Tuning DNN Model Compression to Resource and Data Availability in Cooperative Training

Model compression is a fundamental tool to execute machine learning (ML) tasks on the diverse set of devices populating current-and next-generation networks, thereby exploiting their resources and data. At the same time, how much and when to compress ML models are very complex decisions, as they hav...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM transactions on networking Ročník 32; číslo 2; s. 1 - 16
Hlavní autoři: Malandrino, Francesco, di Giacomo, Giuseppe, Karamzade, Armin, Levorato, Marco, Chiasserini, Carla Fabiana
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6692, 1558-2566
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Model compression is a fundamental tool to execute machine learning (ML) tasks on the diverse set of devices populating current-and next-generation networks, thereby exploiting their resources and data. At the same time, how much and when to compress ML models are very complex decisions, as they have to jointly account for such aspects as the model being used, the resources (e.g., computational) and local datasets available at each node, as well as network latencies. In this work, we address the multi-dimensional problem of adapting the model compression, data selection, and node allocation decisions to each other: our objective is to perform the DNN training at the minimum energy cost, subject to learning quality and time constraints. To this end, we propose an algorithmic framework called PACT, combining a time-expanded graph representation of the training process, a dynamic programming solution strategy, and a data-driven approach to the estimation of the loss evolution. We prove that PACT's complexity is polynomial, and its decisions can get arbitrarily close to the optimum. Through our numerical evaluation, we further show how PACT can consistently outperform state-of-the-art alternatives and closely matches the optimal energy consumption.
AbstractList Model compression is a fundamental tool to execute machine learning (ML) tasks on the diverse set of devices populating current- and next-generation networks, thereby exploiting their resources and data. At the same time, how much and when to compress ML models are very complex decisions, as they have to jointly account for such aspects as the model being used, the resources (e.g., computational) and local datasets available at each node, as well as network latencies. In this work, we address the multi-dimensional problem of adapting the model compression, data selection, and node allocation decisions to each other: our objective is to perform the DNN training at the minimum energy cost, subject to learning quality and time constraints. To this end, we propose an algorithmic framework called PACT, combining a time-expanded graph representation of the training process, a dynamic programming solution strategy, and a data-driven approach to the estimation of the loss evolution. We prove that PACT’s complexity is polynomial, and its decisions can get arbitrarily close to the optimum. Through our numerical evaluation, we further show how PACT can consistently outperform state-of-the-art alternatives and closely matches the optimal energy consumption.
Author Karamzade, Armin
Levorato, Marco
di Giacomo, Giuseppe
Malandrino, Francesco
Chiasserini, Carla Fabiana
Author_xml – sequence: 1
  givenname: Francesco
  surname: Malandrino
  fullname: Malandrino, Francesco
  organization: CNR-IEIIT and CNIT, Turin, Italy
– sequence: 2
  givenname: Giuseppe
  orcidid: 0000-0002-9990-512X
  surname: di Giacomo
  fullname: di Giacomo, Giuseppe
  organization: Politecnico di Torino, Turin, Italy
– sequence: 3
  givenname: Armin
  surname: Karamzade
  fullname: Karamzade, Armin
  organization: Computer Science Department, University of California at Irvine, Irvine, CA, USA
– sequence: 4
  givenname: Marco
  orcidid: 0000-0002-6920-4189
  surname: Levorato
  fullname: Levorato, Marco
  organization: Computer Science Department, University of California at Irvine, Irvine, CA, USA
– sequence: 5
  givenname: Carla Fabiana
  orcidid: 0000-0003-1410-660X
  surname: Chiasserini
  fullname: Chiasserini, Carla Fabiana
  organization: CNR-IEIIT and CNIT, Turin, Italy
BookMark eNp9kEtLAzEUhYNUsK3-AMFFwPXUPCaZdlna-oBaQUa3Q2bmRlKmyZhMC_33ZmgX4sLVuYvznXs4IzSwzgJCt5RMKCWzh3yzyieMMD7hnPGoF2hIhZgmTEg5iDeRPJFyxq7QKIQtITSa5BB95ntr7Bdebjb41dXQ4IXbtR5CMM7izuF3CG7vK8DK1nipOoXnB2UaVZrGdEdsbARcC1515gA498r0edfoUqsmwM1Zx-jjcZUvnpP129PLYr5OKs6zLuF1WmVaawIzSXlFhSqZSBUvs2mphE6VFlUFQFJdl1ldCyXLUmfAUjYjikLNx-j-lNt6972H0BXb2NbGlwUnKRWMEcmiKzu5Ku9C8KCLynSxsLNd7NsUlBT9iEU_YtGPWJxHjCT9Q7be7JQ__svcnRgDAL_8bCpTkfIf0PKAOg
CODEN IEANEP
CitedBy_id crossref_primary_10_1109_TITS_2025_3548467
Cites_doi 10.1109/TNET.2022.3222640
10.1137/0205006
10.1109/ICInfA.2018.8812321
10.1109/ACCESS.2020.3039714
10.1109/JSAC.2019.2904348
10.1145/3477114.3488760
10.1016/0377-2217(92)90077-M
10.1109/INFOCOM53939.2023.10229027
10.1145/3386263.3407650
10.1109/ISCAS.2017.8050588
10.1109/TII.2019.2953106
10.1109/JSAIT.2020.2991332
10.1007/978-3-030-01234-2_48
10.1109/INFOCOM42981.2021.9488723
10.1109/INFOCOM.2019.8737602
10.1109/MNET.011.2100075
10.1109/MCOM.001.2001016
10.1109/ICECS46596.2019.8965157
10.1109/ICPR48806.2021.9412599
10.1109/ITSC.2017.8317913
10.1109/ACCESS.2021.3055523
10.1609/aaai.v31i1.10733
10.1109/ICASSP43922.2022.9746093
10.1109/INFOCOM53939.2023.10229076
10.1109/WoWMoM54355.2022.00034
10.1109/CVPRW53098.2021.00356
10.1109/tnnls.2022.3162241
10.1109/TNNLS.2020.2966745
10.1109/TVT.2021.3051378
10.12720/jait.13.3.295-300
10.1109/TCCN.2021.3084406
10.1145/3527155
10.1145/3373376.3378534
10.1109/icccn58024.2023.10230190
10.1007/978-3-030-01237-3_12
10.1109/JIOT.2021.3111723
10.1002/gamm.202100008
10.1016/j.softx.2021.100907
10.1109/TPDS.2021.3090331
10.1007/s11263-021-01453-z
10.1109/ICMLA51294.2020.00185
10.1109/TPDS.2022.3144994
10.1109/IROS51168.2021.9636206
10.1109/DySPAN53946.2021.9677132
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNET.2023.3323023
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2566
EndPage 16
ExternalDocumentID 10_1109_TNET_2023_3323023
10286454
Genre orig-research
GrantInformation_xml – fundername: European Union’s NextGenerationEU Instrument
  grantid: 0000DONOTUSETHIS0000.3
– fundername: enlarged partnership “Telecommunications of the Future”
  grantid: PE00000001
– fundername: Program “RESTART”
– fundername: Framework of the Horizon Europe Project CENTRIC
  grantid: 101096379
– fundername: NSF
  grantid: CNS 2134567; CNS 2003237
GroupedDBID -DZ
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
85S
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFS
ACGOD
ACIWK
ACM
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENSD
AETEA
AFWIH
AFWXC
AGQYO
AHBIQ
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
D0L
EBS
ESBDL
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IES
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNS
TN5
UPT
YR2
ZCA
9M8
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
HF~
H~9
ICLAB
IFJZH
MVM
ROL
UQL
VH1
XOL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-3d4c7fff0e9613c15ab254a3b78ba5f4af5ccee04fdb7dd5a6bbf7e24290a1ed3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001091120900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6692
IngestDate Mon Jun 30 06:01:00 EDT 2025
Sat Nov 29 03:05:27 EST 2025
Tue Nov 18 22:32:08 EST 2025
Wed Aug 27 02:13:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-3d4c7fff0e9613c15ab254a3b78ba5f4af5ccee04fdb7dd5a6bbf7e24290a1ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6920-4189
0000-0002-9990-512X
0000-0003-1410-660X
OpenAccessLink https://ieeexplore.ieee.org/document/10286454
PQID 3041522062
PQPubID 32020
PageCount 16
ParticipantIDs proquest_journals_3041522062
crossref_citationtrail_10_1109_TNET_2023_3323023
ieee_primary_10286454
crossref_primary_10_1109_TNET_2023_3323023
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on networking
PublicationTitleAbbrev TNET
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
Chopra (ref56) 2021
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Yvinec (ref19) 2021
Saxe (ref26) 2013
ref18
Rahbar (ref76) 2020
Gao (ref39) 2021
ref50
Krizhevsky (ref33)
ref48
ref47
ref42
Simonyan (ref15) 2014
ref43
Zeulin (ref73) 2021
Krizhevsky (ref16) 2009
ref8
ref7
Allen-Zhu (ref27)
ref9
ref3
ref6
(ref36) 2021
ref5
Coates (ref71)
ref40
Saglietti (ref41) 2020
Netzer (ref67)
Chen (ref74)
Konečný (ref4) 2015
McMahan (ref37)
Hong (ref44)
ref31
ref32
ref2
ref1
ref38
(ref35) 2021
Tan (ref46)
Park (ref49) 2021
ref70
Li (ref30)
Paszke (ref17); 32
ref72
ref24
ref68
ref23
Wen (ref13)
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
(ref34) 2021
Phuong (ref75)
Marfoq (ref59)
ref29
Tan (ref69)
Hestness (ref28) 2017
Menzies (ref51) 2018
ref60
ref62
Frankle (ref45)
Abdelmoniem (ref61) 2021
References_xml – ident: ref68
  doi: 10.1109/TNET.2022.3222640
– ident: ref32
  doi: 10.1137/0205006
– ident: ref42
  doi: 10.1109/ICInfA.2018.8812321
– start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  ident: ref37
  article-title: Communication-efficient learning of deep networks from decentralized data
– year: 2015
  ident: ref4
  article-title: Federated optimization: Distributed optimization beyond the datacenter
  publication-title: arXiv:1511.03575
– start-page: 9356
  volume-title: Proc. ICML
  ident: ref46
  article-title: DropNet: Reducing neural network complexity via iterative pruning
– ident: ref54
  doi: 10.1109/ACCESS.2020.3039714
– year: 2021
  ident: ref73
  article-title: Dynamic network-assisted D2D-aided coded distributed learning
  publication-title: arXiv:2111.14789
– ident: ref60
  doi: 10.1109/JSAC.2019.2904348
– start-page: 1
  volume-title: Proc. NIPS
  ident: ref67
  article-title: Reading digits in natural images with unsupervised feature learning
– ident: ref65
  doi: 10.1145/3477114.3488760
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref33
  article-title: ImageNet classification with deep convolutional neural networks
– year: 2020
  ident: ref76
  article-title: Analysis of knowledge transfer in kernel regime
  publication-title: arXiv:2003.13438
– ident: ref31
  doi: 10.1016/0377-2217(92)90077-M
– ident: ref5
  doi: 10.1109/INFOCOM53939.2023.10229027
– year: 2021
  ident: ref49
  article-title: Prune your model before distill it
  publication-title: arXiv:2109.14960
– ident: ref20
  doi: 10.1145/3386263.3407650
– year: 2021
  ident: ref39
  article-title: KnowRU: Knowledge reusing via knowledge distillation in multi-agent reinforcement learning
  publication-title: arXiv:2103.14891
– ident: ref24
  doi: 10.1109/ISCAS.2017.8050588
– volume-title: NVIDIA A100 Datasheet
  year: 2021
  ident: ref34
– ident: ref11
  doi: 10.1109/TII.2019.2953106
– start-page: 6105
  volume-title: Proc. ICML
  ident: ref69
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– volume: 32
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref17
  article-title: PyTorch: An imperative style, high-performance deep learning library
– ident: ref25
  doi: 10.1109/JSAIT.2020.2991332
– ident: ref52
  doi: 10.1007/978-3-030-01234-2_48
– ident: ref9
  doi: 10.1109/INFOCOM42981.2021.9488723
– ident: ref72
  doi: 10.1109/INFOCOM.2019.8737602
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref45
  article-title: The lottery ticket hypothesis: Finding sparse, trainable neural networks
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Learning and generalization in overparameterized neural networks, going beyond two layers
– ident: ref7
  doi: 10.1109/MNET.011.2100075
– ident: ref62
  doi: 10.1109/MCOM.001.2001016
– ident: ref21
  doi: 10.1109/ICECS46596.2019.8965157
– year: 2014
  ident: ref15
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref10
  doi: 10.1109/ICPR48806.2021.9412599
– ident: ref29
  doi: 10.1109/ITSC.2017.8317913
– ident: ref22
  doi: 10.1109/ACCESS.2021.3055523
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref74
  article-title: How much over-parameterization is sufficient to learn deep ReLU networks?
– year: 2009
  ident: ref16
  article-title: Learning multiple layers of features from tiny images
– year: 2021
  ident: ref56
  article-title: AdaSplit: Adaptive trade-offs for resource-constrained distributed deep learning
  publication-title: arXiv:2112.01637
– ident: ref43
  doi: 10.1609/aaai.v31i1.10733
– ident: ref70
  doi: 10.1109/ICASSP43922.2022.9746093
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref13
  article-title: Learning structured sparsity in deep neural networks
– ident: ref1
  doi: 10.1109/INFOCOM53939.2023.10229076
– year: 2017
  ident: ref28
  article-title: Deep learning scaling is predictable, empirically
  publication-title: arXiv:1712.00409
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref30
  article-title: On the convergence of FedAvg on non-IID data
– ident: ref8
  doi: 10.1109/WoWMoM54355.2022.00034
– year: 2018
  ident: ref51
  article-title: Generalization of teacher–student network and CNN pruning
– ident: ref50
  doi: 10.1109/CVPRW53098.2021.00356
– ident: ref40
  doi: 10.1109/tnnls.2022.3162241
– ident: ref38
  doi: 10.1109/TNNLS.2020.2966745
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref44
  article-title: Collaborative inter-agent knowledge distillation for reinforcement learning
– ident: ref2
  doi: 10.1109/TVT.2021.3051378
– ident: ref53
  doi: 10.12720/jait.13.3.295-300
– ident: ref63
  doi: 10.1109/TCCN.2021.3084406
– ident: ref58
  doi: 10.1145/3527155
– ident: ref48
  doi: 10.1145/3373376.3378534
– start-page: 15070
  volume-title: Proc. ICML
  ident: ref59
  article-title: Personalized federated learning through local memorization
– year: 2013
  ident: ref26
  article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
  publication-title: arXiv:1312.6120
– ident: ref57
  doi: 10.1109/icccn58024.2023.10230190
– year: 2021
  ident: ref61
  article-title: Resource-efficient federated learning
  publication-title: arXiv:2111.01108
– ident: ref47
  doi: 10.1007/978-3-030-01237-3_12
– start-page: 215
  volume-title: Proc. 14th Int. Conf. Artif. Intell. Statist.
  ident: ref71
  article-title: An analysis of single-layer networks in unsupervised feature learning
– start-page: 5142
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref75
  article-title: Towards understanding knowledge distillation
– ident: ref6
  doi: 10.1109/JIOT.2021.3111723
– year: 2021
  ident: ref19
  article-title: RED++: Data-free pruning of deep neural networks via input splitting and output merging
  publication-title: arXiv:2110.01397
– year: 2020
  ident: ref41
  article-title: Solvable model for inheriting the regularization through knowledge distillation
  publication-title: arXiv:2012.00194
– volume-title: NVIDIA RTX A4000 Datasheet
  year: 2021
  ident: ref35
– ident: ref23
  doi: 10.1002/gamm.202100008
– ident: ref18
  doi: 10.1016/j.softx.2021.100907
– ident: ref55
  doi: 10.1109/TPDS.2021.3090331
– ident: ref14
  doi: 10.1007/s11263-021-01453-z
– ident: ref64
  doi: 10.1109/ICMLA51294.2020.00185
– volume-title: Broadcom VideoCore VI Technical Details
  year: 2021
  ident: ref36
– ident: ref66
  doi: 10.1109/TPDS.2022.3144994
– ident: ref12
  doi: 10.1109/IROS51168.2021.9636206
– ident: ref3
  doi: 10.1109/DySPAN53946.2021.9677132
SSID ssj0013026
Score 2.4473646
Snippet Model compression is a fundamental tool to execute machine learning (ML) tasks on the diverse set of devices populating current-and next-generation networks,...
Model compression is a fundamental tool to execute machine learning (ML) tasks on the diverse set of devices populating current- and next-generation networks,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Alternative energy sources
Availability
Complexity
Computational modeling
Costs
Data compression
Data models
Decisions
Distributed learning
Dynamic programming
Energy consumption
Energy costs
Graph representations
Graphical representations
Machine learning
model pruning
Network latency
network support to machine learning
Optimization
Polynomials
Switches
Task analysis
Training
Title Tuning DNN Model Compression to Resource and Data Availability in Cooperative Training
URI https://ieeexplore.ieee.org/document/10286454
https://www.proquest.com/docview/3041522062
Volume 32
WOSCitedRecordID wos001091120900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2566
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013026
  issn: 1063-6692
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1ueNCDPydOp-TgSeiWNk2zHofb8FQ8VNmt5CcMRju2buB_b5JmOhEFbz0kpeRr-vq-L997ADzEhAikrPKxwQNDUHAUpDzkgSVAjJEE80g7swmaZcPZLH3xzequF0Yp5Q6fqb69dLV8WYmNTZUNLBhaBaoWaFGaNM1aXyUD5LzVDMXBQZKkkS9hhigd5Nkk71uf8D7GkXXJ-QZCzlXlx6fY4cv09J9PdgZO_I8kHDWRPwcHqrwAx3vygpfgLd_YrAccZxm0nmcLaHd_c_C1hHUFd7l7yEoJx6xmcLRl80Uj3f0O56WZUC1VIw4Oc-8m0QGv00n-9Bx4H4VAYEzrAMtYUK01UqkBbxESxg0tZJjTIWdEx0wTYbASxVpyKiVhCeeaKgPeKWKhkvgKtMuqVNcAyoRpzBgVCgvDleQwNaNjTpDWRGLGuwDtFrYQXmTcel0sCkc2UFrYWBQ2FoWPRRc8fk5ZNgobfw3u2MXfG9isexf0duEr_CZcF9jKD0QRSqKbX6bdgiNzd38Spwfa9Wqj7sCh2Nbz9erevV8fwkvNig
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3oFNQHPydOp-bBJ6Fb1jTt-ijOoajFhyq-lXzCYHRDu4H_3iTN_EAUfOtDQktu09Nzb-45AGcRpQIrq3xs8MAQFBIGKe_xwBIgxmhMeKid2USSZf3n5_TBN6u7XhillDt8pjr20tXy5UTMbKqsa8HQKlAtwwqNohDX7VqfRQPs3NUMySFBHKehL2L2cNrNs6u8Y53CO4SE1ifnGww5X5UfH2OHMMOtfz7bNmz6X0l0Ucd-B5ZUuQsbXwQG9-Apn9m8BxpkGbKuZ2Nk93999LVE1QQtsveIlRINWMXQxZyNxrV49xsalWbCZKpqeXCUez-JJjwOr_LL68A7KQSCkKQKiIxEorXGKjXwLXqUcUMMGeFJnzOqI6apMGiJIy15IiVlMec6UQa-U8x6SpJ9aJSTUh0AkjHThLFEKCIMW5L91IyOOMVaU0kYbwFeLGwhvMy4dbsYF45u4LSwsShsLAofixacf0yZ1hobfw1u2sX_MrBe9xa0F-Er_DZ8LYgVIAhDHIeHv0w7hbXr_P6uuLvJbo9g3dzJn8tpQ6N6maljWBXzavT6cuLetXebSNDR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+DNN+Model+Compression+to+Resource+and+Data+Availability+in+Cooperative+Training&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Malandrino%2C+Francesco&rft.au=Giuseppe+di+Giacomo&rft.au=Karamzade%2C+Armin&rft.au=Levorato%2C+Marco&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=32&rft.issue=2&rft.spage=1600&rft_id=info:doi/10.1109%2FTNET.2023.3323023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon