Enhancing Portfolio Performance through Financial Time-Series Decomposition-Based Variational Encoder-Decoder Data Augmentation
The objective of portfolio diversification is to reduce risk and potentially enhance returns by spreading investments across different asset classes. Existing portfolio diversification models have traditionally been trained on historical financial time series data. However, several issues arise with...
Saved in:
| Published in: | Symmetry (Basel) Vol. 16; no. 3; p. 283 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.03.2024
|
| Subjects: | |
| ISSN: | 2073-8994, 2073-8994 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The objective of portfolio diversification is to reduce risk and potentially enhance returns by spreading investments across different asset classes. Existing portfolio diversification models have traditionally been trained on historical financial time series data. However, several issues arise with historical financial time series data, making it challenging to train models effectively to achieve the portfolio diversification objective: an insufficient amount of training data and the uncertainty deficiency problem, wherein the uncertainty that existed in the past is not visible in the present. Insufficient datasets, characterized by small data size, result in information asymmetry and compromise portfolio performance. This limitation underscores the importance of adopting a pattern-centric data augmentation approach, capable of unveiling hidden patterns and structures within the financial time series data. To address these challenges, this paper introduces the financial time series decomposition-based variational encoder-decoder (FED) method to augment financial time series data, overcoming the limitations of insufficient training data and providing a more realistic and dynamic simulation of the financial market environment. By decomposing the data into distinct components, such as trend, dispersion, and residual, FED leverages pattern-centric data augmentation within the financial time series data. In the environment generated using the FED method, this paper proposes a two-class portfolio diversification, called FED2Port. It integrates stochastic elements into the reward function, enabling a reinforcement learning algorithm to learn from a comprehensive spectrum of financial market uncertainties. The experimental results demonstrate that the proposed model significantly enhances portfolio performance. |
|---|---|
| AbstractList | The objective of portfolio diversification is to reduce risk and potentially enhance returns by spreading investments across different asset classes. Existing portfolio diversification models have traditionally been trained on historical financial time series data. However, several issues arise with historical financial time series data, making it challenging to train models effectively to achieve the portfolio diversification objective: an insufficient amount of training data and the uncertainty deficiency problem, wherein the uncertainty that existed in the past is not visible in the present. Insufficient datasets, characterized by small data size, result in information asymmetry and compromise portfolio performance. This limitation underscores the importance of adopting a pattern-centric data augmentation approach, capable of unveiling hidden patterns and structures within the financial time series data. To address these challenges, this paper introduces the financial time series decomposition-based variational encoder-decoder (FED) method to augment financial time series data, overcoming the limitations of insufficient training data and providing a more realistic and dynamic simulation of the financial market environment. By decomposing the data into distinct components, such as trend, dispersion, and residual, FED leverages pattern-centric data augmentation within the financial time series data. In the environment generated using the FED method, this paper proposes a two-class portfolio diversification, called FED2Port. It integrates stochastic elements into the reward function, enabling a reinforcement learning algorithm to learn from a comprehensive spectrum of financial market uncertainties. The experimental results demonstrate that the proposed model significantly enhances portfolio performance. |
| Audience | Academic |
| Author | Lee, Ju-Hong Kalina, Bayartsetseg |
| Author_xml | – sequence: 1 givenname: Bayartsetseg orcidid: 0000-0002-4929-3145 surname: Kalina fullname: Kalina, Bayartsetseg – sequence: 2 givenname: Ju-Hong surname: Lee fullname: Lee, Ju-Hong |
| BookMark | eNptkUFPwyAUgInRxDl38g-QeDSdUFpKj3NuarLEJU6vDYPXjaWFCd1hJ_-6zHlYjHB48PJ95D3eFTq3zgJCN5QMGSvJfdi3lBNGUsHOUC8lBUtEWWbnJ-dLNAhhQ-LKSZ5x0kNfE7uWVhm7wnPnu9o1xuE5-Nr5NuYBd2vvdqs1nhp74GSDF6aF5A28gYAfQbl264LpjLPJgwyg8Yf0Rh7ukZ1Y5TT45MDFiB9lJ_Fot2rBdj_MNbqoZRNg8Bv76H06WYyfk9nr08t4NEsUY0WXpFIWStOl0iwHwoFqXlAQrC5zwrnUZa64SLkshdZMCcqyHNIsXWpRZ6UuJeuj2-O7W-8-dxC6auN2PpYYKkYIE4QXKY_U8EitZAOVsbXrvFRxa2iNit9dm5gfFUKkeZZREQV6FJR3IXioK2WOjUXRNBUl1WE21clsonP3x9l600q__5f-BnIGk4Q |
| CitedBy_id | crossref_primary_10_3390_sym16070821 |
| Cites_doi | 10.1287/ijds.2021.0004 10.2139/ssrn.3331184 10.1016/j.eswa.2017.06.023 10.2469/faj.v48.n5.28 10.1086/294846 10.1145/3511808.3557077 10.1109/TKDE.2023.3268125 10.2139/ssrn.2272973 10.1109/ICDM51629.2021.00058 10.1016/j.eswa.2018.02.032 10.1002/(SICI)1099-131X(1998090)17:5/6<441::AID-FOR707>3.0.CO;2-# 10.1561/9781680836233 10.1093/biomet/84.2.489 10.1145/3394486.3403271 10.26868/25222708.2019.210541 10.1145/3490354.3494376 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3390/sym16030283 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | A788254418 10_3390_sym16030283 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c337t-2aa7cd1bcd35e06e1d671e83f95066ad95c6826a98dd3c81345e242bd8f49d9a3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001192661600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Sun Jul 13 04:38:26 EDT 2025 Tue Nov 04 18:25:38 EST 2025 Sat Nov 29 07:09:09 EST 2025 Tue Nov 18 21:47:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-2aa7cd1bcd35e06e1d671e83f95066ad95c6826a98dd3c81345e242bd8f49d9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4929-3145 |
| OpenAccessLink | https://www.proquest.com/docview/3003806726?pq-origsite=%requestingapplication% |
| PQID | 3003806726 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_3003806726 gale_infotracacademiconefile_A788254418 crossref_citationtrail_10_3390_sym16030283 crossref_primary_10_3390_sym16030283 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Sharpe (ref_27) 1966; 39 ref_14 ref_13 ref_12 ref_33 ref_32 ref_30 West (ref_18) 1997; 84 ref_19 ref_17 Almahdi (ref_10) 2017; 87 ref_16 ref_15 Markowitz (ref_3) 1952; 7 Pendharker (ref_11) 2018; 102 Dudek (ref_26) 2023; 35 ref_25 ref_24 Sortino (ref_31) 1994; 3 ref_22 Sharpe (ref_29) 1964; 19 ref_21 ref_20 ref_1 ref_2 ref_9 ref_8 ref_5 Dokumentov (ref_23) 2021; 1 ref_4 Black (ref_28) 1992; 48 Moody (ref_6) 1998; 17 ref_7 |
| References_xml | – volume: 1 start-page: 50 year: 2021 ident: ref_23 article-title: STR: Seasonal-Trend Decomposition Using Regression publication-title: INFORMS J. Data Sci. doi: 10.1287/ijds.2021.0004 – ident: ref_5 doi: 10.2139/ssrn.3331184 – ident: ref_9 – ident: ref_30 – ident: ref_32 – ident: ref_24 – volume: 19 start-page: 425 year: 1964 ident: ref_29 article-title: Capital asset prices: A theory of market equilibrium under conditions of risk publication-title: J. Financ. – volume: 87 start-page: 267 year: 2017 ident: ref_10 article-title: An adaptive portfolio trading system: A risk-return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.06.023 – ident: ref_16 – volume: 48 start-page: 28 year: 1992 ident: ref_28 article-title: Global Portfolio Optimization publication-title: Financ. Anal. J. doi: 10.2469/faj.v48.n5.28 – volume: 3 start-page: 59 year: 1994 ident: ref_31 article-title: Performance measurement in a downside risk framework publication-title: J. Investig. – ident: ref_14 – ident: ref_1 – volume: 39 start-page: 119 year: 1966 ident: ref_27 article-title: Mutual Fund Performance publication-title: J. Bus. doi: 10.1086/294846 – ident: ref_25 doi: 10.1145/3511808.3557077 – ident: ref_8 – volume: 7 start-page: 77 year: 1952 ident: ref_3 article-title: Portfolio Selection publication-title: J. Financ. – volume: 35 start-page: 10339 year: 2023 ident: ref_26 article-title: STD: A Seasonal-Trend-Dispersion Decomposition of Time Series publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3268125 – ident: ref_33 – ident: ref_2 – ident: ref_4 doi: 10.2139/ssrn.2272973 – ident: ref_12 – ident: ref_17 doi: 10.1109/ICDM51629.2021.00058 – volume: 102 start-page: 1 year: 2018 ident: ref_11 article-title: Trading financial indices with reinforcement learning agents publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.02.032 – ident: ref_13 – volume: 17 start-page: 441 year: 1998 ident: ref_6 article-title: Performance Functions and Reinforcement Learning for Trading Systems and Portfolios publication-title: J. Forecast. doi: 10.1002/(SICI)1099-131X(1998090)17:5/6<441::AID-FOR707>3.0.CO;2-# – ident: ref_15 doi: 10.1561/9781680836233 – ident: ref_19 – ident: ref_22 – volume: 84 start-page: 489 year: 1997 ident: ref_18 article-title: Time Series Decomposition publication-title: Biometrika doi: 10.1093/biomet/84.2.489 – ident: ref_21 doi: 10.1145/3394486.3403271 – ident: ref_20 doi: 10.26868/25222708.2019.210541 – ident: ref_7 doi: 10.1145/3490354.3494376 |
| SSID | ssj0000505460 |
| Score | 2.2949169 |
| Snippet | The objective of portfolio diversification is to reduce risk and potentially enhance returns by spreading investments across different asset classes. Existing... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 283 |
| SubjectTerms | Algorithms Analysis Data augmentation Data mining Decision making Decomposition Diversification Encoders-Decoders Evaluation Financial markets Investment analysis Investment policy Investments Machine learning Optimization techniques Portfolio management Portfolio performance Risk management Securities markets Time series Trends Uncertainty Variables |
| Title | Enhancing Portfolio Performance through Financial Time-Series Decomposition-Based Variational Encoder-Decoder Data Augmentation |
| URI | https://www.proquest.com/docview/3003806726 |
| Volume | 16 |
| WOSCitedRecordID | wos001192661600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD7YtQ99qbUXXLUyD0IvMLjJTJLJU1k1SwW7BG3FPoW5xQqa1c0q-FL_uufsznoB6UtfEkiGYeDMnNuc830Amx69DtRyhnvvBZdZknBjIsvRuAqnReTiKUvE0X42HKrj47wMCbc2lFXOdeJUUbuRpRz5lqA7LLo3TL9dXHJijaLb1UCh8QIWCalMdmBxuxiWB_dZFuJpk2lv1pgnML7fam_OiVmZzOoTU_S8Qp5amcHS_67vDbwO_iXrzzbEMiz45i0shxPcss8BZvrLO7gtmj8EttGcMConrUdnpyNWPvQRsEDhwwZzUA5G_SKc8mk4066navRQ8sW30Rg6doSBd0gusqKhbvkxp3H4Zrt6oln_6uQ8NDs17-HXoPi5850HOgZuhcgmPNY6sy4y1onE91IfuTSLvBJ1nqDfol2e2BSDFZ0r54RVkZCJRwfAOFXL3OVafIBOM2r8CrBe7WqTG5PHTsgYgzSthHSZ0tLgR-u78HUumcoGrHKizDirMGYhMVaPxNiFzfvBFzOIjueHfSIRV3RwcS6rQ_8BroggsKp-pihalpHqwvpcxFU40W31IN_Vf_9eg1cxOj6zOrV16EzGV_4jvLTXk9N2vBE26AbVmB7S82-B38q9H-XvO2ct9tE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXoDzEQgEfinhIVjdxHvYBoYXdVasuq0qUqrfgV8pKbbZstqCe-Ef8RmYSpwWp4tYDp0iJZUXOl2_G45n5ADY8eh3IcoZ77wVP8jTlxkSWo3EVTovIxY1KxP4kn07lwYHaXYFfXS0MpVV2nNgQtZtbipFvCjrDonPD7N3JN06qUXS62klotLDY8Wc_cMtWv90e4vd9Ecfj0d6HLR5UBbgVIl_yWOvcushYJ1Lfz3zksjzyUpQqRfOrnUpthj63VtI5YWUkktSjHTNOlolySguc9xpcT4j9m1TBT-cxHVKFS7J-WwYohOpv1mfHpONMRvwvw3c5_Tc2bXznf1uNu3A7eM9s0MJ9DVZ8dQ_WAj_V7FVoov36PvwcVV-plUh1yChZtpwfzeZs96JKggWBIjbuWo4wqobhFC3EmYaecu1DQht_j6besX29mIXQKRtV1AtgwWkcXtlQLzUbnB4eh1Ku6gF8vpKFeAir1bzyj4D1S1caZYyKnUhi3IJqKRKXS50YvGl9D950SChs6MROgiBHBe7ICDbFH7Dpwcb54JO2Acnlw14SpAqiJZzL6lBdgW9EDb6KQS4pFpBEsgfrHaSKwFd1cYGnx_9-_Bxubu19nBST7enOE7gVo4vXZuStw-pyceqfwg37fTmrF8-aX4PBl6tG32_xgk8V |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAXoHyIhQI-FPEhWbuJncQ-ILSwu6JqtVoJqHpLHdspK7XZstmCeuJ_8euYSZwWpIpbD5wiJZYVJc8z4_GbeQBbHqMOtHIF994LLrMk4UURWY7OVTgjIhc3KhF7u9l0qvb39WwNfnW1MESr7GxiY6jdwlKOvC_oDIvODdN-GWgRs9Hk3ck3TgpSdNLayWm0ENnxZz9w-1a_3R7hv34Rx5Px5w8feVAY4FaIbMVjYzLrosI6kfhB6iOXZpFXotQJumLjdGJTjL-NVs4JqyIhE48-rXCqlNppI3Dea3A9kxgnNLTBT-f5HVKIk-mgLQkUQg_69dkxaTqTQ__LCV7uChr_NrnzP3-Zu3A7RNVs2C6DDVjz1T3YCHarZq9Cc-3X9-HnuPpKLUaqQ0Yk2nJxNF-w2UX1BAvCRWzStSJhVCXDKYuIM408cfAD0Y2_xxDAsT2znIeUKhtX1CNgyWkcXtnIrAwbnh4ehxKv6gF8uZIP8RDWq0XlHwEblK4sdFHo2AkZ49bUKCFdpows8Kb1PXjToSK3oUM7CYUc5bhTIwjlf0CoB1vng0_axiSXD3tJ8MrJXOFc1oSqC3wjavyVDzNFOQIZqR5sdvDKgx2r8wtsPf734-dwE0GX725Pd57ArRgjv5aotwnrq-Wpfwo37PfVvF4-a1YJg4OrBt9vVOpX2w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Portfolio+Performance+through+Financial+Time-Series+Decomposition-Based+Variational+Encoder-Decoder+Data+Augmentation&rft.jtitle=Symmetry+%28Basel%29&rft.au=Kalina%2C+Bayartsetseg&rft.au=Lee%2C+Ju-Hong&rft.date=2024-03-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=16&rft.issue=3&rft.spage=283&rft_id=info:doi/10.3390%2Fsym16030283&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym16030283 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |