Multi-step-ahead prediction of thermal load in regional energy system using deep learning method

[Display omitted] Accurate and reliable multi-step-ahead thermal load prediction is generally considered as the basis of model predictive control and multi-energy dispatch of building energy systems. Conventional approaches to future load time series prediction rely either on iterative one-step-ahea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy and buildings Ročník 233; s. 110658
Hlavní autori: Lu, Yakai, Tian, Zhe, Zhou, Ruoyu, Liu, Wenjing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Lausanne Elsevier B.V 15.02.2021
Elsevier BV
Predmet:
ISSN:0378-7788, 1872-6178
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] Accurate and reliable multi-step-ahead thermal load prediction is generally considered as the basis of model predictive control and multi-energy dispatch of building energy systems. Conventional approaches to future load time series prediction rely either on iterative one-step-ahead predictors or direct predictors, which ignores the temporal dependency between successive loads in time-delay building energy systems. This study, therefore, proposes a temporal attention encoder-decoder network (TA-EDN) model to improve the accuracy of multi-step-ahead thermal load prediction with the following three functional modules: long short-term memory (LSTM) network, which is to process the intrinsic temporal relationships among input and output variables, encoder-decoder network (EDN), which is to realize the multi-input multi-output modeling, and attention mechanism, which is to improve the ability of processing variables with long sequences. An actual regional energy system is selected to perform the 24-hour-ahead prediction using the proposed model as a validation experiment. The results suggest that the TA-EDN model significantly improves the prediction accuracy of the future thermal loads time series, achieving a mean absolute percentage error of 7.4%, compared to that of 9.1% of EDN model, 12.4% of LSTM-IS (a model combining LSTM with iterative strategy) and 12.7% of LSTM-DS (a model combining LSTM with direct strategy). In addition, compared with the ideal benchmark of multi-step-ahead prediction, the proposed TA-EDN model has room for improvement in the prediction of low load or large fluctuation load.
AbstractList [Display omitted] Accurate and reliable multi-step-ahead thermal load prediction is generally considered as the basis of model predictive control and multi-energy dispatch of building energy systems. Conventional approaches to future load time series prediction rely either on iterative one-step-ahead predictors or direct predictors, which ignores the temporal dependency between successive loads in time-delay building energy systems. This study, therefore, proposes a temporal attention encoder-decoder network (TA-EDN) model to improve the accuracy of multi-step-ahead thermal load prediction with the following three functional modules: long short-term memory (LSTM) network, which is to process the intrinsic temporal relationships among input and output variables, encoder-decoder network (EDN), which is to realize the multi-input multi-output modeling, and attention mechanism, which is to improve the ability of processing variables with long sequences. An actual regional energy system is selected to perform the 24-hour-ahead prediction using the proposed model as a validation experiment. The results suggest that the TA-EDN model significantly improves the prediction accuracy of the future thermal loads time series, achieving a mean absolute percentage error of 7.4%, compared to that of 9.1% of EDN model, 12.4% of LSTM-IS (a model combining LSTM with iterative strategy) and 12.7% of LSTM-DS (a model combining LSTM with direct strategy). In addition, compared with the ideal benchmark of multi-step-ahead prediction, the proposed TA-EDN model has room for improvement in the prediction of low load or large fluctuation load.
Accurate and reliable multi-step-ahead thermal load prediction is generally considered as the basis of model predictive control and multi-energy dispatch of building energy systems. Conventional approaches to future load time series prediction rely either on iterative one-step-ahead predictors or direct predictors, which ignores the temporal dependency between successive loads in time-delay building energy systems. This study, therefore, proposes a temporal attention encoder-decoder network (TA-EDN) model to improve the accuracy of multi-step-ahead thermal load prediction with the following three functional modules: long short-term memory (LSTM) network, which is to process the intrinsic temporal relationships among input and output variables, encoder-decoder network (EDN), which is to realize the multi-input multi-output modeling, and attention mechanism, which is to improve the ability of processing variables with long sequences. An actual regional energy system is selected to perform the 24-hour-ahead prediction using the proposed model as a validation experiment. The results suggest that the TA-EDN model significantly improves the prediction accuracy of the future thermal loads time series, achieving a mean absolute percentage error of 7.4%, compared to that of 9.1% of EDN model, 12.4% of LSTM-IS (a model combining LSTM with iterative strategy) and 12.7% of LSTM-DS (a model combining LSTM with direct strategy). In addition, compared with the ideal benchmark of multi-step-ahead prediction, the proposed TA-EDN model has room for improvement in the prediction of low load or large fluctuation load.
ArticleNumber 110658
Author Zhou, Ruoyu
Tian, Zhe
Lu, Yakai
Liu, Wenjing
Author_xml – sequence: 1
  givenname: Yakai
  surname: Lu
  fullname: Lu, Yakai
– sequence: 2
  givenname: Zhe
  surname: Tian
  fullname: Tian, Zhe
  email: tianzhe@tju.edu.cn
– sequence: 3
  givenname: Ruoyu
  surname: Zhou
  fullname: Zhou, Ruoyu
– sequence: 4
  givenname: Wenjing
  surname: Liu
  fullname: Liu, Wenjing
BookMark eNqFkE1LAzEQhoMo2Ko_QQh43pqku5ssHkSKX6B40XPMJrNtyjZZk6zQf29Ke_LSU8jM-wwzzxSdOu8AoWtKZpTQ-nY9A9eOtjczRliuUVJX4gRNqOCsqCkXp2hC5lwUnAtxjqYxrgnJGU4n6Pt97JMtYoKhUCtQBg8BjNXJeod9h9MKwkb1uPe5ZR0OsMydXAAHYbnFcZvRDR6jdUtsAAbcgwpu99tAWnlzic461Ue4OrwX6Ovp8XPxUrx9PL8uHt4KPZ_zVDBWG9EIBS0pW2qYIV3ZqrLlwMqacF6WLJ9aMmhES4Q2tFW6URpMVXWcV2x-gW72c4fgf0aISa79GPKmUbKyoQ3PHnhO3e1TOvgYA3RS26R2x6agbC8pkTulci0PSuVOqdwrzXT1jx6C3aiwPcrd7znIAn4tBBm1BZe3twF0ksbbIxP-AFpEln4
CitedBy_id crossref_primary_10_1007_s11269_024_04033_1
crossref_primary_10_1016_j_enbuild_2022_111832
crossref_primary_10_1109_JIOT_2025_3549715
crossref_primary_10_1016_j_est_2024_114959
crossref_primary_10_1016_j_neucom_2024_128939
crossref_primary_10_1016_j_apenergy_2025_125273
crossref_primary_10_1007_s13042_023_01796_8
crossref_primary_10_1016_j_jobe_2024_111448
crossref_primary_10_3390_agronomy14020349
crossref_primary_10_1016_j_jobe_2021_103017
crossref_primary_10_1016_j_enbuild_2024_114661
crossref_primary_10_1016_j_egyai_2025_100480
crossref_primary_10_1016_j_ijhydene_2023_01_068
crossref_primary_10_1007_s10043_024_00873_9
crossref_primary_10_1016_j_scs_2021_103625
crossref_primary_10_1016_j_compag_2023_107932
crossref_primary_10_1109_TII_2025_3534419
crossref_primary_10_1016_j_enbuild_2022_112317
crossref_primary_10_1016_j_jobe_2022_105330
crossref_primary_10_1007_s00521_023_08878_2
crossref_primary_10_1016_j_apenergy_2022_118801
crossref_primary_10_1016_j_aei_2021_101357
crossref_primary_10_3390_s23146528
crossref_primary_10_1016_j_rineng_2024_103765
crossref_primary_10_1016_j_aei_2022_101854
crossref_primary_10_1016_j_apenergy_2024_123042
crossref_primary_10_1371_journal_pntd_0011587
crossref_primary_10_1016_j_petrol_2022_110844
crossref_primary_10_3390_su16177805
crossref_primary_10_1016_j_energy_2022_124915
crossref_primary_10_1109_ACCESS_2021_3129172
crossref_primary_10_1016_j_jobe_2022_105028
Cites_doi 10.1016/j.enconman.2015.07.009
10.1016/j.procs.2017.11.374
10.1016/j.neucom.2009.11.030
10.1007/11494669_124
10.1162/neco.1997.9.8.1735
10.1016/j.energy.2018.09.068
10.1016/j.apenergy.2019.03.187
10.18653/v1/D15-1166
10.1016/j.scs.2018.02.016
10.1016/j.apenergy.2018.12.004
10.1109/SIU.2018.8404313
10.1016/j.enbuild.2013.06.007
10.1016/j.energy.2019.116085
10.1016/j.energy.2017.04.045
10.1162/tacl_a_00105
10.1016/j.enbuild.2019.02.014
10.1016/j.apenergy.2019.02.052
10.21437/Interspeech.2012-65
10.1016/j.enconman.2013.12.060
10.1016/j.apenergy.2017.12.051
10.1016/j.neucom.2006.06.015
10.1016/j.enbuild.2018.04.008
10.1016/j.enbuild.2012.08.007
10.1016/j.rser.2017.07.018
10.1109/IECON.2016.7793413
10.1016/j.eswa.2012.01.039
10.1016/j.apenergy.2017.07.009
10.1016/j.applthermaleng.2017.09.007
10.1109/CAC.2017.8242744
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Feb 15, 2021
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Feb 15, 2021
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2020.110658
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
ExternalDocumentID 10_1016_j_enbuild_2020_110658
S0378778820334447
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
~HD
7ST
8FD
AGCQF
C1K
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c337t-226d898aeb04b1d2d0f4ba4b7e24607744201642e98b08cd1bac9aced55f77523
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000712412900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7788
IngestDate Wed Aug 13 04:27:09 EDT 2025
Tue Nov 18 21:51:39 EST 2025
Sat Nov 29 07:12:20 EST 2025
Fri Feb 23 02:48:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Attention mechanism
Sequence-to-sequence
Multi-step-ahead prediction
Temporal dependency
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-226d898aeb04b1d2d0f4ba4b7e24607744201642e98b08cd1bac9aced55f77523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2491971787
PQPubID 2045483
ParticipantIDs proquest_journals_2491971787
crossref_citationtrail_10_1016_j_enbuild_2020_110658
crossref_primary_10_1016_j_enbuild_2020_110658
elsevier_sciencedirect_doi_10_1016_j_enbuild_2020_110658
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Niu, Tian, Lu (b0020) 2019; 243
Werner (b0025) 2017; 137
Ding, Zhang, Yuan, Yang (b0065) 2018; 128
Wang, Wang, Zeng (b0045) 2018; 171
M.T. Luong, H. Pham, C.D. Manning, Effective approaches to attention-based neural machine translation[J]. arXiv preprint arXiv:1508.04025, 2015.
Lu, Tian, Peng (b0170) 2019; 190
Koschwitz, Frisch, Van Treeck (b0040) 2018; 165
Fan, Wang, Gang (b0080) 2019; 236
A. Vaswani, N. Shazeer, N. Parmar, et al. Attention is all you need[C], in: Advances in Neural Information Processing Systems, 2017, pp. 5998–6008.
Zhou, Cao, Wang (b0140) 2016; 4
Zhang, Cao, Romagnoli (b0075) 2018; 39
Sorjamaa, Hao, Reyhani (b0110) 2007; 70
M. Sundermeyer, R. Schlüter, H. Ney, LSTM neural networks for language modeling[C], in: Thirteenth Annual Conference of the International Speech Communication Association, 2012.
Fan, Sun, Zhao (b0070) 2019; 240
Rahman, Srikumar, Smith (b0085) 2018; 212
D.L. Marino, K. Amarasinghe, M. Manic, Building energy load forecasting using deep neural networks[C], in: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016, pp. 7046–7051.
He (b0050) 2017; 122
Kumar, Aggarwal, Sharma (b0035) 2013; 65
L. Kuan, B. Zhenfu, W. Xin, et al., Short-term CHP heat load forecast method based on concatenated LSTMs[C], in: 2017 Chinese Automation Congress (CAC). IEEE, 2017, pp. 99–103.
A. Tokgöz, G. Ünal, A RNN based time series approach for forecasting turkish electricity load[C], in: 2018 26th Signal Processing and Communications Applications Conference (SIU). IEEE, 2018, pp. 1–4.
Y. Ji, J. Hao, N. Reyhani, et al., Direct and recursive prediction of time series using mutual information selection[C], in: International Work-Conference on Artificial Neural Networks. Springer, Berlin, Heidelberg, 2005, pp. 1010–1017.
Ma, Fang, Liu (b0030) 2017; 204
Yun, Luck, Mago (b0055) 2012; 54
Guo, Nazarian, Ko (b0060) 2014; 80
I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks[C], in: Advances in Neural Information Processing Systems, 2014, pp. 3104–3112.
Di Somma, Yan, Bianco (b0015) 2015; 103
Bontempi (b0120) 2008
Hochreiter, Schmidhuber (b0165) 1997; 9
Zafar, Mahmood, Razzaq (b0010) 2018; 82
Taieb, Bontempi, Atiya (b0130) 2012; 39
Xue, Jiang, Zhou (b0115) 2019; 188
Taieb, Sorjamaa, Bontempi (b0125) 2010; 73
Liu (b0005) 2018; 99
D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.
Niu (10.1016/j.enbuild.2020.110658_b0020) 2019; 243
Kumar (10.1016/j.enbuild.2020.110658_b0035) 2013; 65
Fan (10.1016/j.enbuild.2020.110658_b0080) 2019; 236
Rahman (10.1016/j.enbuild.2020.110658_b0085) 2018; 212
10.1016/j.enbuild.2020.110658_b0105
Zhang (10.1016/j.enbuild.2020.110658_b0075) 2018; 39
Fan (10.1016/j.enbuild.2020.110658_b0070) 2019; 240
10.1016/j.enbuild.2020.110658_b0160
Zafar (10.1016/j.enbuild.2020.110658_b0010) 2018; 82
10.1016/j.enbuild.2020.110658_b0100
Bontempi (10.1016/j.enbuild.2020.110658_b0120) 2008
10.1016/j.enbuild.2020.110658_b0145
Guo (10.1016/j.enbuild.2020.110658_b0060) 2014; 80
Taieb (10.1016/j.enbuild.2020.110658_b0125) 2010; 73
Zhou (10.1016/j.enbuild.2020.110658_b0140) 2016; 4
Yun (10.1016/j.enbuild.2020.110658_b0055) 2012; 54
Ding (10.1016/j.enbuild.2020.110658_b0065) 2018; 128
Ma (10.1016/j.enbuild.2020.110658_b0030) 2017; 204
10.1016/j.enbuild.2020.110658_b0090
He (10.1016/j.enbuild.2020.110658_b0050) 2017; 122
Lu (10.1016/j.enbuild.2020.110658_b0170) 2019; 190
Di Somma (10.1016/j.enbuild.2020.110658_b0015) 2015; 103
Sorjamaa (10.1016/j.enbuild.2020.110658_b0110) 2007; 70
Taieb (10.1016/j.enbuild.2020.110658_b0130) 2012; 39
Hochreiter (10.1016/j.enbuild.2020.110658_b0165) 1997; 9
10.1016/j.enbuild.2020.110658_b0135
10.1016/j.enbuild.2020.110658_b0095
10.1016/j.enbuild.2020.110658_b0150
Liu (10.1016/j.enbuild.2020.110658_b0005) 2018; 99
Xue (10.1016/j.enbuild.2020.110658_b0115) 2019; 188
10.1016/j.enbuild.2020.110658_b0155
Werner (10.1016/j.enbuild.2020.110658_b0025) 2017; 137
Koschwitz (10.1016/j.enbuild.2020.110658_b0040) 2018; 165
Wang (10.1016/j.enbuild.2020.110658_b0045) 2018; 171
References_xml – volume: 212
  start-page: 372
  year: 2018
  end-page: 385
  ident: b0085
  article-title: Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks[J]
  publication-title: Appl. Energy
– volume: 70
  start-page: 2861
  year: 2007
  end-page: 2869
  ident: b0110
  article-title: Methodology for long-term prediction of time series[J]
  publication-title: Neurocomputing
– volume: 204
  start-page: 181
  year: 2017
  end-page: 205
  ident: b0030
  article-title: Modeling of district load forecasting for distributed energy system[J]
  publication-title: Appl. Energy
– volume: 54
  start-page: 225
  year: 2012
  end-page: 233
  ident: b0055
  article-title: Building hourly thermal load prediction using an indexed ARX model[J]
  publication-title: Energy Build.
– volume: 65
  start-page: 352
  year: 2013
  end-page: 358
  ident: b0035
  article-title: Energy analysis of a building using artificial neural network: a review[J]
  publication-title: Energy Build.
– volume: 188
  start-page: 116085
  year: 2019
  ident: b0115
  article-title: Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms[J]
  publication-title: Energy
– reference: A. Vaswani, N. Shazeer, N. Parmar, et al. Attention is all you need[C], in: Advances in Neural Information Processing Systems, 2017, pp. 5998–6008.
– volume: 122
  start-page: 308
  year: 2017
  end-page: 314
  ident: b0050
  article-title: Load forecasting via deep neural networks[J]
  publication-title: Procedia Comput. Sci.
– reference: Y. Ji, J. Hao, N. Reyhani, et al., Direct and recursive prediction of time series using mutual information selection[C], in: International Work-Conference on Artificial Neural Networks. Springer, Berlin, Heidelberg, 2005, pp. 1010–1017.
– start-page: 145
  year: 2008
  end-page: 154
  ident: b0120
  article-title: Long term time series prediction with multi-input multi-output local learning[J]
  publication-title: Proc. 2nd ESTSP
– volume: 243
  start-page: 274
  year: 2019
  end-page: 287
  ident: b0020
  article-title: Flexible dispatch of a building energy system using building thermal storage and battery energy storage[J]
  publication-title: Appl. Energy
– volume: 39
  start-page: 508
  year: 2018
  end-page: 518
  ident: b0075
  article-title: On the feature engineering of building energy data mining[J]
  publication-title: Sustain. Cities Soc.
– volume: 128
  start-page: 225
  year: 2018
  end-page: 234
  ident: b0065
  article-title: Effect of input variables on cooling load prediction accuracy of an office building
  publication-title: Appl. Therm. Eng.
– volume: 39
  start-page: 7067
  year: 2012
  end-page: 7083
  ident: b0130
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition[J]
  publication-title: Expert Syst. Appl.
– reference: D.L. Marino, K. Amarasinghe, M. Manic, Building energy load forecasting using deep neural networks[C], in: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016, pp. 7046–7051.
– reference: D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.
– volume: 236
  start-page: 700
  year: 2019
  end-page: 710
  ident: b0080
  article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions[J]
  publication-title: Appl. Energy
– volume: 4
  start-page: 371
  year: 2016
  end-page: 383
  ident: b0140
  article-title: Deep recurrent models with fast-forward connections for neural machine translation[J]
  publication-title: Trans. Assoc. Comput. Linguist.
– volume: 165
  start-page: 134
  year: 2018
  end-page: 142
  ident: b0040
  article-title: Data-driven heating and cooling load predictions for non-residential buildings based on support vector machine regression and NARX Recurrent Neural Network: a comparative study on district scale[J]
  publication-title: Energy
– volume: 80
  start-page: 46
  year: 2014
  end-page: 53
  ident: b0060
  article-title: Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression[J]
  publication-title: Energy Convers. Manage.
– reference: A. Tokgöz, G. Ünal, A RNN based time series approach for forecasting turkish electricity load[C], in: 2018 26th Signal Processing and Communications Applications Conference (SIU). IEEE, 2018, pp. 1–4.
– volume: 73
  start-page: 1950
  year: 2010
  end-page: 1957
  ident: b0125
  article-title: Multiple-output modeling for multi-step-ahead time series forecasting[J]
  publication-title: Neurocomputing
– volume: 190
  start-page: 49
  year: 2019
  end-page: 60
  ident: b0170
  article-title: GMM clustering for heating load patterns in-depth identification and prediction model accuracy improvement of district heating system[J]
  publication-title: Energy Build.
– reference: M.T. Luong, H. Pham, C.D. Manning, Effective approaches to attention-based neural machine translation[J]. arXiv preprint arXiv:1508.04025, 2015.
– volume: 103
  start-page: 739
  year: 2015
  end-page: 751
  ident: b0015
  article-title: Operation optimization of a distributed energy system considering energy costs and exergy efficiency[J]
  publication-title: Energy Convers. Manage.
– reference: L. Kuan, B. Zhenfu, W. Xin, et al., Short-term CHP heat load forecast method based on concatenated LSTMs[C], in: 2017 Chinese Automation Congress (CAC). IEEE, 2017, pp. 99–103.
– reference: I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks[C], in: Advances in Neural Information Processing Systems, 2014, pp. 3104–3112.
– volume: 82
  start-page: 1675
  year: 2018
  end-page: 1684
  ident: b0010
  article-title: Prosumer based energy management and sharing in smart grid[J]
  publication-title: Renew. Sustain. Energy Rev.
– volume: 171
  start-page: 11
  year: 2018
  end-page: 25
  ident: b0045
  article-title: Random Forest based hourly building energy prediction[J]
  publication-title: Energy Build.
– volume: 99
  start-page: 1
  year: 2018
  ident: b0005
  article-title: Day-ahead optimal operation for multi-energy residential systems with renewables
  publication-title: IEEE Trans. Sustain. Energy
– reference: M. Sundermeyer, R. Schlüter, H. Ney, LSTM neural networks for language modeling[C], in: Thirteenth Annual Conference of the International Speech Communication Association, 2012.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0165
  article-title: Long short-term memory[J]
  publication-title: Neural Comput.
– volume: 137
  start-page: 617
  year: 2017
  end-page: 631
  ident: b0025
  article-title: International review of district heating and cooling[J]
  publication-title: Energy
– volume: 240
  start-page: 35
  year: 2019
  end-page: 45
  ident: b0070
  article-title: Deep learning-based feature engineering methods for improved building energy prediction[J]
  publication-title: Appl. Energy
– volume: 103
  start-page: 739
  year: 2015
  ident: 10.1016/j.enbuild.2020.110658_b0015
  article-title: Operation optimization of a distributed energy system considering energy costs and exergy efficiency[J]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.07.009
– volume: 122
  start-page: 308
  year: 2017
  ident: 10.1016/j.enbuild.2020.110658_b0050
  article-title: Load forecasting via deep neural networks[J]
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.374
– volume: 73
  start-page: 1950
  issue: 10–12
  year: 2010
  ident: 10.1016/j.enbuild.2020.110658_b0125
  article-title: Multiple-output modeling for multi-step-ahead time series forecasting[J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.030
– ident: 10.1016/j.enbuild.2020.110658_b0105
  doi: 10.1007/11494669_124
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.enbuild.2020.110658_b0165
  article-title: Long short-term memory[J]
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 165
  start-page: 134
  year: 2018
  ident: 10.1016/j.enbuild.2020.110658_b0040
  article-title: Data-driven heating and cooling load predictions for non-residential buildings based on support vector machine regression and NARX Recurrent Neural Network: a comparative study on district scale[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.068
– volume: 243
  start-page: 274
  year: 2019
  ident: 10.1016/j.enbuild.2020.110658_b0020
  article-title: Flexible dispatch of a building energy system using building thermal storage and battery energy storage[J]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.187
– ident: 10.1016/j.enbuild.2020.110658_b0150
  doi: 10.18653/v1/D15-1166
– volume: 39
  start-page: 508
  year: 2018
  ident: 10.1016/j.enbuild.2020.110658_b0075
  article-title: On the feature engineering of building energy data mining[J]
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.02.016
– ident: 10.1016/j.enbuild.2020.110658_b0155
– volume: 236
  start-page: 700
  year: 2019
  ident: 10.1016/j.enbuild.2020.110658_b0080
  article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions[J]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.004
– ident: 10.1016/j.enbuild.2020.110658_b0100
  doi: 10.1109/SIU.2018.8404313
– ident: 10.1016/j.enbuild.2020.110658_b0160
– ident: 10.1016/j.enbuild.2020.110658_b0145
– volume: 65
  start-page: 352
  year: 2013
  ident: 10.1016/j.enbuild.2020.110658_b0035
  article-title: Energy analysis of a building using artificial neural network: a review[J]
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.06.007
– volume: 188
  start-page: 116085
  year: 2019
  ident: 10.1016/j.enbuild.2020.110658_b0115
  article-title: Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116085
– volume: 137
  start-page: 617
  year: 2017
  ident: 10.1016/j.enbuild.2020.110658_b0025
  article-title: International review of district heating and cooling[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.045
– volume: 4
  start-page: 371
  year: 2016
  ident: 10.1016/j.enbuild.2020.110658_b0140
  article-title: Deep recurrent models with fast-forward connections for neural machine translation[J]
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00105
– volume: 190
  start-page: 49
  year: 2019
  ident: 10.1016/j.enbuild.2020.110658_b0170
  article-title: GMM clustering for heating load patterns in-depth identification and prediction model accuracy improvement of district heating system[J]
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.02.014
– volume: 240
  start-page: 35
  year: 2019
  ident: 10.1016/j.enbuild.2020.110658_b0070
  article-title: Deep learning-based feature engineering methods for improved building energy prediction[J]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.02.052
– ident: 10.1016/j.enbuild.2020.110658_b0135
  doi: 10.21437/Interspeech.2012-65
– volume: 80
  start-page: 46
  year: 2014
  ident: 10.1016/j.enbuild.2020.110658_b0060
  article-title: Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression[J]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.12.060
– volume: 212
  start-page: 372
  year: 2018
  ident: 10.1016/j.enbuild.2020.110658_b0085
  article-title: Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks[J]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.051
– volume: 70
  start-page: 2861
  issue: 16–18
  year: 2007
  ident: 10.1016/j.enbuild.2020.110658_b0110
  article-title: Methodology for long-term prediction of time series[J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.06.015
– volume: 171
  start-page: 11
  year: 2018
  ident: 10.1016/j.enbuild.2020.110658_b0045
  article-title: Random Forest based hourly building energy prediction[J]
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.04.008
– volume: 54
  start-page: 225
  year: 2012
  ident: 10.1016/j.enbuild.2020.110658_b0055
  article-title: Building hourly thermal load prediction using an indexed ARX model[J]
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.08.007
– volume: 82
  start-page: 1675
  year: 2018
  ident: 10.1016/j.enbuild.2020.110658_b0010
  article-title: Prosumer based energy management and sharing in smart grid[J]
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.07.018
– start-page: 145
  year: 2008
  ident: 10.1016/j.enbuild.2020.110658_b0120
  article-title: Long term time series prediction with multi-input multi-output local learning[J]
  publication-title: Proc. 2nd ESTSP
– ident: 10.1016/j.enbuild.2020.110658_b0090
  doi: 10.1109/IECON.2016.7793413
– volume: 39
  start-page: 7067
  issue: 8
  year: 2012
  ident: 10.1016/j.enbuild.2020.110658_b0130
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition[J]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.039
– volume: 204
  start-page: 181
  year: 2017
  ident: 10.1016/j.enbuild.2020.110658_b0030
  article-title: Modeling of district load forecasting for distributed energy system[J]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.07.009
– volume: 128
  start-page: 225
  year: 2018
  ident: 10.1016/j.enbuild.2020.110658_b0065
  article-title: Effect of input variables on cooling load prediction accuracy of an office building
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.09.007
– volume: 99
  start-page: 1
  year: 2018
  ident: 10.1016/j.enbuild.2020.110658_b0005
  article-title: Day-ahead optimal operation for multi-energy residential systems with renewables
  publication-title: IEEE Trans. Sustain. Energy
– ident: 10.1016/j.enbuild.2020.110658_b0095
  doi: 10.1109/CAC.2017.8242744
SSID ssj0006571
Score 2.4950461
Snippet [Display omitted] Accurate and reliable multi-step-ahead thermal load prediction is generally considered as the basis of model predictive control and...
Accurate and reliable multi-step-ahead thermal load prediction is generally considered as the basis of model predictive control and multi-energy dispatch of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110658
SubjectTerms Attention mechanism
Coders
Deep learning
Encoders-Decoders
Energy
Iterative methods
Load
Long short-term memory
Model accuracy
Multi-step-ahead prediction
Predictions
Predictive control
Sequence-to-sequence
Sequences
Temporal dependency
Thermal analysis
Time series
Title Multi-step-ahead prediction of thermal load in regional energy system using deep learning method
URI https://dx.doi.org/10.1016/j.enbuild.2020.110658
https://www.proquest.com/docview/2491971787
Volume 233
WOSCitedRecordID wos000712412900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6178
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006571
  issn: 0378-7788
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWg5QAHxKcoFOQDN5SSOE7sHCtUBKiqEBSx6iXEjt1mKcmqu4vKv2fssbOwBRWQuEQra8eb9XuxZ0aZN4Q8ZblwSmBtYvMsT7goikQqmyYKDmctIGDIrEd6XxwcyMmkehvKFee-nYDoe3l-Xs3-K9QwBmC70tm_gHucFAbgM4AOV4Adrn8EvC-pTQC8WdLATutlANpOR8_QOXxfAJfToWmxmOUYs4EGqwBR2vnZ0ucQWmNmsbHEceg2_VMuH21c8l2F_tqjj76_9Nt787npxvRAh-nWo5ORTkcng__eu-XwbTmadn7so-mn8WQNiQmWuXeZsTQTs2UXKmawSguiViGwlV_cgRlqYVzYzTGxMN1xKhDwHyCaZ75uoUS19zWh7Pdubjc1S_Occy6ukk0migq2683d13uTN-MJXRY-EB_vZVXZ9fyXP_Y7n2Xt9PYuyeEtcjPEEnQXOXCbXDH9HXLjB4XJu-TTOhvoig10sDSwgTo20K6nkQ0U2UCRDdSzgTo20MgGimy4Rz683Dt88SoJTTUSnedikYC73cpKNkalXGUta1PLVcOVMIyXKQQDnDnVNWYqqVKp20w1umq0aYvCClGw_D7Z6IfePCDUZkXDSm21EpqXSkrLuHWJSfC7LDjaW4THZat1UJx3jU9O6_hq4bQOq1271a5xtbfIzmg2Q8mVywxkxKQOfiP6gzUQ6TLT7YhhHZ7hec14lVUiAzI9_PeZH5Hrq4dim2wszpbmMbmmvy66-dmTwMjvN5ygiA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-step-ahead+prediction+of+thermal+load+in+regional+energy+system+using+deep+learning+method&rft.jtitle=Energy+and+buildings&rft.au=Lu%2C+Yakai&rft.au=Tian%2C+Zhe&rft.au=Zhou%2C+Ruoyu&rft.au=Liu%2C+Wenjing&rft.date=2021-02-15&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=233&rft_id=info:doi/10.1016%2Fj.enbuild.2020.110658&rft.externalDocID=S0378778820334447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon