Enhancing structural stability of NaCrO2 by Nb-substituting for sodium-ion battery

As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and 3.6 V, which corresponds to about 0.5 Na per formula is extracted/inserted. However, irreversible phase transition happens in NaxCrO2 when x is le...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds Vol. 925; p. 166690
Main Authors: Wang, Shuo, Chen, Fei, He, Hai-yan, Zhu, Yi-ran, Liu, Huai-bing, Chen, Chun-hua
Format: Journal Article
Language:English
Published: Lausanne Elsevier B.V 05.12.2022
Elsevier BV
Subjects:
ISSN:0925-8388, 1873-4669
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and 3.6 V, which corresponds to about 0.5 Na per formula is extracted/inserted. However, irreversible phase transition happens in NaxCrO2 when x is less than 0.4 and the potential is exceeding 3.6 V vs. Na+/Na. To improve its high-potential structural stability, Nb5+ is introduced to Cr3+ site by a sol-gel method successfully in this study. The influences of Nb5+ doping on the crystal structure and electrochemical properties are explored. As a result, a more stable structure as well as a higher ionic conductivity are achieved in Na0.94Cr0.97Nb0.03O2 (NCO-Nb3), exhibiting better rate performance and cycling stability between 2.0 and 3.6 V and 2.0–3.7 V. When elevating the charging cut-off voltage to 3.8 V, 4.0 V, 4.4 V, the initial coulombic efficiencies of NCO-Nb3 are still significantly higher than those of pristine NCO. •Pentavalent Nb5+ is substituted in Cr3+ site successfully, and the lattice spacing is enlarged.•The structure stability and ionic conductivity are improved with the doping of Nb5+.•Enhanced rate performances and stable cycle performances are achieved in different voltage ranges.•When tested between 2.0 and 3.7 V, NCO-Nb3 can achieve 1000 cycles at 10 C.
AbstractList As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and 3.6 V, which corresponds to about 0.5 Na per formula is extracted/inserted. However, irreversible phase transition happens in NaxCrO2 when x is less than 0.4 and the potential is exceeding 3.6 V vs. Na+/Na. To improve its high-potential structural stability, Nb5+ is introduced to Cr3+ site by a sol-gel method successfully in this study. The influences of Nb5+ doping on the crystal structure and electrochemical properties are explored. As a result, a more stable structure as well as a higher ionic conductivity are achieved in Na0.94Cr0.97Nb0.03O2 (NCO-Nb3), exhibiting better rate performance and cycling stability between 2.0 and 3.6 V and 2.0–3.7 V. When elevating the charging cut-off voltage to 3.8 V, 4.0 V, 4.4 V, the initial coulombic efficiencies of NCO-Nb3 are still significantly higher than those of pristine NCO. •Pentavalent Nb5+ is substituted in Cr3+ site successfully, and the lattice spacing is enlarged.•The structure stability and ionic conductivity are improved with the doping of Nb5+.•Enhanced rate performances and stable cycle performances are achieved in different voltage ranges.•When tested between 2.0 and 3.7 V, NCO-Nb3 can achieve 1000 cycles at 10 C.
As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and 3.6 V, which corresponds to about 0.5 Na per formula is extracted/inserted. However, irreversible phase transition happens in NaxCrO2 when x is less than 0.4 and the potential is exceeding 3.6 V vs. Na+/Na. To improve its high-potential structural stability, Nb5+ is introduced to Cr3+ site by a sol-gel method successfully in this study. The influences of Nb5+ doping on the crystal structure and electrochemical properties are explored. As a result, a more stable structure as well as a higher ionic conductivity are achieved in Na0.94Cr0.97Nb0.03O2 (NCO-Nb3), exhibiting better rate performance and cycling stability between 2.0 and 3.6 V and 2.0–3.7 V. When elevating the charging cut-off voltage to 3.8 V, 4.0 V, 4.4 V, the initial coulombic efficiencies of NCO-Nb3 are still significantly higher than those of pristine NCO.
ArticleNumber 166690
Author Wang, Shuo
Chen, Fei
He, Hai-yan
Liu, Huai-bing
Zhu, Yi-ran
Chen, Chun-hua
Author_xml – sequence: 1
  givenname: Shuo
  surname: Wang
  fullname: Wang, Shuo
– sequence: 2
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
– sequence: 3
  givenname: Hai-yan
  surname: He
  fullname: He, Hai-yan
– sequence: 4
  givenname: Yi-ran
  surname: Zhu
  fullname: Zhu, Yi-ran
– sequence: 5
  givenname: Huai-bing
  surname: Liu
  fullname: Liu, Huai-bing
– sequence: 6
  givenname: Chun-hua
  surname: Chen
  fullname: Chen, Chun-hua
  email: cchchen@ustc.edu.cn
BookMark eNqFkE1Lw0AQhhepYFv9CULAc-J-5BMPIqV-QGlB9LxMNrO6Ic3W3Y3Qf29Ke_LS08zA-8wMz4xMetsjIbeMJoyy_L5NWug6ZbcJp5wnLM_zil6QKSsLEafjMCFTWvEsLkVZXpGZ9y2llFWCTcn7sv-GXpn-K_LBDSoMDrqxhdp0Juwjq6M1LNyGR_U-WtexH2ofTBjCgdDWRd42ZtjGxvZRDSGg21-TSw2dx5tTnZPP5-XH4jVebV7eFk-rWAlRhFg0iiLPMlYjCiwLaMoqValWrELQBRVQpjqDDNJU5xQEQ8i0SoHRuqmRg5iTu-PenbM_A_ogWzu4fjwpecHLjBU5rcbUwzGlnPXeoZbKBAjjv8GB6SSj8iBRtvIkUR4kyqPEkc7-0TtntuD2Z7nHI4ejgF-DTnplsFfYGIcqyMaaMxv-ABJSknc
CitedBy_id crossref_primary_10_3390_mi16020137
crossref_primary_10_1016_j_apsusc_2024_161804
crossref_primary_10_1016_j_ces_2025_121308
crossref_primary_10_1002_sstr_202500400
crossref_primary_10_1002_aenm_202405951
crossref_primary_10_1002_sstr_202400561
Cites_doi 10.1016/j.esci.2021.12.008
10.1016/j.elecom.2009.12.033
10.1149/2.002201esl
10.1016/j.elecom.2012.06.001
10.1039/c3ta12282d
10.1039/D1CC00304F
10.1149/1945-7111/abf9bf
10.1038/35104599
10.1016/j.esci.2021.10.003
10.1021/acsami.8b20149
10.1016/j.nanoen.2019.104215
10.1016/j.jpowsour.2013.03.006
10.1038/35104644
10.1039/C6CS00776G
10.1016/j.ensm.2021.05.046
10.1149/2.1041910jes
10.1039/C5EE00695C
10.1016/j.jpowsour.2011.11.086
10.1021/acs.chemmater.5b04626
10.1021/acsanm.7b00207
10.1021/jp5105888
10.1016/j.jpowsour.2019.226760
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Dec 5, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 5, 2022
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2022.166690
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2022_166690
S092583882203081X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
T9H
WUQ
~HD
8BQ
8FD
JG9
ID FETCH-LOGICAL-c337t-3dc0e2551bee3e87ad894c4fc19eaf703a84f5a5a44f60a31ea5fc4a10bdbe2a3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848385200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-8388
IngestDate Sun Nov 30 05:34:02 EST 2025
Sat Nov 29 07:17:24 EST 2025
Tue Nov 18 22:39:54 EST 2025
Fri Feb 23 02:38:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sodium chromium oxide
Cycle stability
Sodium-ion battery
High voltage
Rate performance
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-3dc0e2551bee3e87ad894c4fc19eaf703a84f5a5a44f60a31ea5fc4a10bdbe2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2728517609
PQPubID 2045454
ParticipantIDs proquest_journals_2728517609
crossref_citationtrail_10_1016_j_jallcom_2022_166690
crossref_primary_10_1016_j_jallcom_2022_166690
elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_166690
PublicationCentury 2000
PublicationDate 2022-12-05
PublicationDateYYYYMMDD 2022-12-05
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-05
  day: 05
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Tsuchiya, Glushenkov, Yabuuchi (bib18) 2018; 1
Chen, Matsumoto, Nohira, Hagiwara, Fukunaga, Sakai, Nitta, Inazawa (bib17) 2013; 237
Kubota, Ikeuchi, Nakayama, Takei, Yabuuchi, Shiiba, Nakayama, Komaba (bib12) 2015; 119
Xia, Dahn (bib11) 2012; 15
Hwang, Myung, Sun (bib4) 2017; 46
Umezawa, Tsuchiya, Ishigaki, Rajendra, Yabuuchi (bib26) 2021; 57
Chen, Liu, Wang, Wang, Guo, Chou (bib8) 2019; 9
Komaba, Takei, Nakayama, Ogata, Yabuuchi (bib10) 2010; 12
Zhu, Xiao, Dou, Kang, Chou (bib6) 2021; 1
Wei, Zhang, Zhang, Tian, Dai, Zhang, Mao, Shao (bib5) 2021; 168
Liu, Hu, Chen, Zou, Jin, Wang, Chou, Liu, Dou (bib9) 2020; 30
Zheng, Bennett, Obrovac (bib21) 2019; 166
Tarascon, Armand (bib2) 2001; 414
Ding, Zhou, Sun, Fu (bib14) 2012; 22
Yu, Park, Jung, Chung, Aurbach, Sun, Myung (bib15) 2015; 8
Liu, Li, Shen, Zhang, He, Qu, Liu (bib7) 2022; 2
Bo, Li, Toumar, Ceder (bib13) 2016; 28
Dresselhaus, Thomas (bib1) 2001; 414
Wang, Cui, Zhu, Feng, Vigeant, Demers, Guerfi, Zaghib (bib22) 2019; 435
Zhou, Ding, Nam, Yu, Bak, Hu, Liu, Bai, Li, Fu, Yang (bib20) 2013; 1
Xi, Chu, Zhang, Zhang, Zhang, Xu, Bian, Fang, Guo, Liu, Chen, Zhou (bib23) 2020; 67
Liang, Sun, Denis, Zhang, Hou, Liu, Yuan (bib19) 2019; 11
Yabuuchi (bib25) 2022; 34
Slater, Kim, Lee, Johnson (bib3) 2013; 23
Nohira, Ishibashi, Hagiwara (bib16) 2012; 205
Lee, Oh, Lee, Yu, Alfaruqi, Mathew, Sambandam, Sun, Hwang, Kim (bib24) 2021; 41
Bo (10.1016/j.jallcom.2022.166690_bib13) 2016; 28
Nohira (10.1016/j.jallcom.2022.166690_bib16) 2012; 205
Liu (10.1016/j.jallcom.2022.166690_bib9) 2020; 30
Zheng (10.1016/j.jallcom.2022.166690_bib21) 2019; 166
Chen (10.1016/j.jallcom.2022.166690_bib8) 2019; 9
Dresselhaus (10.1016/j.jallcom.2022.166690_bib1) 2001; 414
Tarascon (10.1016/j.jallcom.2022.166690_bib2) 2001; 414
Xia (10.1016/j.jallcom.2022.166690_bib11) 2012; 15
Liu (10.1016/j.jallcom.2022.166690_bib7) 2022; 2
Slater (10.1016/j.jallcom.2022.166690_bib3) 2013; 23
Xi (10.1016/j.jallcom.2022.166690_bib23) 2020; 67
Liang (10.1016/j.jallcom.2022.166690_bib19) 2019; 11
Wang (10.1016/j.jallcom.2022.166690_bib22) 2019; 435
Tsuchiya (10.1016/j.jallcom.2022.166690_bib18) 2018; 1
Ding (10.1016/j.jallcom.2022.166690_bib14) 2012; 22
Chen (10.1016/j.jallcom.2022.166690_bib17) 2013; 237
Wei (10.1016/j.jallcom.2022.166690_bib5) 2021; 168
Yu (10.1016/j.jallcom.2022.166690_bib15) 2015; 8
Hwang (10.1016/j.jallcom.2022.166690_bib4) 2017; 46
Umezawa (10.1016/j.jallcom.2022.166690_bib26) 2021; 57
Zhu (10.1016/j.jallcom.2022.166690_bib6) 2021; 1
Komaba (10.1016/j.jallcom.2022.166690_bib10) 2010; 12
Yabuuchi (10.1016/j.jallcom.2022.166690_bib25) 2022; 34
Zhou (10.1016/j.jallcom.2022.166690_bib20) 2013; 1
Kubota (10.1016/j.jallcom.2022.166690_bib12) 2015; 119
Lee (10.1016/j.jallcom.2022.166690_bib24) 2021; 41
References_xml – volume: 23
  start-page: 201200691
  year: 2013
  ident: bib3
  article-title: Sodium-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2019
  year: 2015
  end-page: 2026
  ident: bib15
  article-title: NaCrO
  publication-title: Energy Environ. Sci.
– volume: 41
  start-page: 183
  year: 2021
  end-page: 195
  ident: bib24
  article-title: Cationic and transition metal co-substitution strategy of O3-type NaCrO
  publication-title: Energy Storage Mater.
– volume: 9
  start-page: 201803609
  year: 2019
  ident: bib8
  article-title: High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: problems, progress, and key technologies
  publication-title: Adv. Energy Mater.
– volume: 414
  start-page: 359
  year: 2001
  end-page: 367
  ident: bib2
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nature
– volume: 237
  start-page: 52
  year: 2013
  end-page: 57
  ident: bib17
  article-title: Electrochemical and structural investigation of NaCrO
  publication-title: J. Power Sources
– volume: 2
  start-page: 10
  year: 2022
  end-page: 31
  ident: bib7
  article-title: Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials
  publication-title: eScience
– volume: 119
  start-page: 166
  year: 2015
  end-page: 175
  ident: bib12
  article-title: New insight into structural evolution in layered NaCrO
  publication-title: J. Phys. Chem. C
– volume: 46
  start-page: 3529
  year: 2017
  end-page: 3614
  ident: bib4
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
– volume: 168
  year: 2021
  ident: bib5
  article-title: Review—research progress on layered transition metal oxide cathode materials for sodium ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 166
  start-page: A2058
  year: 2019
  end-page: A2064
  ident: bib21
  article-title: Stabilizing NaCrO
  publication-title: J. Electrochem. Soc.
– volume: 30
  start-page: 201909530
  year: 2020
  ident: bib9
  article-title: The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus prussian blue analogs
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 11130
  year: 2013
  end-page: 11134
  ident: bib20
  article-title: Phase transition behavior of NaCrO
  publication-title: J. Mater. Chem. A
– volume: 67
  year: 2020
  ident: bib23
  article-title: A high-performance layered Cr-based cathode for sodium-ion batteries
  publication-title: Nano Energy
– volume: 34
  year: 2022
  ident: bib25
  article-title: Rational material design of Li-excess metal oxides with disordered rock salt structure
  publication-title: Curr. Opin. Electrochem
– volume: 15
  start-page: A1
  year: 2012
  end-page: A4
  ident: bib11
  article-title: NaCrO
  publication-title: Electrochem. Solid State Lett.
– volume: 1
  start-page: 13
  year: 2021
  end-page: 27
  ident: bib6
  article-title: Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries
  publication-title: eScience
– volume: 12
  start-page: 355
  year: 2010
  end-page: 358
  ident: bib10
  article-title: Electrochemical intercalation activity of layered NaCrO
  publication-title: Electrochem. Commun.
– volume: 1
  start-page: 7b00207
  year: 2018
  ident: bib18
  article-title: Effect of nanosizing on reversible sodium storage in a NaCrO
  publication-title: ACS Appl. Nano Mater.
– volume: 414
  start-page: 332
  year: 2001
  end-page: 337
  ident: bib1
  article-title: Alternative energy technologies
  publication-title: Nature
– volume: 205
  start-page: 506
  year: 2012
  end-page: 509
  ident: bib16
  article-title: Properties of an intermediate temperature ionic liquid NaTFSA–CsTFSA and charge–discharge properties of NaCrO
  publication-title: J. Power Sources
– volume: 28
  start-page: 1419
  year: 2016
  end-page: 1429
  ident: bib13
  article-title: Layered-to-rock-salt transformation in desodiated Na
  publication-title: Chem. Mater.
– volume: 22
  start-page: 85
  year: 2012
  end-page: 88
  ident: bib14
  article-title: Cycle performance improvement of NaCrO
  publication-title: Electrochem. Commun.
– volume: 435
  year: 2019
  ident: bib22
  article-title: Enhancing the electrochemical performance of an O3–NaCrO
  publication-title: J. Power Sources
– volume: 57
  start-page: 2756
  year: 2021
  end-page: 2759
  ident: bib26
  article-title: P2-type layered Na0.67Cr0.33Mg0.17Ti0.5O2 for Na storage applications
  publication-title: Chem. Commun.
– volume: 11
  start-page: 4037
  year: 2019
  end-page: 4046
  ident: bib19
  article-title: Ultralong layered NaCrO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 10
  year: 2022
  ident: 10.1016/j.jallcom.2022.166690_bib7
  article-title: Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials
  publication-title: eScience
  doi: 10.1016/j.esci.2021.12.008
– volume: 12
  start-page: 355
  year: 2010
  ident: 10.1016/j.jallcom.2022.166690_bib10
  article-title: Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.12.033
– volume: 15
  start-page: A1
  year: 2012
  ident: 10.1016/j.jallcom.2022.166690_bib11
  article-title: NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes
  publication-title: Electrochem. Solid State Lett.
  doi: 10.1149/2.002201esl
– volume: 9
  start-page: 201803609
  year: 2019
  ident: 10.1016/j.jallcom.2022.166690_bib8
  article-title: High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: problems, progress, and key technologies
  publication-title: Adv. Energy Mater.
– volume: 22
  start-page: 85
  year: 2012
  ident: 10.1016/j.jallcom.2022.166690_bib14
  article-title: Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.06.001
– volume: 30
  start-page: 201909530
  year: 2020
  ident: 10.1016/j.jallcom.2022.166690_bib9
  article-title: The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus prussian blue analogs
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 11130
  year: 2013
  ident: 10.1016/j.jallcom.2022.166690_bib20
  article-title: Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12282d
– volume: 57
  start-page: 2756
  year: 2021
  ident: 10.1016/j.jallcom.2022.166690_bib26
  article-title: P2-type layered Na0.67Cr0.33Mg0.17Ti0.5O2 for Na storage applications
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC00304F
– volume: 168
  year: 2021
  ident: 10.1016/j.jallcom.2022.166690_bib5
  article-title: Review—research progress on layered transition metal oxide cathode materials for sodium ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abf9bf
– volume: 414
  start-page: 332
  year: 2001
  ident: 10.1016/j.jallcom.2022.166690_bib1
  article-title: Alternative energy technologies
  publication-title: Nature
  doi: 10.1038/35104599
– volume: 23
  start-page: 201200691
  year: 2013
  ident: 10.1016/j.jallcom.2022.166690_bib3
  article-title: Sodium-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 13
  year: 2021
  ident: 10.1016/j.jallcom.2022.166690_bib6
  article-title: Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries
  publication-title: eScience
  doi: 10.1016/j.esci.2021.10.003
– volume: 11
  start-page: 4037
  year: 2019
  ident: 10.1016/j.jallcom.2022.166690_bib19
  article-title: Ultralong layered NaCrO2 nanowires: a competitive wide-temperature-operating cathode for extraordinary high-rate sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20149
– volume: 67
  year: 2020
  ident: 10.1016/j.jallcom.2022.166690_bib23
  article-title: A high-performance layered Cr-based cathode for sodium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104215
– volume: 237
  start-page: 52
  year: 2013
  ident: 10.1016/j.jallcom.2022.166690_bib17
  article-title: Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSA
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.006
– volume: 414
  start-page: 359
  year: 2001
  ident: 10.1016/j.jallcom.2022.166690_bib2
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nature
  doi: 10.1038/35104644
– volume: 46
  start-page: 3529
  year: 2017
  ident: 10.1016/j.jallcom.2022.166690_bib4
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 34
  year: 2022
  ident: 10.1016/j.jallcom.2022.166690_bib25
  article-title: Rational material design of Li-excess metal oxides with disordered rock salt structure
  publication-title: Curr. Opin. Electrochem
– volume: 41
  start-page: 183
  year: 2021
  ident: 10.1016/j.jallcom.2022.166690_bib24
  article-title: Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.05.046
– volume: 166
  start-page: A2058
  year: 2019
  ident: 10.1016/j.jallcom.2022.166690_bib21
  article-title: Stabilizing NaCrO2 by sodium site doping with calcium
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1041910jes
– volume: 8
  start-page: 2019
  year: 2015
  ident: 10.1016/j.jallcom.2022.166690_bib15
  article-title: NaCrO2 cathode for high-rate sodium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00695C
– volume: 205
  start-page: 506
  year: 2012
  ident: 10.1016/j.jallcom.2022.166690_bib16
  article-title: Properties of an intermediate temperature ionic liquid NaTFSA–CsTFSA and charge–discharge properties of NaCrO2 positive electrode at 423K for a sodium secondary battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.11.086
– volume: 28
  start-page: 1419
  year: 2016
  ident: 10.1016/j.jallcom.2022.166690_bib13
  article-title: Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04626
– volume: 1
  start-page: 7b00207
  year: 2018
  ident: 10.1016/j.jallcom.2022.166690_bib18
  article-title: Effect of nanosizing on reversible sodium storage in a NaCrO2 electrode
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.7b00207
– volume: 119
  start-page: 166
  year: 2015
  ident: 10.1016/j.jallcom.2022.166690_bib12
  article-title: New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5105888
– volume: 435
  year: 2019
  ident: 10.1016/j.jallcom.2022.166690_bib22
  article-title: Enhancing the electrochemical performance of an O3–NaCrO2 cathode in sodium-ion batteries by cation substitution
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226760
SSID ssj0001931
Score 2.4504962
Snippet As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and...
As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and 3.6...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 166690
SubjectTerms Chromium oxides
Crystal structure
Cycle stability
Electrochemical analysis
Electrode materials
High voltage
Ion currents
Phase transitions
Rate performance
Sodium
Sodium chromites
Sodium chromium oxide
Sodium-ion batteries
Sodium-ion battery
Sol-gel processes
Structural stability
Title Enhancing structural stability of NaCrO2 by Nb-substituting for sodium-ion battery
URI https://dx.doi.org/10.1016/j.jallcom.2022.166690
https://www.proquest.com/docview/2728517609
Volume 925
WOSCitedRecordID wos000848385200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKBwIOCAqIwUA-cHVJHXtxjlPVCTgUhIaouESOY6upRlo167T-9zw7dtKVH2MHLlFk1Y7T78t7z8_P7yH0NooNBdFrSMFlAQsUbkgeGUkozVmqFeNaK1dsIplOxWyWfu71VuEszOV5UlXi6ipd_VeooQ3AtkdnbwF3Oyg0wD2ADleAHa7_BPykmtscGs5NYHPDurwaYAO6KFi3nz6V4_Unag3PaU5qkBwuXCCEVNbLotz8IJYWuUu-eW3jd8eAtVv22zocjFvZ-kytgf4tuKHnm2UXQdCIuFNddh5Yp_pkSbYdS7_PN04xlGTtG71XgroCKRHfdS9STkTclOwLkjalfEdW2g3LplToL2K88Sgshgt4ExvUY58w7H5_PW32njprgwxD_Noi88NkdpisGeYOOqAJT0UfHZx8mMw-ttobDFpXZTHMvzv19e638_mTPbOn2Z25cvYYPfIw4ZOGH09QT1cDdH8cyvsN0MOdTJQDdM9FAqv6KfrS8gd3_MEtf_DS4IY_ON_iPf5g4A_u-IM9f56hr6eTs_F74gtvEBXHyQWJCxVpWGuOcq1jLRJZiJQpZtQo1dKAjpCCGS65ZMwcRzIeacmNYnIU5UWuqYyfo361rPQLhEdCGilVriXYvmkhhcipMYkplCmYTNQhYuHvy5TPSm-Lo5xnf4XvEA3bbqsmLctNHUTAJvO2ZWMzZsC5m7oeBSwz_53XGU0orFWS4yh9edupvEIPui_mCPUBS_0a3VWXF2W9fuP5-BPXFasF
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+structural+stability+of+NaCrO2+by+Nb-substituting+for+sodium-ion+battery&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Wang%2C+Shuo&rft.au=Chen%2C+Fei&rft.au=He%2C+Hai-yan&rft.au=Zhu%2C+Yi-ran&rft.date=2022-12-05&rft.issn=0925-8388&rft.volume=925&rft.spage=166690&rft_id=info:doi/10.1016%2Fj.jallcom.2022.166690&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2022_166690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon