhang, Mo (bib58) 2020; 195 Ebrahimi, Farahani, Akbari (bib32) 2019; 102 Tong, Liu (bib19) 2008; 5 Zhang, Wu, Gong (bib46) 2012; 212 Nix, Gao (bib99) 1998; 46 Roters, Eisenlohr, Hantcherli, Tjahjanto, Bieler, Raabe (bib87) 2010; 58 Patra, Zhu, Mcdowell (bib78) 2014; 59 Xiang, Zhang (bib53) 2020; 33 Argon (bib77) 2008 Yonetani (bib66) 1983 Dawson, Moffat (bib16) 1980; 102 Mao, Yi, He, Huang, Guo (bib95) 2020; 781 Cui, Yi, Luo (bib12) 2017; 2017 Eisenlohr (bib86) 2004 Schajer, Steinzig (bib61) 2010; 132 Munsi, Waddell, Walker (bib18) 2001; 36 Kocks, Argon, Ashby (bib72) 1975 Singh, Agrawal (bib11) 2015; 225 Xu, Zhu, Jing, Zhao, Lv, Han (bib27) 2016; 673 Lu, Wang, Li, Chen, Zhou, Zhou, Xu (bib2) 2017; 699 Huang, Zhao, Xiao, Kang, Ning, Hu (bib25) 2010; 46 Guo, He, Yi, Huang, Mao, Fang, Huang (bib65) 2020; 160 Chen, Zhang, Wu, Gao, Yan (bib57) 2019; 9 Gu, Jin, Kong, Lai, Yang, Pan (bib39) 2017; 88 Guo, Yi, Huang, He, Fang (bib4) 2020; 26 Ye, Chen (bib68) 1991 He, Yi, Huang, Zhang (bib64) 2019; 35 Lu (bib98) 2002 Perić, Tonković, Rodić, Surjaka, Garašić, Borasa, Švaić (bib14) 2014; 53 Kim, Yoo, Oh (bib20) 2015; 29 Gu, Hu, Lai, Jin, Zhou, Yang, Pan (bib84) 2016; 31 Guo, He, Yi, Huang, Mao, Fang, Huang (bib7) 2020; 798 Denis, Archambault, Gautier, Simon, Becket (bib69) 2002; 11 Ni (10.1016/j.jallcom.2021.161269_bib6) 2016; 92 Gu (10.1016/j.jallcom.2021.161269_bib84) 2016; 31 Lu (10.1016/j.jallcom.2021.161269_bib98) 2002 Gu (10.1016/j.jallcom.2021.161269_bib39) 2017; 88 Xu (10.1016/j.jallcom.2021.161269_bib27) 2016; 673 Guo (10.1016/j.jallcom.2021.161269_bib65) 2020; 160 Klamecki (10.1016/j.jallcom.2021.161269_bib50) 2003; 141 Lados (10.1016/j.jallcom.2021.161269_bib29) 2010; 527 Lu (10.1016/j.jallcom.2021.161269_bib48) 1998; 74 Song (10.1016/j.jallcom.2021.161269_bib13) 2020; 34 Poole (10.1016/j.jallcom.2021.161269_bib100) 1996; 34 Dong (10.1016/j.jallcom.2021.161269_bib22) 2015; 24 Deschamps (10.1016/j.jallcom.2021.161269_bib92) 1998; 47 He (10.1016/j.jallcom.2021.161269_bib1) 2018; 712 Vardanjani (10.1016/j.jallcom.2021.161269_bib36) 2016; 40 Simoneau (10.1016/j.jallcom.2021.161269_bib41) 2009; 53 Blum (10.1016/j.jallcom.2021.161269_bib74) 2002; 33 Pan (10.1016/j.jallcom.2021.161269_bib52) 2016; 662 Denis (10.1016/j.jallcom.2021.161269_bib69) 2002; 11 Xie (10.1016/j.jallcom.2021.161269_bib24) 2011; 528 Pan (10.1016/j.jallcom.2021.161269_bib51) 2015; 226 Patra (10.1016/j.jallcom.2021.161269_bib78) 2014; 59 Yuan (10.1016/j.jallcom.2021.161269_bib9) 2019; 1 Ganapathysubramanian (10.1016/j.jallcom.2021.161269_bib89) 2002; 55 Sabar (10.1016/j.jallcom.2021.161269_bib91) 2002; 39 Mao (10.1016/j.jallcom.2021.161269_bib95) 2020; 781 Gong (10.1016/j.jallcom.2021.161269_bib10) 2019; 13 Baptista (10.1016/j.jallcom.2021.161269_bib42) 2011; 10 Xiang (10.1016/j.jallcom.2021.161269_bib53) 2020; 33 Huang (10.1016/j.jallcom.2021.161269_bib25) 2010; 46 Yonetani (10.1016/j.jallcom.2021.161269_bib66) 1983 Ye (10.1016/j.jallcom.2021.161269_bib68) 1991 Koç (10.1016/j.jallcom.2021.161269_bib71) 2006; 174 Blum (10.1016/j.jallcom.2021.161269_bib83) 2015; 510 Gao (10.1016/j.jallcom.2021.161269_bib33) 2018; 108 Mao (10.1016/j.jallcom.2021.161269_bib96) 2021; 804 Ebrahimi (10.1016/j.jallcom.2021.161269_bib32) 2019; 102 Guo (10.1016/j.jallcom.2021.161269_bib7) 2020; 798 Argon (10.1016/j.jallcom.2021.161269_bib77) 2008 Gu (10.1016/j.jallcom.2021.161269_bib79) 2017; 143 Dunlop (10.1016/j.jallcom.2021.161269_bib67) 2007; 443 Walker (10.1016/j.jallcom.2021.161269_bib17) 1995; 209 Eisenlohr (10.1016/j.jallcom.2021.161269_bib86) 2004 Babu (10.1016/j.jallcom.2021.161269_bib5) 2019; 266 Zhang (10.1016/j.jallcom.2021.161269_bib46) 2012; 212 Lv (10.1016/j.jallcom.2021.161269_bib55) 2015; 17 Kocks (10.1016/j.jallcom.2021.161269_bib82) 1976; 98 Lu (10.1016/j.jallcom.2021.161269_bib2) 2017; 699 Guo (10.1016/j.jallcom.2021.161269_bib4) 2020; 26 Chen (10.1016/j.jallcom.2021.161269_bib57) 2019; 9 Wozney (10.1016/j.jallcom.2021.161269_bib15) 1968; 47 Sędek (10.1016/j.jallcom.2021.161269_bib43) 2003; 80 Kim (10.1016/j.jallcom.2021.161269_bib20) 2015; 29 Roters (10.1016/j.jallcom.2021.161269_bib87) 2010; 58 Ren (10.1016/j.jallcom.2021.161269_bib21) 2015; 74 He (10.1016/j.jallcom.2021.161269_bib3) 2019; 35 Simencio (10.1016/j.jallcom.2021.161269_bib30) 2011; 5 Dawson (10.1016/j.jallcom.2021.161269_bib16) 1980; 102 Ponslet (10.1016/j.jallcom.2021.161269_bib62) 2003; 27 Steinzig (10.1016/j.jallcom.2021.161269_bib59) 2014; 54 Kocks (10.1016/j.jallcom.2021.161269_bib81) 1987 Yang (10.1016/j.jallcom.2021.161269_bib90) 2019; 12 Li (10.1016/j.jallcom.2021.161269_bib56) 2014; 576 Wagner (10.1016/j.jallcom.2021.161269_bib94) 2001 Koç (10.1016/j.jallcom.2021.161269_bib47) 2006; 174 Hacini (10.1016/j.jallcom.2021.161269_bib40) 2009; 49 Mohanty (10.1016/j.jallcom.2021.161269_bib37) 2017; 703 Eisenlohr (10.1016/j.jallcom.2021.161269_bib85) 2005; 400–401 Senthilkumar (10.1016/j.jallcom.2021.161269_bib26) 2016; 2 Tong (10.1016/j.jallcom.2021.161269_bib19) 2008; 5 Rahimi (10.1016/j.jallcom.2021.161269_bib73) 2017; 708 Bai (10.1016/j.jallcom.2021.161269_bib88) 2019; 50 Singh (10.1016/j.jallcom.2021.161269_bib11) 2015; 225 Zhang (10.1016/j.jallcom.2021.161269_bib44) 2005; 42 Rossiter (10.1016/j.jallcom.2021.161269_bib80) 2010; 26 Nix (10.1016/j.jallcom.2021.161269_bib99) 1998; 46 Gao (10.1016/j.jallcom.2021.161269_bib58) 2020; 195 Lan (10.1016/j.jallcom.2021.161269_bib76) 2019; 745 Deschamps (10.1016/j.jallcom.2021.161269_bib93) 1998; 47 Tang (10.1016/j.jallcom.2021.161269_bib49) 1998; 74 ASTM E837-20 (10.1016/j.jallcom.2021.161269_bib63) 2020 Senthilkumar (10.1016/j.jallcom.2021.161269_bib28) 2010; 211 Gong (10.1016/j.jallcom.2021.161269_bib35) 2019; 9 Wang (10.1016/j.jallcom.2021.161269_bib31) 2015; 99 He (10.1016/j.jallcom.2021.161269_bib64) 2019; 35 Cui (10.1016/j.jallcom.2021.161269_bib12) 2017; 2017 Cai (10.1016/j.jallcom.2021.161269_bib54) 2011; 528 Gross (10.1016/j.jallcom.2021.161269_bib97) 2018 Antolovich (10.1016/j.jallcom.2021.161269_bib75) 2014; 59 Kocks (10.1016/j.jallcom.2021.161269_bib72) 1975 Wu (10.1016/j.jallcom.2021.161269_bib8) 2019; 157–158 Gao (10.1016/j.jallcom.2021.161269_bib34) 2017; 7 Munsi (10.1016/j.jallcom.2021.161269_bib18) 2001; 36 Prime (10.1016/j.jallcom.2021.161269_bib45) 2002; 46 Schajer (10.1016/j.jallcom.2021.161269_bib61) 2010; 132 Archambault (10.1016/j.jallcom.2021.161269_bib70) 1995; 4 Shalvandi (10.1016/j.jallcom.2021.161269_bib38) 2013; 46 Benedetti (10.1016/j.jallcom.2021.161269_bib60) 2016; 87 Fu (10.1016/j.jallcom.2021.161269_bib23) 2014; 56 Perić (10.1016/j.jallcom.2021.161269_bib14) 2014; 53 |
| References_xml | – volume: 745 start-page: 517 year: 2019 end-page: 535 ident: bib76 article-title: Strengthening mechanisms of 2A14 aluminum alloy with cold deformation prior to artificial aging publication-title: Mater. Sci. Eng. A – volume: 781 year: 2020 ident: bib95 article-title: Second phase particles and mechanical properties of 2219 aluminum alloys processed by an improved ring manufacturing process publication-title: Mater. Sci. Eng. A – volume: 266 start-page: 155 year: 2019 end-page: 164 ident: bib5 article-title: Cold metal transfer welding of aluminum alloy AA 2219 to austenitic stainless steel AISI 321 publication-title: J. Mater. Process. Technol. – volume: 209 start-page: 51 year: 1995 end-page: 58 ident: bib17 article-title: Vibratory stress relief—an investigation of the underlying processes publication-title: J. Process. Mech. Eng. – volume: 92 start-page: 779 year: 2016 end-page: 786 ident: bib6 article-title: Microstructure and mechanical performances of ultrasonic spot welded Al-Cu joints with Al 2219 alloy particle interlayer publication-title: Mater. Des. – volume: 673 start-page: 503 year: 2016 end-page: 510 ident: bib27 article-title: Effects of deep cryogenic treatment on the residual stress and mechanical properties of electron-beam-welded Ti-6Al-4V joints publication-title: Mater. Sci. Eng. A – volume: 58 start-page: 1152 year: 2010 end-page: 1211 ident: bib87 article-title: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications publication-title: Acta Mater. – volume: 74 start-page: 259 year: 1998 end-page: 262 ident: bib48 article-title: Research on residual stress reduction by strong pulsed magnetic treatment publication-title: J. Mater. Process. Technol. – volume: 132 year: 2010 ident: bib61 article-title: Dual-axis hole-drilling ESPI residual stress measurements publication-title: J. Eng. Mater. Technol. – volume: 13 start-page: 105 year: 2019 ident: bib10 article-title: Residual stress relief in 2219 aluminium alloy ring using roll-bending publication-title: Materials – volume: 88 start-page: 755 year: 2017 end-page: 765 ident: bib39 article-title: Reduction of pulsed-laser surface irradiation induced residual stress using ultrasonic vibration method publication-title: Int. J. Adv. Manuf. Technol. – volume: 804 year: 2021 ident: bib96 article-title: Effects of warm saddle forging deformation on the reduction of second-phase particles and control of the three-dimensional mechanical properties of 2219 aluminum alloy rings publication-title: Mater. Sci. Eng. A – volume: 527 start-page: 3159 year: 2010 end-page: 3165 ident: bib29 article-title: Minimization of residual stress in heat-treated Al-Si-Mg cast alloys using uphill quenching: mechanisms and effects on static and dynamic properties publication-title: Mater. Sci. Eng. A – volume: 699 start-page: 1140 year: 2017 end-page: 1145 ident: bib2 article-title: Effect of pre-deformation on the microstructures and properties of 2219 aluminum alloy during aging treatment publication-title: J. Alloy. Compd. – volume: 50 start-page: 5750 year: 2019 end-page: 5759 ident: bib88 article-title: A novel stress relaxation modeling for predicting the change of residual stress during annealing heat treatment publication-title: Metall. Mater. Trans. A – volume: 798 year: 2020 ident: bib7 article-title: Effects of axial cold-compression on microstructure uniformity and mechanical property enhancement of large 2219 Al-Cu alloy rings publication-title: Mater. Sci. Eng. A – year: 2020 ident: bib63 article-title: Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method – volume: 174 start-page: 342 year: 2006 end-page: 354 ident: bib47 article-title: Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes publication-title: J. Mater. Process. Technol. – volume: 59 start-page: 1 year: 2014 end-page: 160 ident: bib75 article-title: Plastic strain localization in metals: origins and consequences publication-title: Prog. Mater. Sci. – volume: 46 start-page: 77 year: 2002 end-page: 82 ident: bib45 article-title: Residual stress, stress relief, and inhomogeneity in aluminum plate publication-title: Scr. Mater. – volume: 17 start-page: 2837 year: 2015 end-page: 2845 ident: bib55 article-title: A combined method of thermal and vibratory stress relief publication-title: J. Vibroeng. – year: 1991 ident: bib68 article-title: Principle of Plastic Deformation in Metal Processing – volume: 42 start-page: 3794 year: 2005 end-page: 3806 ident: bib44 article-title: A study on the relief of residual stresses in weldments with explosive treatment publication-title: Int. J. Solids Struct. – volume: 9 start-page: 419 year: 2019 ident: bib57 article-title: Residual stress relief for 2219 aluminum alloy weldments: a comparative study on three stress relief methods publication-title: Metals – year: 2008 ident: bib77 publication-title: Strengthening Mechanisms in Crystal Plasticity – volume: 11 start-page: 92 year: 2002 end-page: 102 ident: bib69 article-title: Prediction of residual stress and distortion of ferrous and non-ferrous metals: current status and future development publication-title: J. Mater. Eng. Perform. – volume: 4 start-page: 730 year: 1995 end-page: 736 ident: bib70 article-title: Inverse resolution of the heat transfer equation: application of steel and aluminum alloy quenching publication-title: J. Mater. Eng. Perform. – volume: 10 start-page: 1943 year: 2011 end-page: 1948 ident: bib42 article-title: Fully dynamic numerical simulation of the hammer peening fatigue life improvement technique publication-title: Proc. Eng. – volume: 528 start-page: 6287 year: 2011 end-page: 6292 ident: bib54 article-title: Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current publication-title: Mater. Sci. Eng. A – volume: 195 year: 2020 ident: bib58 article-title: Experimental and simulation investigation on thermal-vibratory stress relief process for 7075 aluminium alloy publication-title: Mater. Des. – volume: 5 start-page: 26 year: 2011 end-page: 30 ident: bib30 article-title: Uphill quenching of aluminum: a process overview publication-title: Int. Heat Treat. Surf. Eng. – volume: 99 start-page: 248 year: 2015 end-page: 253 ident: bib31 article-title: The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique publication-title: Mater. Charact. – year: 2018 ident: bib97 publication-title: Fracture Mechanics – volume: 29 start-page: 1065 year: 2015 end-page: 1073 ident: bib20 article-title: A study on residual stress mitigation of the HDPE pipe for various annealing conditions publication-title: J. Mech. Sci. Technol. – volume: 712 start-page: 414 year: 2018 end-page: 423 ident: bib1 article-title: Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al-Cu alloy publication-title: Mater. Sci. Eng. A – volume: 54 start-page: 1537 year: 2014 end-page: 1543 ident: bib59 article-title: Influence of drilling parameters on the accuracy of hole-drilling residual stress measurements publication-title: Exp. Mech. – volume: 26 start-page: 56 year: 2020 end-page: 68 ident: bib4 article-title: Effects of warm rolling deformation on the microstructure and ductility of large 2219 Al-Cu alloy rings publication-title: Met. Mater. Int. – volume: 39 start-page: 3257 year: 2002 end-page: 3276 ident: bib91 article-title: A new class of micro-macro models for elastic-viscoplastic heterogeneous materials publication-title: Int. J. Solids Struct. – volume: 87 start-page: 102 year: 2016 end-page: 111 ident: bib60 article-title: Residual stresses reconstruction in shot peened specimens containing sharp and blunt notches by experimental measurements and finite element analysis publication-title: Int. J. Fatigue – volume: 174 start-page: 342 year: 2006 end-page: 354 ident: bib71 article-title: Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes publication-title: J. Mater. Process. Technol. – year: 1975 ident: bib72 publication-title: Thermodynamics and Kinetics of Slip – volume: 26 start-page: 1702 year: 2010 end-page: 1725 ident: bib80 article-title: A new crystal plasticity scheme for explicit time integration codes to simulate deformation in 3D microstructures: effects of strain path, strain rate and thermal softening on localized deformation in the aluminum alloy 5754 during simple shear publication-title: Int. J. Plast. – volume: 102 start-page: 2147 year: 2019 end-page: 2158 ident: bib32 article-title: The influences of the cyclic force magnitude and frequency on the effectiveness of the vibratory stress relief process on a butt welded connection publication-title: Int. J. Adv. Manuf. Technol. – volume: 27 start-page: 17 year: 2003 end-page: 21 ident: bib62 article-title: Residual stress measurement using the hole drilling method and laser speckle interferometry part II: analysis technique publication-title: Exp. Tech. – volume: 53 start-page: 1052 year: 2014 end-page: 1063 ident: bib14 article-title: Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld publication-title: Mater. Des. – volume: 160 year: 2020 ident: bib65 article-title: Effects of deformation temperature on the evolution of second-phase and mechanical properties of large 2219 Al-Cu alloy rings publication-title: Mater. Charact. – volume: 9 start-page: 27 year: 2019 ident: bib35 article-title: Effect of vibration stress relief on the shape stability of aluminum alloy 7075 thin-walled parts publication-title: Metals – volume: 56 start-page: 1034 year: 2014 end-page: 1038 ident: bib23 article-title: Residual stress relaxation and micro-structural development of the surface layer of 18CrNiMo7 steel after shot peening during isothermal annealing publication-title: Mater. Des. – volume: 49 start-page: 775 year: 2009 end-page: 783 ident: bib40 article-title: Evaluation of residual stresses induced by robotized hammer peening by the contour method publication-title: Exp. Mech. – volume: 40 start-page: 705 year: 2016 end-page: 713 ident: bib36 article-title: Analysis of the vibrational stress relief for reducing the residual stresses caused by machining publication-title: Exp. Tech. – volume: 24 start-page: 2256 year: 2015 end-page: 2265 ident: bib22 article-title: Minimization of residual stress in an Al-Cu alloy forged plate by different heat treatments publication-title: J. Mater. Eng. Perform. – volume: 226 start-page: 247 year: 2015 end-page: 254 ident: bib51 article-title: Non-uniform carbon segregation induced by electric current pulse under residual stresses publication-title: J. Mater. Process. Technol. – volume: 59 start-page: 1 year: 2014 end-page: 14 ident: bib78 article-title: Constitutive equations for modeling non-Schmid effects in single crystal bcc-Fe at low and ambient temperatures publication-title: Int. J. Plast. – volume: 225 start-page: 195 year: 2015 end-page: 202 ident: bib11 article-title: Investigation of surface residual stress distribution in deformation machining process for aluminum alloy publication-title: J. Mater. Process. Technol. – volume: 662 start-page: 404 year: 2016 end-page: 411 ident: bib52 article-title: Effects of electric current pulses on mechanical properties and microstructures of as-quenched medium carbon steel publication-title: Mater. Sci. Eng. A – volume: 74 start-page: 29 year: 2015 end-page: 35 ident: bib21 article-title: Iron GH2036 alloy residual stress thermal relaxation behavior in laser shock processing publication-title: Opt. Laser Technol. – volume: 108 start-page: 62 year: 2018 end-page: 67 ident: bib33 article-title: Fatigue life of 7075-T651 aluminum alloy treated with vibratory stress relief publication-title: Int. J. Fatigue – year: 2004 ident: bib86 article-title: On the Role of Dislocation Dipoles in Unidirectional Deformation of Crystals – volume: 46 start-page: 73 year: 2010 end-page: 78 ident: bib25 article-title: Influence of thermal-cooling cycle on both quenching-induced residual stress and machining-induced distortion of aluminum cone-shaped part publication-title: J. Mech. Eng. – volume: 400–401 start-page: 175 year: 2005 end-page: 181 ident: bib85 article-title: Bridging steady-state deformation behavior at low and high temperature by considering dislocation dipole annihilation publication-title: Mater. Sci. Eng. A – volume: 143 start-page: 1183 year: 2017 end-page: 1190 ident: bib79 article-title: Effect of multi-dimensional ultrasonic-assisted pulsed-laser surface irradiation on residual stress in AISI 1045 steel publication-title: J. Clean. Prod. – volume: 33 start-page: 281 year: 2020 end-page: 289 ident: bib53 article-title: Residual stress removal under pulsed electric current publication-title: Acta Metal. Sin. (Engl. Lett.) – volume: 1 year: 2019 ident: bib9 article-title: Developments and perspectives on the precision forming processes for ultra-large size integrated components publication-title: Int. J. Extrem. Manuf. – volume: 212 start-page: 2463 year: 2012 end-page: 2473 ident: bib46 article-title: A modeling of residual stress in stretched aluminum alloy plate publication-title: J. Mater. Process. Technol. – volume: 510 start-page: 7 year: 2015 end-page: 13 ident: bib83 article-title: Dislocation mechanics of creep publication-title: Mater. Sci. Eng. A – year: 1983 ident: bib66 publication-title: The Generation of Residual Stress and Countermeasures – volume: 443 start-page: 77 year: 2007 end-page: 86 ident: bib67 article-title: Dislocation density-based modelling of plastic deformation of zircaloy-4 publication-title: Mater. Sci. Eng. A – volume: 7 start-page: 158 year: 2017 ident: bib34 article-title: Experimental investigation on the fatigue life of Ti-6Al-4V treated by vibratory stress relief publication-title: Metals – volume: 47 start-page: 293 year: 1998 end-page: 305 ident: bib93 article-title: Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress publication-title: Acta Mater. – volume: 47 start-page: 281 year: 1998 end-page: 292 ident: bib92 article-title: Influence of predeformation on ageing in an Al-Zn-Mg alloy—I. Microstructure evolution and mechanical properties publication-title: Acta Mater. – volume: 528 start-page: 6478 year: 2011 end-page: 6483 ident: bib24 article-title: Thermal relaxation of residual stress in shot peened surface layer of (TiB+TiC)/Ti-6Al-4V composite at elevated temperatures publication-title: Mater. Sci. Eng. A – volume: 2 start-page: 427 year: 2016 end-page: 436 ident: bib26 article-title: Effect of deep cryogenic treatment on residual stress and mechanical behaviour of induction hardened En 8 steel publication-title: Adv. Mater. Process. Technol. – volume: 12 start-page: 2003 year: 2019 ident: bib90 article-title: Deformation of single crystals, polycrystalline materials, and thin films: a review publication-title: Materials – volume: 708 start-page: 563 year: 2017 end-page: 573 ident: bib73 article-title: Stress relaxation behaviour in IN718 nickel-based super alloy during ageing heat treatments publication-title: Mater. Sci. Eng. A – volume: 31 start-page: 3588 year: 2016 end-page: 3596 ident: bib84 article-title: Effects of high-frequency vibration on quenched residual stress in Cr12MoV steel publication-title: J. Mater. Res. – volume: 36 start-page: 453 year: 2001 end-page: 464 ident: bib18 article-title: Vibratory stress relief—an investigation of the torsional stress in welded shafts publication-title: J. Strain Anal. Eng. – volume: 34 start-page: 4117 year: 2020 end-page: 4128 ident: bib13 article-title: Low-stiffness spring element constraint boundary condition method for machining deformation simulation publication-title: J. Mech. Sci. Technol. – volume: 74 start-page: 255 year: 1998 end-page: 258 ident: bib49 article-title: Research on residual stress reduction by a low frequency alternating magnetic field publication-title: J. Mater. Process. Technol. – volume: 53 start-page: R124 year: 2009 end-page: R134 ident: bib41 article-title: A comparison of residual stress in hammer-peened, multi-pass steel welds-A514 (S690Q) and S41500 publication-title: Weld. World – volume: 2017 year: 2017 ident: bib12 article-title: Numerical and experimental research on cold compression deformation method for reducing quenching residual stress of 7A85 aluminum alloy thick block forging publication-title: Adv. Mater. Sci. Eng. – start-page: 1 year: 1987 end-page: 88 ident: bib81 article-title: Constitutive behavior based on crystal plasticity publication-title: Unified Constitutive Equations for Creep and Plasticity – volume: 80 start-page: 705 year: 2003 end-page: 713 ident: bib43 article-title: Residual stress relief in mag welded joints of dissimilar steels publication-title: Int. J. Press. Vessel. Pip. – volume: 102 start-page: 169 year: 1980 end-page: 182 ident: bib16 article-title: Vibratory stress relief a fundamental study of its effectiveness publication-title: J. Eng. Mater. Technol. – start-page: 309 year: 2001 end-page: 407 ident: bib94 article-title: Homogeneous second phase precipitation publication-title: Phase Transformations in Materials Science and Technology – volume: 157–158 start-page: 111 year: 2019 end-page: 118 ident: bib8 article-title: Analysis and homogenization of residual stress in aerospace ring rolling process of 2219 aluminum alloy using thermal stress relief method publication-title: Int. J. Mech. Sci. – volume: 141 start-page: 385 year: 2003 end-page: 394 ident: bib50 article-title: Residual stress reduction by pulsed magnetic treatment publication-title: J. Mater. Process. Technol. – volume: 46 start-page: 411 year: 1998 end-page: 425 ident: bib99 article-title: Indentation size effects in crystalline materials: a law for strain gradient plasticity publication-title: J. Mech. Phys. Solids – volume: 35 start-page: 55 year: 2019 end-page: 63 ident: bib64 article-title: An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties publication-title: J. Mater. Sci. Technol. – volume: 98 start-page: 76 year: 1976 end-page: 85 ident: bib82 article-title: Laws for work-hardening and low-temperature creep publication-title: J. Eng. Mater. Technol. – volume: 5 start-page: 186 year: 2008 end-page: 189 ident: bib19 article-title: Study and practice of decreasing residual stress with residual heat of casting publication-title: China Foundry – volume: 211 start-page: 396 year: 2010 end-page: 401 ident: bib28 article-title: Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel publication-title: J. Mater. Process. Technol. – volume: 46 start-page: 713 year: 2013 end-page: 723 ident: bib38 article-title: Influence of ultrasonic stress relief on stainless steel 316 specimens: a comparison with thermal stress relief publication-title: Mater. Des. – volume: 33 start-page: 291 year: 2002 end-page: 303 ident: bib74 article-title: Understanding creep—a review publication-title: Metall. Mater. Trans. A – start-page: 11 year: 2002 end-page: 26 ident: bib98 article-title: Prestress engineering of structural material: a global design approach to the residual stress problem publication-title: Handbook of Residual Stress and Deformation of Steel – volume: 703 start-page: 227 year: 2017 end-page: 235 ident: bib37 article-title: The residual stress distribution of CO publication-title: Mater. Sci. Eng. A – volume: 47 start-page: 411 year: 1968 end-page: 419 ident: bib15 article-title: An investigation of vibrational stress relief in steel publication-title: Weld. J. – volume: 55 start-page: 1391 year: 2002 end-page: 1437 ident: bib89 article-title: A continuum sensitivity method for finite thermo-inelastic deformations with applications to the design of hot forming processes publication-title: Int. J. Numer. Methods Eng. – volume: 34 start-page: 559 year: 1996 end-page: 564 ident: bib100 article-title: Micro-hardness of annealed and work-hardened copper polycrystals publication-title: Scr. Mater. – volume: 35 start-page: 55 year: 2019 end-page: 63 ident: bib3 article-title: An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties publication-title: J. Mater. Sci. Technol. – volume: 576 start-page: 143 year: 2014 end-page: 147 ident: bib56 article-title: Thermal vibration compound stress relief on thick DH36 steel welded plates publication-title: Appl. Mech. Mater. – year: 2020 ident: 10.1016/j.jallcom.2021.161269_bib63 – volume: 87 start-page: 102 year: 2016 ident: 10.1016/j.jallcom.2021.161269_bib60 article-title: Residual stresses reconstruction in shot peened specimens containing sharp and blunt notches by experimental measurements and finite element analysis publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2016.01.020 – volume: 4 start-page: 730 year: 1995 ident: 10.1016/j.jallcom.2021.161269_bib70 article-title: Inverse resolution of the heat transfer equation: application of steel and aluminum alloy quenching publication-title: J. Mater. Eng. Perform. doi: 10.1007/BF02646449 – volume: 59 start-page: 1 year: 2014 ident: 10.1016/j.jallcom.2021.161269_bib78 article-title: Constitutive equations for modeling non-Schmid effects in single crystal bcc-Fe at low and ambient temperatures publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.03.016 – volume: 98 start-page: 76 issue: 1 year: 1976 ident: 10.1016/j.jallcom.2021.161269_bib82 article-title: Laws for work-hardening and low-temperature creep publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3443340 – volume: 5 start-page: 186 issue: 3 year: 2008 ident: 10.1016/j.jallcom.2021.161269_bib19 article-title: Study and practice of decreasing residual stress with residual heat of casting publication-title: China Foundry – volume: 26 start-page: 56 year: 2020 ident: 10.1016/j.jallcom.2021.161269_bib4 article-title: Effects of warm rolling deformation on the microstructure and ductility of large 2219 Al-Cu alloy rings publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00303-5 – volume: 160 year: 2020 ident: 10.1016/j.jallcom.2021.161269_bib65 article-title: Effects of deformation temperature on the evolution of second-phase and mechanical properties of large 2219 Al-Cu alloy rings publication-title: Mater. Charact. doi: 10.1016/j.matchar.2019.110094 – volume: 5 start-page: 26 issue: 1 year: 2011 ident: 10.1016/j.jallcom.2021.161269_bib30 article-title: Uphill quenching of aluminum: a process overview publication-title: Int. Heat Treat. Surf. Eng. doi: 10.1179/174951410X12851626813177 – volume: 24 start-page: 2256 issue: 6 year: 2015 ident: 10.1016/j.jallcom.2021.161269_bib22 article-title: Minimization of residual stress in an Al-Cu alloy forged plate by different heat treatments publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-015-1505-2 – volume: 27 start-page: 17 year: 2003 ident: 10.1016/j.jallcom.2021.161269_bib62 article-title: Residual stress measurement using the hole drilling method and laser speckle interferometry part II: analysis technique publication-title: Exp. Tech. doi: 10.1111/j.1747-1567.2003.tb00117.x – volume: 699 start-page: 1140 year: 2017 ident: 10.1016/j.jallcom.2021.161269_bib2 article-title: Effect of pre-deformation on the microstructures and properties of 2219 aluminum alloy during aging treatment publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.12.006 – volume: 33 start-page: 281 issue: 2 year: 2020 ident: 10.1016/j.jallcom.2021.161269_bib53 article-title: Residual stress removal under pulsed electric current publication-title: Acta Metal. Sin. (Engl. Lett.) doi: 10.1007/s40195-019-00941-z – volume: 510 start-page: 7 issue: 10 year: 2015 ident: 10.1016/j.jallcom.2021.161269_bib83 article-title: Dislocation mechanics of creep publication-title: Mater. Sci. Eng. A – volume: 88 start-page: 755 year: 2017 ident: 10.1016/j.jallcom.2021.161269_bib39 article-title: Reduction of pulsed-laser surface irradiation induced residual stress using ultrasonic vibration method publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-8798-7 – volume: 157–158 start-page: 111 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib8 article-title: Analysis and homogenization of residual stress in aerospace ring rolling process of 2219 aluminum alloy using thermal stress relief method publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.04.040 – volume: 527 start-page: 3159 issue: 13–14 year: 2010 ident: 10.1016/j.jallcom.2021.161269_bib29 article-title: Minimization of residual stress in heat-treated Al-Si-Mg cast alloys using uphill quenching: mechanisms and effects on static and dynamic properties publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.01.064 – volume: 33 start-page: 291 issue: 2 year: 2002 ident: 10.1016/j.jallcom.2021.161269_bib74 article-title: Understanding creep—a review publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-002-0090-9 – volume: 225 start-page: 195 year: 2015 ident: 10.1016/j.jallcom.2021.161269_bib11 article-title: Investigation of surface residual stress distribution in deformation machining process for aluminum alloy publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.05.025 – volume: 74 start-page: 29 year: 2015 ident: 10.1016/j.jallcom.2021.161269_bib21 article-title: Iron GH2036 alloy residual stress thermal relaxation behavior in laser shock processing publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2015.05.009 – volume: 528 start-page: 6287 year: 2011 ident: 10.1016/j.jallcom.2021.161269_bib54 article-title: Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.04.078 – year: 1991 ident: 10.1016/j.jallcom.2021.161269_bib68 – volume: 132 year: 2010 ident: 10.1016/j.jallcom.2021.161269_bib61 article-title: Dual-axis hole-drilling ESPI residual stress measurements publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3184035 – volume: 443 start-page: 77 issue: 1–2 year: 2007 ident: 10.1016/j.jallcom.2021.161269_bib67 article-title: Dislocation density-based modelling of plastic deformation of zircaloy-4 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.08.085 – year: 2004 ident: 10.1016/j.jallcom.2021.161269_bib86 – volume: 141 start-page: 385 year: 2003 ident: 10.1016/j.jallcom.2021.161269_bib50 article-title: Residual stress reduction by pulsed magnetic treatment publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(03)00387-X – volume: 528 start-page: 6478 issue: 21 year: 2011 ident: 10.1016/j.jallcom.2021.161269_bib24 article-title: Thermal relaxation of residual stress in shot peened surface layer of (TiB+TiC)/Ti-6Al-4V composite at elevated temperatures publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.04.075 – volume: 745 start-page: 517 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib76 article-title: Strengthening mechanisms of 2A14 aluminum alloy with cold deformation prior to artificial aging publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.12.051 – volume: 662 start-page: 404 year: 2016 ident: 10.1016/j.jallcom.2021.161269_bib52 article-title: Effects of electric current pulses on mechanical properties and microstructures of as-quenched medium carbon steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.03.031 – volume: 143 start-page: 1183 year: 2017 ident: 10.1016/j.jallcom.2021.161269_bib79 article-title: Effect of multi-dimensional ultrasonic-assisted pulsed-laser surface irradiation on residual stress in AISI 1045 steel publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.12.003 – year: 1975 ident: 10.1016/j.jallcom.2021.161269_bib72 – volume: 9 start-page: 419 issue: 4 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib57 article-title: Residual stress relief for 2219 aluminum alloy weldments: a comparative study on three stress relief methods publication-title: Metals doi: 10.3390/met9040419 – volume: 53 start-page: R124 issue: 5–6 year: 2009 ident: 10.1016/j.jallcom.2021.161269_bib41 article-title: A comparison of residual stress in hammer-peened, multi-pass steel welds-A514 (S690Q) and S41500 publication-title: Weld. World doi: 10.1007/BF03266717 – volume: 46 start-page: 713 year: 2013 ident: 10.1016/j.jallcom.2021.161269_bib38 article-title: Influence of ultrasonic stress relief on stainless steel 316 specimens: a comparison with thermal stress relief publication-title: Mater. Des. doi: 10.1016/j.matdes.2012.11.023 – volume: 266 start-page: 155 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib5 article-title: Cold metal transfer welding of aluminum alloy AA 2219 to austenitic stainless steel AISI 321 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.10.034 – volume: 47 start-page: 293 issue: 1 year: 1998 ident: 10.1016/j.jallcom.2021.161269_bib93 article-title: Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00296-1 – volume: 108 start-page: 62 year: 2018 ident: 10.1016/j.jallcom.2021.161269_bib33 article-title: Fatigue life of 7075-T651 aluminum alloy treated with vibratory stress relief publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2017.11.011 – volume: 35 start-page: 55 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib3 article-title: An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.09.007 – volume: 174 start-page: 342 issue: 1–3 year: 2006 ident: 10.1016/j.jallcom.2021.161269_bib71 article-title: Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.02.007 – volume: 400–401 start-page: 175 year: 2005 ident: 10.1016/j.jallcom.2021.161269_bib85 article-title: Bridging steady-state deformation behavior at low and high temperature by considering dislocation dipole annihilation publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2005.01.069 – volume: 708 start-page: 563 year: 2017 ident: 10.1016/j.jallcom.2021.161269_bib73 article-title: Stress relaxation behaviour in IN718 nickel-based super alloy during ageing heat treatments publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.09.116 – volume: 39 start-page: 3257 year: 2002 ident: 10.1016/j.jallcom.2021.161269_bib91 article-title: A new class of micro-macro models for elastic-viscoplastic heterogeneous materials publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(02)00256-1 – volume: 102 start-page: 2147 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib32 article-title: The influences of the cyclic force magnitude and frequency on the effectiveness of the vibratory stress relief process on a butt welded connection publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-019-03288-y – volume: 92 start-page: 779 year: 2016 ident: 10.1016/j.jallcom.2021.161269_bib6 article-title: Microstructure and mechanical performances of ultrasonic spot welded Al-Cu joints with Al 2219 alloy particle interlayer publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.12.132 – volume: 99 start-page: 248 issue: 1 year: 2015 ident: 10.1016/j.jallcom.2021.161269_bib31 article-title: The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique publication-title: Mater. Charact. doi: 10.1016/j.matchar.2014.09.019 – year: 1983 ident: 10.1016/j.jallcom.2021.161269_bib66 – volume: 46 start-page: 411 issue: 3 year: 1998 ident: 10.1016/j.jallcom.2021.161269_bib99 article-title: Indentation size effects in crystalline materials: a law for strain gradient plasticity publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(97)00086-0 – volume: 12 start-page: 2003 issue: 12 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib90 article-title: Deformation of single crystals, polycrystalline materials, and thin films: a review publication-title: Materials doi: 10.3390/ma12122003 – volume: 11 start-page: 92 year: 2002 ident: 10.1016/j.jallcom.2021.161269_bib69 article-title: Prediction of residual stress and distortion of ferrous and non-ferrous metals: current status and future development publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-002-0014-2 – volume: 10 start-page: 1943 issue: 7 year: 2011 ident: 10.1016/j.jallcom.2021.161269_bib42 article-title: Fully dynamic numerical simulation of the hammer peening fatigue life improvement technique publication-title: Proc. Eng. doi: 10.1016/j.proeng.2011.04.322 – volume: 29 start-page: 1065 issue: 3 year: 2015 ident: 10.1016/j.jallcom.2021.161269_bib20 article-title: A study on residual stress mitigation of the HDPE pipe for various annealing conditions publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-015-0218-7 – volume: 50 start-page: 5750 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib88 article-title: A novel stress relaxation modeling for predicting the change of residual stress during annealing heat treatment publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-019-05454-z – volume: 211 start-page: 396 issue: 3 year: 2010 ident: 10.1016/j.jallcom.2021.161269_bib28 article-title: Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2010.10.018 – volume: 74 start-page: 259 year: 1998 ident: 10.1016/j.jallcom.2021.161269_bib48 article-title: Research on residual stress reduction by strong pulsed magnetic treatment publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(97)00280-X – volume: 80 start-page: 705 year: 2003 ident: 10.1016/j.jallcom.2021.161269_bib43 article-title: Residual stress relief in mag welded joints of dissimilar steels publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2003.08.004 – volume: 46 start-page: 77 issue: 1 year: 2002 ident: 10.1016/j.jallcom.2021.161269_bib45 article-title: Residual stress, stress relief, and inhomogeneity in aluminum plate publication-title: Scr. Mater. doi: 10.1016/S1359-6462(01)01201-5 – volume: 2017 year: 2017 ident: 10.1016/j.jallcom.2021.161269_bib12 article-title: Numerical and experimental research on cold compression deformation method for reducing quenching residual stress of 7A85 aluminum alloy thick block forging publication-title: Adv. Mater. Sci. Eng. – volume: 47 start-page: 411 issue: 9 year: 1968 ident: 10.1016/j.jallcom.2021.161269_bib15 article-title: An investigation of vibrational stress relief in steel publication-title: Weld. J. – volume: 54 start-page: 1537 year: 2014 ident: 10.1016/j.jallcom.2021.161269_bib59 article-title: Influence of drilling parameters on the accuracy of hole-drilling residual stress measurements publication-title: Exp. Mech. doi: 10.1007/s11340-014-9923-x – volume: 102 start-page: 169 year: 1980 ident: 10.1016/j.jallcom.2021.161269_bib16 article-title: Vibratory stress relief a fundamental study of its effectiveness publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3224793 – volume: 804 year: 2021 ident: 10.1016/j.jallcom.2021.161269_bib96 article-title: Effects of warm saddle forging deformation on the reduction of second-phase particles and control of the three-dimensional mechanical properties of 2219 aluminum alloy rings publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.140737 – volume: 59 start-page: 1 year: 2014 ident: 10.1016/j.jallcom.2021.161269_bib75 article-title: Plastic strain localization in metals: origins and consequences publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.06.001 – volume: 2 start-page: 427 issue: 4 year: 2016 ident: 10.1016/j.jallcom.2021.161269_bib26 article-title: Effect of deep cryogenic treatment on residual stress and mechanical behaviour of induction hardened En 8 steel publication-title: Adv. Mater. Process. Technol. – volume: 34 start-page: 4117 issue: 10 year: 2020 ident: 10.1016/j.jallcom.2021.161269_bib13 article-title: Low-stiffness spring element constraint boundary condition method for machining deformation simulation publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-020-0905-x – volume: 576 start-page: 143 year: 2014 ident: 10.1016/j.jallcom.2021.161269_bib56 article-title: Thermal vibration compound stress relief on thick DH36 steel welded plates publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.576.143 – volume: 55 start-page: 1391 year: 2002 ident: 10.1016/j.jallcom.2021.161269_bib89 article-title: A continuum sensitivity method for finite thermo-inelastic deformations with applications to the design of hot forming processes publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.543 – volume: 40 start-page: 705 issue: 2 year: 2016 ident: 10.1016/j.jallcom.2021.161269_bib36 article-title: Analysis of the vibrational stress relief for reducing the residual stresses caused by machining publication-title: Exp. Tech. doi: 10.1007/s40799-016-0071-3 – start-page: 1 year: 1987 ident: 10.1016/j.jallcom.2021.161269_bib81 article-title: Constitutive behavior based on crystal plasticity – volume: 17 start-page: 2837 year: 2015 ident: 10.1016/j.jallcom.2021.161269_bib55 article-title: A combined method of thermal and vibratory stress relief publication-title: J. Vibroeng. – volume: 7 start-page: 158 issue: 5 year: 2017 ident: 10.1016/j.jallcom.2021.161269_bib34 article-title: Experimental investigation on the fatigue life of Ti-6Al-4V treated by vibratory stress relief publication-title: Metals doi: 10.3390/met7050158 – volume: 42 start-page: 3794 issue: 13 year: 2005 ident: 10.1016/j.jallcom.2021.161269_bib44 article-title: A study on the relief of residual stresses in weldments with explosive treatment publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2004.11.017 – volume: 195 year: 2020 ident: 10.1016/j.jallcom.2021.161269_bib58 article-title: Experimental and simulation investigation on thermal-vibratory stress relief process for 7075 aluminium alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108954 – volume: 36 start-page: 453 issue: 5 year: 2001 ident: 10.1016/j.jallcom.2021.161269_bib18 article-title: Vibratory stress relief—an investigation of the torsional stress in welded shafts publication-title: J. Strain Anal. Eng. doi: 10.1243/0309324011514610 – start-page: 309 year: 2001 ident: 10.1016/j.jallcom.2021.161269_bib94 article-title: Homogeneous second phase precipitation – volume: 209 start-page: 51 issue: 1 year: 1995 ident: 10.1016/j.jallcom.2021.161269_bib17 article-title: Vibratory stress relief—an investigation of the underlying processes publication-title: J. Process. Mech. Eng. doi: 10.1243/PIME_PROC_1995_209_228_02 – volume: 226 start-page: 247 year: 2015 ident: 10.1016/j.jallcom.2021.161269_bib51 article-title: Non-uniform carbon segregation induced by electric current pulse under residual stresses publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.07.017 – volume: 174 start-page: 342 issue: 1–3 year: 2006 ident: 10.1016/j.jallcom.2021.161269_bib47 article-title: Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.02.007 – start-page: 11 year: 2002 ident: 10.1016/j.jallcom.2021.161269_bib98 article-title: Prestress engineering of structural material: a global design approach to the residual stress problem – volume: 58 start-page: 1152 year: 2010 ident: 10.1016/j.jallcom.2021.161269_bib87 article-title: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.10.058 – volume: 712 start-page: 414 year: 2018 ident: 10.1016/j.jallcom.2021.161269_bib1 article-title: Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al-Cu alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.11.124 – volume: 47 start-page: 281 issue: 1 year: 1998 ident: 10.1016/j.jallcom.2021.161269_bib92 article-title: Influence of predeformation on ageing in an Al-Zn-Mg alloy—I. Microstructure evolution and mechanical properties publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00293-6 – volume: 74 start-page: 255 year: 1998 ident: 10.1016/j.jallcom.2021.161269_bib49 article-title: Research on residual stress reduction by a low frequency alternating magnetic field publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(97)00279-3 – volume: 781 year: 2020 ident: 10.1016/j.jallcom.2021.161269_bib95 article-title: Second phase particles and mechanical properties of 2219 aluminum alloys processed by an improved ring manufacturing process publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139226 – volume: 49 start-page: 775 issue: 6 year: 2009 ident: 10.1016/j.jallcom.2021.161269_bib40 article-title: Evaluation of residual stresses induced by robotized hammer peening by the contour method publication-title: Exp. Mech. doi: 10.1007/s11340-008-9205-6 – volume: 34 start-page: 559 issue: 4 year: 1996 ident: 10.1016/j.jallcom.2021.161269_bib100 article-title: Micro-hardness of annealed and work-hardened copper polycrystals publication-title: Scr. Mater. doi: 10.1016/1359-6462(95)00524-2 – year: 2018 ident: 10.1016/j.jallcom.2021.161269_bib97 – volume: 798 year: 2020 ident: 10.1016/j.jallcom.2021.161269_bib7 article-title: Effects of axial cold-compression on microstructure uniformity and mechanical property enhancement of large 2219 Al-Cu alloy rings publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.140233 – volume: 9 start-page: 27 issue: 1 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib35 article-title: Effect of vibration stress relief on the shape stability of aluminum alloy 7075 thin-walled parts publication-title: Metals doi: 10.3390/met9010027 – volume: 703 start-page: 227 year: 2017 ident: 10.1016/j.jallcom.2021.161269_bib37 article-title: The residual stress distribution of CO2 laser beam welded AISI 316 austenitic stainless steel and the effect of vibratory stress relief publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.07.066 – volume: 56 start-page: 1034 year: 2014 ident: 10.1016/j.jallcom.2021.161269_bib23 article-title: Residual stress relaxation and micro-structural development of the surface layer of 18CrNiMo7 steel after shot peening during isothermal annealing publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.12.011 – volume: 13 start-page: 105 issue: 1 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib10 article-title: Residual stress relief in 2219 aluminium alloy ring using roll-bending publication-title: Materials doi: 10.3390/ma13010105 – volume: 673 start-page: 503 year: 2016 ident: 10.1016/j.jallcom.2021.161269_bib27 article-title: Effects of deep cryogenic treatment on the residual stress and mechanical properties of electron-beam-welded Ti-6Al-4V joints publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.07.101 – volume: 46 start-page: 73 issue: 14 year: 2010 ident: 10.1016/j.jallcom.2021.161269_bib25 article-title: Influence of thermal-cooling cycle on both quenching-induced residual stress and machining-induced distortion of aluminum cone-shaped part publication-title: J. Mech. Eng. doi: 10.3901/JME.2010.14.073 – volume: 26 start-page: 1702 year: 2010 ident: 10.1016/j.jallcom.2021.161269_bib80 article-title: A new crystal plasticity scheme for explicit time integration codes to simulate deformation in 3D microstructures: effects of strain path, strain rate and thermal softening on localized deformation in the aluminum alloy 5754 during simple shear publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2010.02.007 – volume: 212 start-page: 2463 issue: 11 year: 2012 ident: 10.1016/j.jallcom.2021.161269_bib46 article-title: A modeling of residual stress in stretched aluminum alloy plate publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2012.06.019 – volume: 1 issue: 2 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib9 article-title: Developments and perspectives on the precision forming processes for ultra-large size integrated components publication-title: Int. J. Extrem. Manuf. doi: 10.1088/2631-7990/ab22a9 – year: 2008 ident: 10.1016/j.jallcom.2021.161269_bib77 – volume: 53 start-page: 1052 year: 2014 ident: 10.1016/j.jallcom.2021.161269_bib14 article-title: Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.08.011 – volume: 31 start-page: 3588 year: 2016 ident: 10.1016/j.jallcom.2021.161269_bib84 article-title: Effects of high-frequency vibration on quenched residual stress in Cr12MoV steel publication-title: J. Mater. Res. doi: 10.1557/jmr.2016.378 – volume: 35 start-page: 55 year: 2019 ident: 10.1016/j.jallcom.2021.161269_bib64 article-title: An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.09.007 |
| SSID | ssj0001931 |
| Score | 2.5554912 |
| Snippet | •A STVSR process was proposed to stress relief for large 2219 Al-Cu alloy transition rings.•The residual stresses decreased and mechanical properties improved... Large 2219 Al-Cu alloy transition rings are extensively employed in propellant tanks of heavy launch vehicles. These rings have a diameter exceeding 5 m or... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 161269 |
| SubjectTerms | 2219 Aluminum alloys Aluminum base alloys Axial stress Copper Diameters Diamond pyramid hardness Evolution Evolution mechanisms Large rings Machining Mechanical properties Metallography Microstructures Phases Propellant tanks Residual stress Residual stresses Segmented thermal-vibration Stiffness Tensile properties Thermal stress Vibration Vibratory stress relieving |
| Title | Effects of segmented thermal-vibration stress relief process on residual stresses, mechanical properties and microstructures of large 2219 Al alloy rings |
| URI | https://dx.doi.org/10.1016/j.jallcom.2021.161269 https://www.proquest.com/docview/2600349162 |
| Volume | 886 |
| WOSCitedRecordID | wos000697753300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgQcEAQQhYL2wC042LsbP45RFQgcKlCLCCdrs15XjVwnSpqo_BR-Bv-QmX3YpQEVkLhY0drr9er7Mp4Zz4OQl2WhWcySMCgZV4HA6q3TeMACXogslUoomUjTbCI5PEwnk-xDp_Pd58JsqqSu04uLbPFfoYYxABtTZ_8C7uamMAC_AXQ4Auxw_CPgR22ExkqfmJqbJkYSJHAVbNA6NpC7JJGlBiW07C1svgB-OoBhm6Blr7Bi5ExjhrABdIHu-yXWYTUfHs4wos9WoV0vbQXbCqPLewykVG-IAdDV_Gtv2XjktzVhc8XKZ9gtsNFTo-kfuZDhMTzAumXyW2lcvGNZz9bN4Oc1jn2E3Z1s-cO_wJ4uezhYhNEiNsfTut22Um-s_5INgpTbnoB9baV3mvBAxLb3ixfvqS21vfWqsF6LWX8Gm8TAIVy5D_ovc9N_rsJ9hOvhcmgiwwt-cIPssmSQgSDdHb4bTd43r3_QiE2bRv98bdrY618u9juF6IpqYPSd4_vknoOHDi3BHpCOrrvk9oHvD9gldy-VsuySWyaUWK0ekm-OgHRe0oaAdIuA1NKLWgJSR0AKJzwBqSfgK9rSj7b0o0AYeoV-uKihH0X60WFFDbmood8j8unN6PhgHLgGIIHiPDkPRKSLMizZQArFoqkA6zwCmZOEaVEUoQ6jqZQpmDSoU0tVlomOsqkqBU9UkcVC8cdkp57X-gmh2ZQXPC1CXoCNAkq7hNOScx2qDAyCON4jwqOQK1cdH5u0VLkPg5zlDrwcwcsteHuk30xb2PIw101IPcS503Gt7poDL6-buu8pkTt5s8qxvwQXYOOxp_9-52fkTvu_2yc7AJp-Tm6qzfnpavnCEfwHBrHexQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+segmented+thermal-vibration+stress+relief+process+on+residual+stresses%2C+mechanical+properties+and+microstructures+of+large+2219+Al+alloy+rings&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Song%2C+Hechuan&rft.au=Gao%2C+Hanjun&rft.au=Wu%2C+Qiong&rft.au=Zhang%2C+Yidu&rft.date=2021-12-15&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=886&rft_id=info:doi/10.1016%2Fj.jallcom.2021.161269&rft.externalDocID=S0925838821026785 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |