Incorporating domain-specific knowledge into a genetic algorithm to implement case-based reasoning adaptation

In case-based reasoning systems the adaptation phase is a notoriously difficult and complex step. The design and implementation of an effective case adaptation algorithm is generally determined by the type of application which decides the nature and the structure of the knowledge to be implemented w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 19; číslo 3; s. 192 - 201
Hlavní autoři: Passone, S., Chung, P.W.H., Nassehi, V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2006
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In case-based reasoning systems the adaptation phase is a notoriously difficult and complex step. The design and implementation of an effective case adaptation algorithm is generally determined by the type of application which decides the nature and the structure of the knowledge to be implemented within the adaptation module, and the level of user involvement during this phase. A new adaptation approach is presented in this paper which uses a modified genetic algorithm incorporating specific domain knowledge and information provided by the retrieved cases. The approach has been developed for a CBR system (CBEM) supporting the use and design of numerical models for estuaries. The adaptation module finds the values of hundreds of parameters for a selected numerical model retrieved from the case-base that is to be used in a new problem context. Without the need of implementing very specific adaptation rules, the proposed approach resolves the problem of acquiring adaptation knowledge by combining the search power of a genetic algorithm with the guidance provided by domain-specific knowledge. The genetic algorithm consists of a modifying version of the classical genetic operations of initialisation, selection, crossover and mutation designed to incorporate practical but general principles of model calibration without reference to any specific problems. The genetic algorithm focuses the search within the parameters' space on those zones that most likely contain the required solutions thus reducing computational time. In addition, the design of the genetic algorithm-based adaptation routine ensures that the parameter values found are suitable for the model approximation and hypotheses, and complies with the problem domain features providing correct and realistic model outputs. This adaptation method is suitable for case-based reasoning systems dealing with numerical modelling applications that require the substitution of a large number of parameter values.
AbstractList Case-based reasoning systems the adaptation phase is a notoriously difficult and complex step. The design and implementation of an effective case adaptation algorithm is generally determined by the type of application which decides the nature and the structure of the knowledge to be implemented within the adaptation module, and the level of user involvement during this phase. A new adaptation approach is presented in this paper which uses a modified genetic algorithm incorporating specific domain knowledge and information provided by the retrieved cases. The approach has been developed for a CBR system (CBEM) supporting the use and design of numerical models for estuaries. The adaptation module finds the values of hundreds of parameters for a selected numerical model retrieved from the case-base that is to be used in a new problem context. Without the need of implementing very specific adaptation rules, the proposed approach resolves the problem of acquiring adaptation knowledge by combining the search power of a genetic algorithm with the guidance provided by domain-specific knowledge. The genetic algorithm consists of a modifying version of the classical genetic operations of initialisation, selection, crossover and mutation designed to incorporate practical but general principles of model calibration without reference to any specific problems. The genetic algorithm focuses the search within the parameters' space on those zones that most likely contain the required solutions thus reducing computational time. In addition, the design of the genetic algorithm-based adaptation routine ensures that the parameter values found are suitable for the model approximation and hypotheses, and complies with the problem domain features providing correct and realistic model outputs. This adaptation method is suitable for case-based reasoning systems dealing with numerical modelling applications that require the substitution of a large number of parameter values. (Author abstract)
In case-based reasoning systems the adaptation phase is a notoriously difficult and complex step. The design and implementation of an effective case adaptation algorithm is generally determined by the type of application which decides the nature and the structure of the knowledge to be implemented within the adaptation module, and the level of user involvement during this phase. A new adaptation approach is presented in this paper which uses a modified genetic algorithm incorporating specific domain knowledge and information provided by the retrieved cases. The approach has been developed for a CBR system (CBEM) supporting the use and design of numerical models for estuaries. The adaptation module finds the values of hundreds of parameters for a selected numerical model retrieved from the case-base that is to be used in a new problem context. Without the need of implementing very specific adaptation rules, the proposed approach resolves the problem of acquiring adaptation knowledge by combining the search power of a genetic algorithm with the guidance provided by domain-specific knowledge. The genetic algorithm consists of a modifying version of the classical genetic operations of initialisation, selection, crossover and mutation designed to incorporate practical but general principles of model calibration without reference to any specific problems. The genetic algorithm focuses the search within the parameters' space on those zones that most likely contain the required solutions thus reducing computational time. In addition, the design of the genetic algorithm-based adaptation routine ensures that the parameter values found are suitable for the model approximation and hypotheses, and complies with the problem domain features providing correct and realistic model outputs. This adaptation method is suitable for case-based reasoning systems dealing with numerical modelling applications that require the substitution of a large number of parameter values.
Author Passone, S.
Chung, P.W.H.
Nassehi, V.
Author_xml – sequence: 1
  givenname: S.
  surname: Passone
  fullname: Passone, S.
  organization: Chemical Engineering Department, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA
– sequence: 2
  givenname: P.W.H.
  surname: Chung
  fullname: Chung, P.W.H.
  email: p.w.h.chung@lboro.ac.uk
  organization: Computer Science Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
– sequence: 3
  givenname: V.
  surname: Nassehi
  fullname: Nassehi, V.
  organization: Chemical Engineering Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
BookMark eNqFkE1PxCAQhonRxPXjH3joyVvrQLel9WBijF_JJl70TBCGlbWFCqjx38umnjzohSEz8z7JPAdk13mHhJxQqCjQ9mxTvTofv2LFAJoKeAXAd8iCdpyVfAn9LllA30DJoaH75CDGDQAwRrsFGe-d8mHyQSbr1oX2o7SujBMqa6wqMvdzQL3GwrrkC1ms0WHKAzmsfbDpZSxy247TgCO6VCgZsXzOjy4CyujdFiq1nFLme3dE9owcIh7_1EPydHP9eHVXrh5u768uV6Wqa57KWnPT5FuY6euOGaM1a1vs2o6angIC5apuO94oSoEjNpzLvmbbj5HasLY-JKczdwr-7R1jEqONCodBOvTvUTS8bTIa8uJyXlTBxxjQiCnYUYYvQUFs3YqNmN2KrVsBXGS3OXb-K6bsfGEK0g7_hS_mMGYDHxaDiMqiU6htQJWE9vZvwDfE1Jyd
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3117585
crossref_primary_10_1177_1687814018767681
crossref_primary_10_1016_j_asoc_2025_113451
crossref_primary_10_1016_j_eswa_2010_06_037
crossref_primary_10_1017_S0890060415000153
crossref_primary_10_1016_j_compind_2015_06_007
crossref_primary_10_1016_j_engappai_2014_09_010
crossref_primary_10_1016_j_eswa_2008_06_099
crossref_primary_10_1016_j_engappai_2017_06_008
crossref_primary_10_3390_en14061762
crossref_primary_10_1016_j_apenergy_2015_11_015
crossref_primary_10_1007_s40032_024_01104_5
crossref_primary_10_1016_j_jbi_2014_05_008
crossref_primary_10_1007_s11356_016_6283_3
crossref_primary_10_1016_j_eswa_2012_02_076
crossref_primary_10_1016_j_marpolbul_2012_07_015
crossref_primary_10_1080_17517575_2010_509814
crossref_primary_10_1016_j_compind_2014_08_004
crossref_primary_10_1016_j_eswa_2008_07_033
crossref_primary_10_1016_j_knosys_2012_12_009
crossref_primary_10_1016_j_knosys_2011_08_002
crossref_primary_10_1016_j_knosys_2010_09_002
crossref_primary_10_1016_j_eswa_2011_12_055
crossref_primary_10_4028_www_scientific_net_AMM_427_429_1756
crossref_primary_10_1016_j_asoc_2014_11_009
crossref_primary_10_1080_17509653_2016_1151839
crossref_primary_10_4028_www_scientific_net_AMM_602_605_2011
crossref_primary_10_1016_j_eswa_2008_06_084
crossref_primary_10_1016_j_eswa_2012_01_044
Cites_doi 10.1111/j.1747-6593.1993.tb00805.x
10.1002/1099-1085(20000815/30)14:11/12<2089::AID-HYP56>3.0.CO;2-L
ContentType Journal Article
Copyright 2005 Elsevier B.V.
Copyright_xml – notice: 2005 Elsevier B.V.
DBID AAYXX
CITATION
E3H
F2A
DOI 10.1016/j.knosys.2005.07.007
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList Library and Information Science Abstracts (LISA)

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 201
ExternalDocumentID 10_1016_j_knosys_2005_07_007
S0950705105001085
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
E3H
F2A
ID FETCH-LOGICAL-c337t-3d7f52002f9382ffdd266e8681f910e017c36875c1107ee577a932ee57fadf263
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239182800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Sep 27 22:10:18 EDT 2025
Sat Nov 29 06:41:18 EST 2025
Tue Nov 18 22:26:52 EST 2025
Fri Feb 23 02:28:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Genetic algorithm
Case adaptation
Case-based reasoning system
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-3d7f52002f9382ffdd266e8681f910e017c36875c1107ee577a932ee57fadf263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 57659380
PQPubID 23477
PageCount 10
ParticipantIDs proquest_miscellaneous_57659380
crossref_primary_10_1016_j_knosys_2005_07_007
crossref_citationtrail_10_1016_j_knosys_2005_07_007
elsevier_sciencedirect_doi_10_1016_j_knosys_2005_07_007
PublicationCentury 2000
PublicationDate 2006-07-01
PublicationDateYYYYMMDD 2006-07-01
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-01
  day: 01
PublicationDecade 2000
PublicationTitle Knowledge-based systems
PublicationYear 2006
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References McDowell, O'Connor (bib6) 1977
Babovic, Wu, Larsen (bib11) 1994
Louis, Johnson (bib10) 1997
French, Clifford (bib8) 2000; 14
Kolodner (bib2) 1993
Jarmulak, Craw, Rowe (bib4) 2001
Goldberg (bib9) 1989
Hanney, Keane (bib1) 1997
W. Wilke, I. Vollrath, K.D. Althoff, R. Bergmann, A framework for learning adaptation knowledge based on knowledge light approaches, Proceedings of the Fifth German Workshop on Case-Based Reasoning, 1997.
Leake, Kinley, Wilson (bib3) 1996
J.H. Bikangaga, Mathematical modelling of the hydrodynamics and transport of soluble reactive pollutants in Narrow Tidal Rivers, PhD Thesis, 1993.
Thompson (bib7) 1993; 7
Passone, Chung, Nassehi (bib13) 2002
Bikangaga, Nassehi (bib14) 1995; 29
McDowell (10.1016/j.knosys.2005.07.007_bib6) 1977
10.1016/j.knosys.2005.07.007_bib5
French (10.1016/j.knosys.2005.07.007_bib8) 2000; 14
Leake (10.1016/j.knosys.2005.07.007_bib3) 1996
Passone (10.1016/j.knosys.2005.07.007_bib13) 2002
Kolodner (10.1016/j.knosys.2005.07.007_bib2) 1993
Goldberg (10.1016/j.knosys.2005.07.007_bib9) 1989
Babovic (10.1016/j.knosys.2005.07.007_bib11) 1994
Bikangaga (10.1016/j.knosys.2005.07.007_bib14) 1995; 29
Hanney (10.1016/j.knosys.2005.07.007_bib1) 1997
Thompson (10.1016/j.knosys.2005.07.007_bib7) 1993; 7
10.1016/j.knosys.2005.07.007_bib12
Jarmulak (10.1016/j.knosys.2005.07.007_bib4) 2001
Louis (10.1016/j.knosys.2005.07.007_bib10) 1997
References_xml – year: 1993
  ident: bib2
  article-title: Case-Based Reasoning
– year: 2002
  ident: bib13
  article-title: Case-based reasoning for estuarine model design
  publication-title: Proceedings of the Sixth European Conference on Case-Based Reasoning
– year: 1997
  ident: bib10
  article-title: Solving similar problems using genetic algorithms and case-base memory
  publication-title: Proceedings of the Seventh International Conference on Genetic Algorithms
– volume: 14
  start-page: 2089
  year: 2000
  end-page: 2108
  ident: bib8
  article-title: Hydrodynamic modelling as a basis for explaining estuarine environmental dynamics: some computational and methological issues
  publication-title: Hydrological Process
– reference: W. Wilke, I. Vollrath, K.D. Althoff, R. Bergmann, A framework for learning adaptation knowledge based on knowledge light approaches, Proceedings of the Fifth German Workshop on Case-Based Reasoning, 1997.
– year: 1997
  ident: bib1
  article-title: The adaptation knowledge: how to easy it by learning from cases
  publication-title: Proceedings of the Second International Conference on Case-Based Reasoning
– year: 1977
  ident: bib6
  article-title: Hydraulic Behaviour of Estuaries
– volume: 29
  start-page: 2367
  year: 1995
  end-page: 2375
  ident: bib14
  article-title: Application of computer modelling techniques to the determination of optimum effluent discharge policies in Tidal water systems
  publication-title: Water Resources
– year: 1994
  ident: bib11
  article-title: Calibrating hydrodynamics models by means of simulated evolution
  publication-title: Proceedings of the First International Conference in Hydroinformatics
– year: 1989
  ident: bib9
  article-title: Genetic Algorithm in Search, Optimisation and Machine Learning
– year: 1996
  ident: bib3
  article-title: Acquiring case adaptation knowledge: a hybrid approach
  publication-title: Proceedings of the Thirteenth National Conference on Artificial Intelligence
– year: 2001
  ident: bib4
  article-title: Using case-base data to learn adaptation knowledge for design
  publication-title: Proceedings of the Seventeenth IJCAI Conference
– volume: 7
  start-page: 18
  year: 1993
  end-page: 23
  ident: bib7
  article-title: Mathematical-models and engineering design
  publication-title: Journal of the Institution of Water and Environmental Management
– reference: J.H. Bikangaga, Mathematical modelling of the hydrodynamics and transport of soluble reactive pollutants in Narrow Tidal Rivers, PhD Thesis, 1993.
– volume: 29
  start-page: 2367
  issue: 10
  year: 1995
  ident: 10.1016/j.knosys.2005.07.007_bib14
  article-title: Application of computer modelling techniques to the determination of optimum effluent discharge policies in Tidal water systems
  publication-title: Water Resources
– year: 1996
  ident: 10.1016/j.knosys.2005.07.007_bib3
  article-title: Acquiring case adaptation knowledge: a hybrid approach
– volume: 7
  start-page: 18
  year: 1993
  ident: 10.1016/j.knosys.2005.07.007_bib7
  article-title: Mathematical-models and engineering design
  publication-title: Journal of the Institution of Water and Environmental Management
  doi: 10.1111/j.1747-6593.1993.tb00805.x
– volume: 14
  start-page: 2089
  year: 2000
  ident: 10.1016/j.knosys.2005.07.007_bib8
  article-title: Hydrodynamic modelling as a basis for explaining estuarine environmental dynamics: some computational and methological issues
  publication-title: Hydrological Process
  doi: 10.1002/1099-1085(20000815/30)14:11/12<2089::AID-HYP56>3.0.CO;2-L
– year: 1997
  ident: 10.1016/j.knosys.2005.07.007_bib10
  article-title: Solving similar problems using genetic algorithms and case-base memory
– year: 1993
  ident: 10.1016/j.knosys.2005.07.007_bib2
– year: 2001
  ident: 10.1016/j.knosys.2005.07.007_bib4
  article-title: Using case-base data to learn adaptation knowledge for design
– year: 1994
  ident: 10.1016/j.knosys.2005.07.007_bib11
  article-title: Calibrating hydrodynamics models by means of simulated evolution
– ident: 10.1016/j.knosys.2005.07.007_bib5
– year: 1977
  ident: 10.1016/j.knosys.2005.07.007_bib6
– year: 2002
  ident: 10.1016/j.knosys.2005.07.007_bib13
  article-title: Case-based reasoning for estuarine model design
– year: 1989
  ident: 10.1016/j.knosys.2005.07.007_bib9
– ident: 10.1016/j.knosys.2005.07.007_bib12
– year: 1997
  ident: 10.1016/j.knosys.2005.07.007_bib1
  article-title: The adaptation knowledge: how to easy it by learning from cases
SSID ssj0002218
Score 1.9351114
Snippet In case-based reasoning systems the adaptation phase is a notoriously difficult and complex step. The design and implementation of an effective case adaptation...
Case-based reasoning systems the adaptation phase is a notoriously difficult and complex step. The design and implementation of an effective case adaptation...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 192
SubjectTerms Adaptation knowledge
Case adaptation
Case based reasoning
Case-based reasoning system
Computer science
Domain knowledge
Genetic algorithm
Title Incorporating domain-specific knowledge into a genetic algorithm to implement case-based reasoning adaptation
URI https://dx.doi.org/10.1016/j.knosys.2005.07.007
https://www.proquest.com/docview/57659380
Volume 19
WOSCitedRecordID wos000239182800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKx4EL32jj0wdulSM3bmLnOKGhDVA1aWP0FlmODZ3atGq7aX8FfzPvJY6TtUIDJC5RZDlO7PfL-_Lze4S8V7KQzmjBjHSajSzAWHNumBtqrY1SqalqEVx8keOxmkyy017vZ3MW5nomy1Ld3GTL_0pqaANi49HZvyB3GBQa4B6IDlcgO1z_iPAnmJmyyk6MXoBiMQfbn-GBSgwKGgQfGiaKWAw0llC2VdLW2ffFarr5MUdtdDr3YeUDA1KOoajDUy56XTtvdaGXnS18r9t-bob2_dedZOjVJhVMvPafnkVtVIFnNqfRt-g4NI-hr63KDQ8uom3HhOw6JnZPzHi3I2eS-ySztma6SoKWP-LZLa6cddAnOix2WNfO89I6rt-4Iwhqn8RlBKsKs_W-M8xWKVvBF8IRz_Cr8KN4gjaySu6RvRgMKd4ne4cnR5NPQbbHceUxDrNoDmNWEYO77_qdsrMl9itd5vwxeeiNEHpYg-cJ6dnyKXnUFPignt8_I_NbWKJbWKIBSxSxRDX1WKIBSxSaA5ZoiyUasERbLD0nXz8enX84Zr4-BzNCyA0T8Jtj1q7YZULFzhUFaHtWpWroQAm1wOuNSMEeNuhjsDaRUoO1gDdOFy5OxQvSLwF4-4TyVGsbp7EpuBhpJbME7GDndKZSDRaKPSCiWcjc-OT1WENlljdRipd5vfxYVzXJOUZVyAPCwlPLOnnLHf1lQ6PcK6C1YpkDrO548l1D0hz4M2666dIurtY5zCOB5eEv_3nsV-RB-3u9Jv3N6sq-IffN9Wa6Xr31CP0FJSS8YQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+domain-specific+knowledge+into+a+genetic+algorithm+to+implement+case-based+reasoning+adaptation&rft.jtitle=Knowledge-based+systems&rft.au=Passone%2C+S.&rft.au=Chung%2C+P.W.H.&rft.au=Nassehi%2C+V.&rft.date=2006-07-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=19&rft.issue=3&rft.spage=192&rft.epage=201&rft_id=info:doi/10.1016%2Fj.knosys.2005.07.007&rft.externalDocID=S0950705105001085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon