Enhancing structural stability of NaCrO2 by Nb-substituting for sodium-ion battery
As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and 3.6 V, which corresponds to about 0.5 Na per formula is extracted/inserted. However, irreversible phase transition happens in NaxCrO2 when x is le...
Saved in:
| Published in: | Journal of alloys and compounds Vol. 925; p. 166690 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Lausanne
Elsevier B.V
05.12.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0925-8388, 1873-4669 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and 3.6 V, which corresponds to about 0.5 Na per formula is extracted/inserted. However, irreversible phase transition happens in NaxCrO2 when x is less than 0.4 and the potential is exceeding 3.6 V vs. Na+/Na. To improve its high-potential structural stability, Nb5+ is introduced to Cr3+ site by a sol-gel method successfully in this study. The influences of Nb5+ doping on the crystal structure and electrochemical properties are explored. As a result, a more stable structure as well as a higher ionic conductivity are achieved in Na0.94Cr0.97Nb0.03O2 (NCO-Nb3), exhibiting better rate performance and cycling stability between 2.0 and 3.6 V and 2.0–3.7 V. When elevating the charging cut-off voltage to 3.8 V, 4.0 V, 4.4 V, the initial coulombic efficiencies of NCO-Nb3 are still significantly higher than those of pristine NCO.
•Pentavalent Nb5+ is substituted in Cr3+ site successfully, and the lattice spacing is enlarged.•The structure stability and ionic conductivity are improved with the doping of Nb5+.•Enhanced rate performances and stable cycle performances are achieved in different voltage ranges.•When tested between 2.0 and 3.7 V, NCO-Nb3 can achieve 1000 cycles at 10 C. |
|---|---|
| AbstractList | As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and 3.6 V, which corresponds to about 0.5 Na per formula is extracted/inserted. However, irreversible phase transition happens in NaxCrO2 when x is less than 0.4 and the potential is exceeding 3.6 V vs. Na+/Na. To improve its high-potential structural stability, Nb5+ is introduced to Cr3+ site by a sol-gel method successfully in this study. The influences of Nb5+ doping on the crystal structure and electrochemical properties are explored. As a result, a more stable structure as well as a higher ionic conductivity are achieved in Na0.94Cr0.97Nb0.03O2 (NCO-Nb3), exhibiting better rate performance and cycling stability between 2.0 and 3.6 V and 2.0–3.7 V. When elevating the charging cut-off voltage to 3.8 V, 4.0 V, 4.4 V, the initial coulombic efficiencies of NCO-Nb3 are still significantly higher than those of pristine NCO.
•Pentavalent Nb5+ is substituted in Cr3+ site successfully, and the lattice spacing is enlarged.•The structure stability and ionic conductivity are improved with the doping of Nb5+.•Enhanced rate performances and stable cycle performances are achieved in different voltage ranges.•When tested between 2.0 and 3.7 V, NCO-Nb3 can achieve 1000 cycles at 10 C. As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and 3.6 V, which corresponds to about 0.5 Na per formula is extracted/inserted. However, irreversible phase transition happens in NaxCrO2 when x is less than 0.4 and the potential is exceeding 3.6 V vs. Na+/Na. To improve its high-potential structural stability, Nb5+ is introduced to Cr3+ site by a sol-gel method successfully in this study. The influences of Nb5+ doping on the crystal structure and electrochemical properties are explored. As a result, a more stable structure as well as a higher ionic conductivity are achieved in Na0.94Cr0.97Nb0.03O2 (NCO-Nb3), exhibiting better rate performance and cycling stability between 2.0 and 3.6 V and 2.0–3.7 V. When elevating the charging cut-off voltage to 3.8 V, 4.0 V, 4.4 V, the initial coulombic efficiencies of NCO-Nb3 are still significantly higher than those of pristine NCO. |
| ArticleNumber | 166690 |
| Author | Wang, Shuo Chen, Fei He, Hai-yan Liu, Huai-bing Zhu, Yi-ran Chen, Chun-hua |
| Author_xml | – sequence: 1 givenname: Shuo surname: Wang fullname: Wang, Shuo – sequence: 2 givenname: Fei surname: Chen fullname: Chen, Fei – sequence: 3 givenname: Hai-yan surname: He fullname: He, Hai-yan – sequence: 4 givenname: Yi-ran surname: Zhu fullname: Zhu, Yi-ran – sequence: 5 givenname: Huai-bing surname: Liu fullname: Liu, Huai-bing – sequence: 6 givenname: Chun-hua surname: Chen fullname: Chen, Chun-hua email: cchchen@ustc.edu.cn |
| BookMark | eNqFkE1Lw0AQhhepYFv9CULAc-J-5BMPIqV-QGlB9LxMNrO6Ic3W3Y3Qf29Ke_LS08zA-8wMz4xMetsjIbeMJoyy_L5NWug6ZbcJp5wnLM_zil6QKSsLEafjMCFTWvEsLkVZXpGZ9y2llFWCTcn7sv-GXpn-K_LBDSoMDrqxhdp0Juwjq6M1LNyGR_U-WtexH2ofTBjCgdDWRd42ZtjGxvZRDSGg21-TSw2dx5tTnZPP5-XH4jVebV7eFk-rWAlRhFg0iiLPMlYjCiwLaMoqValWrELQBRVQpjqDDNJU5xQEQ8i0SoHRuqmRg5iTu-PenbM_A_ogWzu4fjwpecHLjBU5rcbUwzGlnPXeoZbKBAjjv8GB6SSj8iBRtvIkUR4kyqPEkc7-0TtntuD2Z7nHI4ejgF-DTnplsFfYGIcqyMaaMxv-ABJSknc |
| CitedBy_id | crossref_primary_10_3390_mi16020137 crossref_primary_10_1016_j_apsusc_2024_161804 crossref_primary_10_1016_j_ces_2025_121308 crossref_primary_10_1002_sstr_202500400 crossref_primary_10_1002_aenm_202405951 crossref_primary_10_1002_sstr_202400561 |
| Cites_doi | 10.1016/j.esci.2021.12.008 10.1016/j.elecom.2009.12.033 10.1149/2.002201esl 10.1016/j.elecom.2012.06.001 10.1039/c3ta12282d 10.1039/D1CC00304F 10.1149/1945-7111/abf9bf 10.1038/35104599 10.1016/j.esci.2021.10.003 10.1021/acsami.8b20149 10.1016/j.nanoen.2019.104215 10.1016/j.jpowsour.2013.03.006 10.1038/35104644 10.1039/C6CS00776G 10.1016/j.ensm.2021.05.046 10.1149/2.1041910jes 10.1039/C5EE00695C 10.1016/j.jpowsour.2011.11.086 10.1021/acs.chemmater.5b04626 10.1021/acsanm.7b00207 10.1021/jp5105888 10.1016/j.jpowsour.2019.226760 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Dec 5, 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Dec 5, 2022 |
| DBID | AAYXX CITATION 8BQ 8FD JG9 |
| DOI | 10.1016/j.jallcom.2022.166690 |
| DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Physics |
| EISSN | 1873-4669 |
| ExternalDocumentID | 10_1016_j_jallcom_2022_166690 S092583882203081X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS T9H WUQ ~HD 8BQ 8FD JG9 |
| ID | FETCH-LOGICAL-c337t-3dc0e2551bee3e87ad894c4fc19eaf703a84f5a5a44f60a31ea5fc4a10bdbe2a3 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848385200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-8388 |
| IngestDate | Sun Nov 30 05:34:02 EST 2025 Sat Nov 29 07:17:24 EST 2025 Tue Nov 18 22:39:54 EST 2025 Fri Feb 23 02:38:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sodium chromium oxide Cycle stability Sodium-ion battery High voltage Rate performance |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c337t-3dc0e2551bee3e87ad894c4fc19eaf703a84f5a5a44f60a31ea5fc4a10bdbe2a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2728517609 |
| PQPubID | 2045454 |
| ParticipantIDs | proquest_journals_2728517609 crossref_citationtrail_10_1016_j_jallcom_2022_166690 crossref_primary_10_1016_j_jallcom_2022_166690 elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_166690 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-05 |
| PublicationDateYYYYMMDD | 2022-12-05 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Journal of alloys and compounds |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Tsuchiya, Glushenkov, Yabuuchi (bib18) 2018; 1 Chen, Matsumoto, Nohira, Hagiwara, Fukunaga, Sakai, Nitta, Inazawa (bib17) 2013; 237 Kubota, Ikeuchi, Nakayama, Takei, Yabuuchi, Shiiba, Nakayama, Komaba (bib12) 2015; 119 Xia, Dahn (bib11) 2012; 15 Hwang, Myung, Sun (bib4) 2017; 46 Umezawa, Tsuchiya, Ishigaki, Rajendra, Yabuuchi (bib26) 2021; 57 Chen, Liu, Wang, Wang, Guo, Chou (bib8) 2019; 9 Komaba, Takei, Nakayama, Ogata, Yabuuchi (bib10) 2010; 12 Zhu, Xiao, Dou, Kang, Chou (bib6) 2021; 1 Wei, Zhang, Zhang, Tian, Dai, Zhang, Mao, Shao (bib5) 2021; 168 Liu, Hu, Chen, Zou, Jin, Wang, Chou, Liu, Dou (bib9) 2020; 30 Zheng, Bennett, Obrovac (bib21) 2019; 166 Tarascon, Armand (bib2) 2001; 414 Ding, Zhou, Sun, Fu (bib14) 2012; 22 Yu, Park, Jung, Chung, Aurbach, Sun, Myung (bib15) 2015; 8 Liu, Li, Shen, Zhang, He, Qu, Liu (bib7) 2022; 2 Bo, Li, Toumar, Ceder (bib13) 2016; 28 Dresselhaus, Thomas (bib1) 2001; 414 Wang, Cui, Zhu, Feng, Vigeant, Demers, Guerfi, Zaghib (bib22) 2019; 435 Zhou, Ding, Nam, Yu, Bak, Hu, Liu, Bai, Li, Fu, Yang (bib20) 2013; 1 Xi, Chu, Zhang, Zhang, Zhang, Xu, Bian, Fang, Guo, Liu, Chen, Zhou (bib23) 2020; 67 Liang, Sun, Denis, Zhang, Hou, Liu, Yuan (bib19) 2019; 11 Yabuuchi (bib25) 2022; 34 Slater, Kim, Lee, Johnson (bib3) 2013; 23 Nohira, Ishibashi, Hagiwara (bib16) 2012; 205 Lee, Oh, Lee, Yu, Alfaruqi, Mathew, Sambandam, Sun, Hwang, Kim (bib24) 2021; 41 Bo (10.1016/j.jallcom.2022.166690_bib13) 2016; 28 Nohira (10.1016/j.jallcom.2022.166690_bib16) 2012; 205 Liu (10.1016/j.jallcom.2022.166690_bib9) 2020; 30 Zheng (10.1016/j.jallcom.2022.166690_bib21) 2019; 166 Chen (10.1016/j.jallcom.2022.166690_bib8) 2019; 9 Dresselhaus (10.1016/j.jallcom.2022.166690_bib1) 2001; 414 Tarascon (10.1016/j.jallcom.2022.166690_bib2) 2001; 414 Xia (10.1016/j.jallcom.2022.166690_bib11) 2012; 15 Liu (10.1016/j.jallcom.2022.166690_bib7) 2022; 2 Slater (10.1016/j.jallcom.2022.166690_bib3) 2013; 23 Xi (10.1016/j.jallcom.2022.166690_bib23) 2020; 67 Liang (10.1016/j.jallcom.2022.166690_bib19) 2019; 11 Wang (10.1016/j.jallcom.2022.166690_bib22) 2019; 435 Tsuchiya (10.1016/j.jallcom.2022.166690_bib18) 2018; 1 Ding (10.1016/j.jallcom.2022.166690_bib14) 2012; 22 Chen (10.1016/j.jallcom.2022.166690_bib17) 2013; 237 Wei (10.1016/j.jallcom.2022.166690_bib5) 2021; 168 Yu (10.1016/j.jallcom.2022.166690_bib15) 2015; 8 Hwang (10.1016/j.jallcom.2022.166690_bib4) 2017; 46 Umezawa (10.1016/j.jallcom.2022.166690_bib26) 2021; 57 Zhu (10.1016/j.jallcom.2022.166690_bib6) 2021; 1 Komaba (10.1016/j.jallcom.2022.166690_bib10) 2010; 12 Yabuuchi (10.1016/j.jallcom.2022.166690_bib25) 2022; 34 Zhou (10.1016/j.jallcom.2022.166690_bib20) 2013; 1 Kubota (10.1016/j.jallcom.2022.166690_bib12) 2015; 119 Lee (10.1016/j.jallcom.2022.166690_bib24) 2021; 41 |
| References_xml | – volume: 23 start-page: 201200691 year: 2013 ident: bib3 article-title: Sodium-ion batteries publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2019 year: 2015 end-page: 2026 ident: bib15 article-title: NaCrO publication-title: Energy Environ. Sci. – volume: 41 start-page: 183 year: 2021 end-page: 195 ident: bib24 article-title: Cationic and transition metal co-substitution strategy of O3-type NaCrO publication-title: Energy Storage Mater. – volume: 9 start-page: 201803609 year: 2019 ident: bib8 article-title: High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: problems, progress, and key technologies publication-title: Adv. Energy Mater. – volume: 414 start-page: 359 year: 2001 end-page: 367 ident: bib2 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature – volume: 237 start-page: 52 year: 2013 end-page: 57 ident: bib17 article-title: Electrochemical and structural investigation of NaCrO publication-title: J. Power Sources – volume: 2 start-page: 10 year: 2022 end-page: 31 ident: bib7 article-title: Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials publication-title: eScience – volume: 119 start-page: 166 year: 2015 end-page: 175 ident: bib12 article-title: New insight into structural evolution in layered NaCrO publication-title: J. Phys. Chem. C – volume: 46 start-page: 3529 year: 2017 end-page: 3614 ident: bib4 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. – volume: 168 year: 2021 ident: bib5 article-title: Review—research progress on layered transition metal oxide cathode materials for sodium ion batteries publication-title: J. Electrochem. Soc. – volume: 166 start-page: A2058 year: 2019 end-page: A2064 ident: bib21 article-title: Stabilizing NaCrO publication-title: J. Electrochem. Soc. – volume: 30 start-page: 201909530 year: 2020 ident: bib9 article-title: The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus prussian blue analogs publication-title: Adv. Funct. Mater. – volume: 1 start-page: 11130 year: 2013 end-page: 11134 ident: bib20 article-title: Phase transition behavior of NaCrO publication-title: J. Mater. Chem. A – volume: 67 year: 2020 ident: bib23 article-title: A high-performance layered Cr-based cathode for sodium-ion batteries publication-title: Nano Energy – volume: 34 year: 2022 ident: bib25 article-title: Rational material design of Li-excess metal oxides with disordered rock salt structure publication-title: Curr. Opin. Electrochem – volume: 15 start-page: A1 year: 2012 end-page: A4 ident: bib11 article-title: NaCrO publication-title: Electrochem. Solid State Lett. – volume: 1 start-page: 13 year: 2021 end-page: 27 ident: bib6 article-title: Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries publication-title: eScience – volume: 12 start-page: 355 year: 2010 end-page: 358 ident: bib10 article-title: Electrochemical intercalation activity of layered NaCrO publication-title: Electrochem. Commun. – volume: 1 start-page: 7b00207 year: 2018 ident: bib18 article-title: Effect of nanosizing on reversible sodium storage in a NaCrO publication-title: ACS Appl. Nano Mater. – volume: 414 start-page: 332 year: 2001 end-page: 337 ident: bib1 article-title: Alternative energy technologies publication-title: Nature – volume: 205 start-page: 506 year: 2012 end-page: 509 ident: bib16 article-title: Properties of an intermediate temperature ionic liquid NaTFSA–CsTFSA and charge–discharge properties of NaCrO publication-title: J. Power Sources – volume: 28 start-page: 1419 year: 2016 end-page: 1429 ident: bib13 article-title: Layered-to-rock-salt transformation in desodiated Na publication-title: Chem. Mater. – volume: 22 start-page: 85 year: 2012 end-page: 88 ident: bib14 article-title: Cycle performance improvement of NaCrO publication-title: Electrochem. Commun. – volume: 435 year: 2019 ident: bib22 article-title: Enhancing the electrochemical performance of an O3–NaCrO publication-title: J. Power Sources – volume: 57 start-page: 2756 year: 2021 end-page: 2759 ident: bib26 article-title: P2-type layered Na0.67Cr0.33Mg0.17Ti0.5O2 for Na storage applications publication-title: Chem. Commun. – volume: 11 start-page: 4037 year: 2019 end-page: 4046 ident: bib19 article-title: Ultralong layered NaCrO publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 10 year: 2022 ident: 10.1016/j.jallcom.2022.166690_bib7 article-title: Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials publication-title: eScience doi: 10.1016/j.esci.2021.12.008 – volume: 12 start-page: 355 year: 2010 ident: 10.1016/j.jallcom.2022.166690_bib10 article-title: Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.12.033 – volume: 15 start-page: A1 year: 2012 ident: 10.1016/j.jallcom.2022.166690_bib11 article-title: NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes publication-title: Electrochem. Solid State Lett. doi: 10.1149/2.002201esl – volume: 9 start-page: 201803609 year: 2019 ident: 10.1016/j.jallcom.2022.166690_bib8 article-title: High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: problems, progress, and key technologies publication-title: Adv. Energy Mater. – volume: 22 start-page: 85 year: 2012 ident: 10.1016/j.jallcom.2022.166690_bib14 article-title: Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.06.001 – volume: 30 start-page: 201909530 year: 2020 ident: 10.1016/j.jallcom.2022.166690_bib9 article-title: The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus prussian blue analogs publication-title: Adv. Funct. Mater. – volume: 1 start-page: 11130 year: 2013 ident: 10.1016/j.jallcom.2022.166690_bib20 article-title: Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12282d – volume: 57 start-page: 2756 year: 2021 ident: 10.1016/j.jallcom.2022.166690_bib26 article-title: P2-type layered Na0.67Cr0.33Mg0.17Ti0.5O2 for Na storage applications publication-title: Chem. Commun. doi: 10.1039/D1CC00304F – volume: 168 year: 2021 ident: 10.1016/j.jallcom.2022.166690_bib5 article-title: Review—research progress on layered transition metal oxide cathode materials for sodium ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abf9bf – volume: 414 start-page: 332 year: 2001 ident: 10.1016/j.jallcom.2022.166690_bib1 article-title: Alternative energy technologies publication-title: Nature doi: 10.1038/35104599 – volume: 23 start-page: 201200691 year: 2013 ident: 10.1016/j.jallcom.2022.166690_bib3 article-title: Sodium-ion batteries publication-title: Adv. Funct. Mater. – volume: 1 start-page: 13 year: 2021 ident: 10.1016/j.jallcom.2022.166690_bib6 article-title: Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries publication-title: eScience doi: 10.1016/j.esci.2021.10.003 – volume: 11 start-page: 4037 year: 2019 ident: 10.1016/j.jallcom.2022.166690_bib19 article-title: Ultralong layered NaCrO2 nanowires: a competitive wide-temperature-operating cathode for extraordinary high-rate sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20149 – volume: 67 year: 2020 ident: 10.1016/j.jallcom.2022.166690_bib23 article-title: A high-performance layered Cr-based cathode for sodium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104215 – volume: 237 start-page: 52 year: 2013 ident: 10.1016/j.jallcom.2022.166690_bib17 article-title: Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSA publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.006 – volume: 414 start-page: 359 year: 2001 ident: 10.1016/j.jallcom.2022.166690_bib2 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature doi: 10.1038/35104644 – volume: 46 start-page: 3529 year: 2017 ident: 10.1016/j.jallcom.2022.166690_bib4 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 34 year: 2022 ident: 10.1016/j.jallcom.2022.166690_bib25 article-title: Rational material design of Li-excess metal oxides with disordered rock salt structure publication-title: Curr. Opin. Electrochem – volume: 41 start-page: 183 year: 2021 ident: 10.1016/j.jallcom.2022.166690_bib24 article-title: Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.05.046 – volume: 166 start-page: A2058 year: 2019 ident: 10.1016/j.jallcom.2022.166690_bib21 article-title: Stabilizing NaCrO2 by sodium site doping with calcium publication-title: J. Electrochem. Soc. doi: 10.1149/2.1041910jes – volume: 8 start-page: 2019 year: 2015 ident: 10.1016/j.jallcom.2022.166690_bib15 article-title: NaCrO2 cathode for high-rate sodium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00695C – volume: 205 start-page: 506 year: 2012 ident: 10.1016/j.jallcom.2022.166690_bib16 article-title: Properties of an intermediate temperature ionic liquid NaTFSA–CsTFSA and charge–discharge properties of NaCrO2 positive electrode at 423K for a sodium secondary battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.11.086 – volume: 28 start-page: 1419 year: 2016 ident: 10.1016/j.jallcom.2022.166690_bib13 article-title: Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04626 – volume: 1 start-page: 7b00207 year: 2018 ident: 10.1016/j.jallcom.2022.166690_bib18 article-title: Effect of nanosizing on reversible sodium storage in a NaCrO2 electrode publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.7b00207 – volume: 119 start-page: 166 year: 2015 ident: 10.1016/j.jallcom.2022.166690_bib12 article-title: New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction publication-title: J. Phys. Chem. C doi: 10.1021/jp5105888 – volume: 435 year: 2019 ident: 10.1016/j.jallcom.2022.166690_bib22 article-title: Enhancing the electrochemical performance of an O3–NaCrO2 cathode in sodium-ion batteries by cation substitution publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226760 |
| SSID | ssj0001931 |
| Score | 2.4504962 |
| Snippet | As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and... As an attractive cathode material, the layered sodium chromium oxide NaCrO2 (NCO) can provide a reversible capacity of around 120 mAh g−1 between 2.0 and 3.6... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 166690 |
| SubjectTerms | Chromium oxides Crystal structure Cycle stability Electrochemical analysis Electrode materials High voltage Ion currents Phase transitions Rate performance Sodium Sodium chromites Sodium chromium oxide Sodium-ion batteries Sodium-ion battery Sol-gel processes Structural stability |
| Title | Enhancing structural stability of NaCrO2 by Nb-substituting for sodium-ion battery |
| URI | https://dx.doi.org/10.1016/j.jallcom.2022.166690 https://www.proquest.com/docview/2728517609 |
| Volume | 925 |
| WOSCitedRecordID | wos000848385200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKBwIOCAqIwUA-cHVJHXtxjlPVCTgUhIaouESOY6upRlo167T-9zw7dtKVH2MHLlFk1Y7T78t7z8_P7yH0NooNBdFrSMFlAQsUbkgeGUkozVmqFeNaK1dsIplOxWyWfu71VuEszOV5UlXi6ipd_VeooQ3AtkdnbwF3Oyg0wD2ADleAHa7_BPykmtscGs5NYHPDurwaYAO6KFi3nz6V4_Unag3PaU5qkBwuXCCEVNbLotz8IJYWuUu-eW3jd8eAtVv22zocjFvZ-kytgf4tuKHnm2UXQdCIuFNddh5Yp_pkSbYdS7_PN04xlGTtG71XgroCKRHfdS9STkTclOwLkjalfEdW2g3LplToL2K88Sgshgt4ExvUY58w7H5_PW32njprgwxD_Noi88NkdpisGeYOOqAJT0UfHZx8mMw-ttobDFpXZTHMvzv19e638_mTPbOn2Z25cvYYPfIw4ZOGH09QT1cDdH8cyvsN0MOdTJQDdM9FAqv6KfrS8gd3_MEtf_DS4IY_ON_iPf5g4A_u-IM9f56hr6eTs_F74gtvEBXHyQWJCxVpWGuOcq1jLRJZiJQpZtQo1dKAjpCCGS65ZMwcRzIeacmNYnIU5UWuqYyfo361rPQLhEdCGilVriXYvmkhhcipMYkplCmYTNQhYuHvy5TPSm-Lo5xnf4XvEA3bbqsmLctNHUTAJvO2ZWMzZsC5m7oeBSwz_53XGU0orFWS4yh9edupvEIPui_mCPUBS_0a3VWXF2W9fuP5-BPXFasF |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+structural+stability+of+NaCrO2+by+Nb-substituting+for+sodium-ion+battery&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Wang%2C+Shuo&rft.au=Chen%2C+Fei&rft.au=He%2C+Hai-yan&rft.au=Zhu%2C+Yi-ran&rft.date=2022-12-05&rft.issn=0925-8388&rft.volume=925&rft.spage=166690&rft_id=info:doi/10.1016%2Fj.jallcom.2022.166690&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2022_166690 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |