Improving constructive training of RBF networks through selective pruning and model selection

This letter proposes a constructive training method for radial basis function networks. The proposed method is an extension of the dynamic decay adjustment (DDA) algorithm, a fast constructive algorithm for classification problems. The proposed method, which is based on selective pruning and DDA mod...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 64; s. 537 - 541
Hlavní autori: Oliveira, Adriano L.I., Melo, Bruno J.M., Meira, Silvio R.L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2005
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This letter proposes a constructive training method for radial basis function networks. The proposed method is an extension of the dynamic decay adjustment (DDA) algorithm, a fast constructive algorithm for classification problems. The proposed method, which is based on selective pruning and DDA model selection, aims to improve the generalization performance of DDA without generating larger networks. Simulations using four image recognition datasets from the UCI repository demonstrate the validity of the proposed method.
AbstractList This letter proposes a constructive training method for radial basis function networks. The proposed method is an extension of the dynamic decay adjustment (DDA) algorithm, a fast constructive algorithm for classification problems. The proposed method, which is based on selective pruning and DDA model selection, aims to improve the generalization performance of DDA without generating larger networks. Simulations using four image recognition datasets from the UCI repository demonstrate the validity of the proposed method.
Author Melo, Bruno J.M.
Meira, Silvio R.L.
Oliveira, Adriano L.I.
Author_xml – sequence: 1
  givenname: Adriano L.I.
  surname: Oliveira
  fullname: Oliveira, Adriano L.I.
  email: alio@cin.ufpe.br
  organization: Polytechnic School, University of Pernambuco, Rua Benfica, 455, Madalena, Recife - PE 50.750-410, Brazil
– sequence: 2
  givenname: Bruno J.M.
  surname: Melo
  fullname: Melo, Bruno J.M.
  organization: Polytechnic School, University of Pernambuco, Rua Benfica, 455, Madalena, Recife - PE 50.750-410, Brazil
– sequence: 3
  givenname: Silvio R.L.
  surname: Meira
  fullname: Meira, Silvio R.L.
  organization: Center of Informatics, Federal University of Pernambuco, P.O. Box 7851, Cidade Universitaria, Recife - PE 50.732-970, Brazil
BookMark eNqFkEtPwzAQhC0EEm3hH3DIiVuCH3lyQIKKQqVKSAiOyHKcTeuS2MV2ivj3JAQuHOC00u7MaOebokNtNCB0RnBEMEkvtpGGTpo2ohjHESERptkBmpA8o2FO8_QQTXBBk5AyQo_R1LktxiQjtJigl2W7s2av9DqQRjtvO-nVHgJvhdLD1tTB480i0ODfjX11gd9Y0603gYMGRunOdl9KoaugNRU0PzejT9BRLRoHp99zhp4Xt0_z-3D1cLecX69CyVjmQxanssoygWNcA0liYIyWGWWUxnXJZM1qWidVWuayhARXOctlUsaiKElaUqA5m6HzMbfv8taB87xVTkLTCA2mc5zilGFGil54OQqlNc5ZqLlUXgyvDoUbTjAfiPItH4nygSgnhPdEe3P8y7yzqhX24z_b1WiDnsBegeVOKtASKmV7TLwy6u-ATxlrlqA
CitedBy_id crossref_primary_10_1016_j_neucom_2007_11_003
crossref_primary_10_3390_ai3030044
crossref_primary_10_5402_2012_324194
crossref_primary_10_1016_j_advengsoft_2008_12_020
crossref_primary_10_1007_s00521_011_0546_1
crossref_primary_10_1016_j_neucom_2006_04_007
crossref_primary_10_1007_s00521_007_0169_8
crossref_primary_10_1016_j_neucom_2006_01_004
Cites_doi 10.1016/j.neucom.2003.12.004
10.1016/S0925-2312(97)00063-5
10.1109/ICPR.2004.1333850
10.1109/IJCNN.2004.1380945
ContentType Journal Article
Copyright 2005 Elsevier B.V.
Copyright_xml – notice: 2005 Elsevier B.V.
DBID AAYXX
CITATION
7TK
DOI 10.1016/j.neucom.2004.11.027
DatabaseName CrossRef
Neurosciences Abstracts
DatabaseTitle CrossRef
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 541
ExternalDocumentID 10_1016_j_neucom_2004_11_027
S092523120400551X
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TK
ID FETCH-LOGICAL-c337t-346cd77a040fe154e332b723224fb3cf3f2f5d6b8cbe50d838c5b4a9b16b2e283
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000227922700032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sun Sep 28 12:09:16 EDT 2025
Sat Nov 29 04:38:36 EST 2025
Tue Nov 18 20:40:23 EST 2025
Fri Feb 23 02:31:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords RBF network
Neural network
Model complexity
Classification
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-346cd77a040fe154e332b723224fb3cf3f2f5d6b8cbe50d838c5b4a9b16b2e283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 20630319
PQPubID 23462
PageCount 5
ParticipantIDs proquest_miscellaneous_20630319
crossref_citationtrail_10_1016_j_neucom_2004_11_027
crossref_primary_10_1016_j_neucom_2004_11_027
elsevier_sciencedirect_doi_10_1016_j_neucom_2004_11_027
PublicationCentury 2000
PublicationDate 2005-03-01
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-03-01
  day: 01
PublicationDecade 2000
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2005
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References M.R. Berthold, J. Diamond, Boosting the performance of RBF networks with dynamic decay adjustment, in: G. Tesauro, D. Touretzky, T. Leen, (Eds.), Advances in Neural Information Processing, vol. 7, MIT Press, New York, 1995, pp. 521–528.
A.L.I. Oliveira, F.B.L. Neto, S.R.L. Meira, Improving RBF-DDA performance on optical character recognition through parameter selection, in: Proceedings of the 17th International Conference on Pattern Recognition (ICPR’2004), vol. 4, pp. 625–628.
(1998).
C. Blake, C. Merz, UCI repository of machine learning databases, Available from
Paetz (bib5) 2004; 62
Berthold, Diamond (bib2) 1998; 19
A.L.I. Oliveira, F.B.L. Neto, S.R.L. Meira, Improving novelty detection in short time series through RBF-DDA parameter adjustment, in: Proceedings of International Joint Conference on Neural Networks (IJCNN’2004), IEEE Press.
10.1016/j.neucom.2004.11.027_bib1
Berthold (10.1016/j.neucom.2004.11.027_bib2) 1998; 19
10.1016/j.neucom.2004.11.027_bib3
10.1016/j.neucom.2004.11.027_bib4
10.1016/j.neucom.2004.11.027_bib6
Paetz (10.1016/j.neucom.2004.11.027_bib5) 2004; 62
References_xml – volume: 19
  start-page: 167
  year: 1998
  end-page: 183
  ident: bib2
  article-title: Constructive training of probabilistic neural networks
  publication-title: Neurocomputing
– reference: ] (1998).
– volume: 62
  start-page: 79
  year: 2004
  end-page: 91
  ident: bib5
  article-title: Reducing the number of neurons in radial basis function networks with dynamic decay adjustment
  publication-title: Neurocomputing
– reference: C. Blake, C. Merz, UCI repository of machine learning databases, Available from [
– reference: M.R. Berthold, J. Diamond, Boosting the performance of RBF networks with dynamic decay adjustment, in: G. Tesauro, D. Touretzky, T. Leen, (Eds.), Advances in Neural Information Processing, vol. 7, MIT Press, New York, 1995, pp. 521–528.
– reference: A.L.I. Oliveira, F.B.L. Neto, S.R.L. Meira, Improving novelty detection in short time series through RBF-DDA parameter adjustment, in: Proceedings of International Joint Conference on Neural Networks (IJCNN’2004), IEEE Press.
– reference: A.L.I. Oliveira, F.B.L. Neto, S.R.L. Meira, Improving RBF-DDA performance on optical character recognition through parameter selection, in: Proceedings of the 17th International Conference on Pattern Recognition (ICPR’2004), vol. 4, pp. 625–628.
– ident: 10.1016/j.neucom.2004.11.027_bib1
– ident: 10.1016/j.neucom.2004.11.027_bib6
– volume: 62
  start-page: 79
  year: 2004
  ident: 10.1016/j.neucom.2004.11.027_bib5
  article-title: Reducing the number of neurons in radial basis function networks with dynamic decay adjustment
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.12.004
– volume: 19
  start-page: 167
  year: 1998
  ident: 10.1016/j.neucom.2004.11.027_bib2
  article-title: Constructive training of probabilistic neural networks
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(97)00063-5
– ident: 10.1016/j.neucom.2004.11.027_bib3
  doi: 10.1109/ICPR.2004.1333850
– ident: 10.1016/j.neucom.2004.11.027_bib4
  doi: 10.1109/IJCNN.2004.1380945
SSID ssj0017129
Score 1.8594737
Snippet This letter proposes a constructive training method for radial basis function networks. The proposed method is an extension of the dynamic decay adjustment...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 537
SubjectTerms Classification
Model complexity
Neural network
RBF network
Title Improving constructive training of RBF networks through selective pruning and model selection
URI https://dx.doi.org/10.1016/j.neucom.2004.11.027
https://www.proquest.com/docview/20630319
Volume 64
WOSCitedRecordID wos000227922700032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagy4ELb7QPHj4gLiir1I84OXZRK0DZgqCLekGR7TjSVpCWZrvan884tpMuK1Q4cImi1HFaf1_Hkxl7PoRepVqwhEkZMSJNxHjFopTBWSKHZUwMl8M23vE1F9NpOp9nn_wWgqaVExB1nV5dZav_CjVcA7Dt1tl_gLvrFC7AOYAOR4Adjn8FfB8m0MtQHvbSdFoQbfWRk8mb2q3_bjqlnqZVxLFNV-tNHfYutko54TMP4SJUfNrA7NeqQvh4w-iHLbtQWo5tRW-hy_O1C9_mXYz21Licz0mfBjkNzb58zq8FI3i_GitEFQmPwGW8ZmATtmUhuavx4idb7qpe3bDjLqSwOK7Nxi7qsfge22KrRPTzVsjVTz8Wk7M8L2bj-ez16mdkFcVs5t3Lq9xGe0TwLB2gvdH78fxDl2MSQ-IqMfqvHDZWtqv_bj74T47Lb1N465fMHqB7_oUCjxwRHqJbpn6E7gexDuxt92P0reMF3uYFDrzAywoDL3DgBfa8wB0vsOcFBl7glhe448UTdDYZz96-i7y2RqQpFRcRZYkuhZBgwysDbrShlCgB7jVhlaK6ohWpeJmoVCvD4zKlqeaKyUwNE0UM-KRP0aBe1mYf4Vjxsop5rFRMGaU6FbKkpqwkT7IEOj1ANAxcoX3hefvbvhdhheGicMNtNVEZvJMWMNwHKOruWrnCKzvai4BJ4Z1H5xQWwKkdd74MEBZgW23CTNZmuWmgUULtLr_DnS2O0N3-7_AMDQBE8xzd0ZcX5836hWfeLxwXnlc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+constructive+training+of+RBF+networks+through+selective+pruning+and+model+selection&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Oliveira%2C+ALI&rft.au=Melo%2C+BJM&rft.au=Meira%2C+SRL&rft.date=2005-03-01&rft.issn=0925-2312&rft.volume=64&rft.spage=537&rft.epage=541&rft_id=info:doi/10.1016%2Fj.neucom.2004.11.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon