Approximate Solutions and Duality Theorems for Continuous-Time Linear Fractional Programming Problems

This article proposes a practical computational procedure to solve a class of continuous-time linear fractional programming problems by designing a discretized problem. Using the optimal solutions of proposed discretized problems, we construct a sequence of feasible solutions of continuous-time line...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 33; číslo 1; s. 80 - 129
Hlavní autoři: Wen, Ching-Feng, Wu, Hsien-Chung
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Taylor & Francis Group 01.01.2012
Taylor & Francis
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article proposes a practical computational procedure to solve a class of continuous-time linear fractional programming problems by designing a discretized problem. Using the optimal solutions of proposed discretized problems, we construct a sequence of feasible solutions of continuous-time linear fractional programming problem and show that there exists a subsequence that converges weakly to a desired optimal solution. We also establish an estimate of the error bound. Finally, we provide two numerical examples to demonstrate the usefulness of this practical algorithm.
ISSN:0163-0563
1532-2467
DOI:10.1080/01630563.2011.629312