Approximate Solutions and Duality Theorems for Continuous-Time Linear Fractional Programming Problems
This article proposes a practical computational procedure to solve a class of continuous-time linear fractional programming problems by designing a discretized problem. Using the optimal solutions of proposed discretized problems, we construct a sequence of feasible solutions of continuous-time line...
Uloženo v:
| Vydáno v: | Numerical functional analysis and optimization Ročník 33; číslo 1; s. 80 - 129 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Taylor & Francis Group
01.01.2012
Taylor & Francis |
| Témata: | |
| ISSN: | 0163-0563, 1532-2467 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This article proposes a practical computational procedure to solve a class of continuous-time linear fractional programming problems by designing a discretized problem. Using the optimal solutions of proposed discretized problems, we construct a sequence of feasible solutions of continuous-time linear fractional programming problem and show that there exists a subsequence that converges weakly to a desired optimal solution. We also establish an estimate of the error bound. Finally, we provide two numerical examples to demonstrate the usefulness of this practical algorithm. |
|---|---|
| ISSN: | 0163-0563 1532-2467 |
| DOI: | 10.1080/01630563.2011.629312 |