Construction of the Luxury Marketing Model Based on Machine Learning Classification Algorithm

China has become the world’s largest luxury goods consumer market due to its population base. In view of the bright prospects of the luxury consumer market, major companies have entered and want to get a share. For the luxury goods industry, traditional mass marketing methods are not able to serve c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming Jg. 2021; S. 1 - 11
Hauptverfasser: Chen, Qiaoshan, Cai, Shousong, Gu, Xiaomin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Hindawi 19.10.2021
John Wiley & Sons, Inc
Schlagworte:
ISSN:1058-9244, 1875-919X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract China has become the world’s largest luxury goods consumer market due to its population base. In view of the bright prospects of the luxury consumer market, major companies have entered and want to get a share. For the luxury goods industry, traditional mass marketing methods are not able to serve corporate sales and marketing strategies more effectively, and targeted marketing is clearly much more efficient than randomized marketing. Therefore, in this paper, based on consumer buying habits and characteristics data of luxury goods, the paper uses a machine learning algorithm to build a personalized marketing strategy model. And the paper uses historical data to model and form deductions to predict the purchase demand of each consumer and evaluate the possibility of customers buying different goods, including cosmetics, jewelry, and clothing.
AbstractList China has become the world’s largest luxury goods consumer market due to its population base. In view of the bright prospects of the luxury consumer market, major companies have entered and want to get a share. For the luxury goods industry, traditional mass marketing methods are not able to serve corporate sales and marketing strategies more effectively, and targeted marketing is clearly much more efficient than randomized marketing. Therefore, in this paper, based on consumer buying habits and characteristics data of luxury goods, the paper uses a machine learning algorithm to build a personalized marketing strategy model. And the paper uses historical data to model and form deductions to predict the purchase demand of each consumer and evaluate the possibility of customers buying different goods, including cosmetics, jewelry, and clothing.
Author Cai, Shousong
Gu, Xiaomin
Chen, Qiaoshan
Author_xml – sequence: 1
  givenname: Qiaoshan
  surname: Chen
  fullname: Chen, Qiaoshan
  organization: Shanghai Institute of Visual ArtsShanghai 201620China
– sequence: 2
  givenname: Shousong
  orcidid: 0000-0003-2218-3840
  surname: Cai
  fullname: Cai, Shousong
  organization: School of Business AdministrationShanghai Lixin University of Accounting and FinanceShanghai 201209Chinalixin.edu.cn
– sequence: 3
  givenname: Xiaomin
  surname: Gu
  fullname: Gu, Xiaomin
  organization: School of Financial TechnologyShanghai Lixin University of Accounting and FinanceShanghai 201209Chinalixin.edu.cn
BookMark eNp9kM1OwzAQhC0EEm3hxgNE4gihthMn9rFU_EmtuIDEBUWOY7cuqV1sR9C3x2l7QoLTrrTfzuzOEBwbayQAFwjeIETIGEOMxgXpe3wEBoiWJGWIvR3HHhKaMpznp2Do_QpCRBGEA_A-tcYH14mgrUmsSsJSJrPuu3PbZM7dhwzaLJK5bWSb3HIvmyRicy6W2kROcmf6-bTl3mulBd_JTNqFdTos12fgRPHWy_NDHYHX-7uX6WM6e354mk5mqciyMqRI1CxTlEkEhcA0niylKGqOIK2FyDkrm5KiDJeqzAnLCBa1pAUuiWIFy3OVjcDlXnfj7GcnfahWtnMmWlaYUEYYJZBE6npPCWe9d1JVG6fX3G0rBKs-tKoPsDoEGHH8Cxc67B4Mjuv2r6Wr_VIMqOFf-n-LH4tPgW8
CitedBy_id crossref_primary_10_12688_f1000research_160010_2
crossref_primary_10_12688_f1000research_160010_1
crossref_primary_10_1155_2023_9810957
Cites_doi 10.1362/146934703771910071
10.1109/TNNLS.2021.3086093
10.1504/ijbe.2009.023796
10.1108/jcm-03-2017-2141
10.1016/j.isatra.2020.11.030
10.1109/lcomm.2020.3005947
10.2105/ajph.2017.303994
10.1016/j.ins.2021.06.016
10.1109/TPAMI.2021.3058852
10.1109/TNSE.2021.3095192
10.1109/TNNLS.2020.3042500
10.1080/10548408.2021.1889447
10.1016/j.ins.2021.05.009
10.1177/0894439308321592
10.1109/tamd.2015.2434733
ContentType Journal Article
Copyright Copyright © 2021 Qiaoshan Chen et al.
Copyright © 2021 Qiaoshan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Qiaoshan Chen et al.
– notice: Copyright © 2021 Qiaoshan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2021/6511552
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-919X
Editor Gupta, Punit
Editor_xml – sequence: 1
  givenname: Punit
  surname: Gupta
  fullname: Gupta, Punit
EndPage 11
ExternalDocumentID 10_1155_2021_6511552
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
.DC
0R~
4.4
5VS
AAFWJ
AAJEY
ABDBF
ABJNI
ACGFS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BCNDV
DU5
EAD
EAP
EBS
EDO
EMK
EPL
EST
ESX
GROUPED_DOAJ
HZ~
I-F
IAO
IHR
IOS
KQ8
MIO
MK~
ML~
MV1
NGNOM
O9-
OK1
RHU
RHW
RHX
TUS
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-1cb93f89e10cc28919eec6ba108bcc4a97d781327f7459352cbe86275f96944f3
IEDL.DBID RHX
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777731100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1058-9244
IngestDate Fri Jul 25 09:30:06 EDT 2025
Sat Nov 29 04:06:59 EST 2025
Tue Nov 18 21:40:54 EST 2025
Sun Jun 02 19:18:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-1cb93f89e10cc28919eec6ba108bcc4a97d781327f7459352cbe86275f96944f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2218-3840
OpenAccessLink https://dx.doi.org/10.1155/2021/6511552
PQID 2589598505
PQPubID 2046410
PageCount 11
ParticipantIDs proquest_journals_2589598505
crossref_primary_10_1155_2021_6511552
crossref_citationtrail_10_1155_2021_6511552
hindawi_primary_10_1155_2021_6511552
PublicationCentury 2000
PublicationDate 2021-10-19
PublicationDateYYYYMMDD 2021-10-19
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-19
  day: 19
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Scientific programming
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
References_xml – ident: 1
  doi: 10.1362/146934703771910071
– ident: 10
  doi: 10.1109/TNNLS.2021.3086093
– ident: 3
  doi: 10.1504/ijbe.2009.023796
– ident: 4
  doi: 10.1108/jcm-03-2017-2141
– ident: 11
  doi: 10.1016/j.isatra.2020.11.030
– ident: 9
  doi: 10.1109/lcomm.2020.3005947
– ident: 5
  doi: 10.2105/ajph.2017.303994
– ident: 15
  doi: 10.1016/j.ins.2021.06.016
– ident: 12
  doi: 10.1109/TPAMI.2021.3058852
– ident: 7
  doi: 10.1109/TNSE.2021.3095192
– ident: 13
  doi: 10.1109/TNNLS.2020.3042500
– ident: 8
  doi: 10.1080/10548408.2021.1889447
– ident: 14
  doi: 10.1016/j.ins.2021.05.009
– ident: 2
  doi: 10.1177/0894439308321592
– ident: 6
  doi: 10.1109/tamd.2015.2434733
SSID ssj0018100
Score 2.2461534
Snippet China has become the world’s largest luxury goods consumer market due to its population base. In view of the bright prospects of the luxury consumer market,...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Behavior
Buying
Classification
Consumers
Consumption
Cosmetics
Data mining
Datasets
Decision making
Decision trees
Jewelry
Machine learning
Marketing
Mathematical models
Neural networks
Sample size
Title Construction of the Luxury Marketing Model Based on Machine Learning Classification Algorithm
URI https://dx.doi.org/10.1155/2021/6511552
https://www.proquest.com/docview/2589598505
Volume 2021
WOSCitedRecordID wos000777731100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1875-919X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018100
  issn: 1058-9244
  databaseCode: 24P
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uKHjxtzidI4d5kmLTJk1ynOLYwY0hCrtIadLEDeYm2_zx5_vSpQMdorcWXnt4X16-95rX9yHUlFwBqlYEoeI2oJKoQAFNBzyWmcojAymHLsQmeK8nBgPZ90OS5utH-MB2rjwnVwlz17DXVgRznVv3ncHqsECQcDl0gEHsAl2V_e0_nv3GPFtDV_J-jNa24IJX2ntoxyeEuLVEcB9tmMkB2i3FFrCPvUP05KQ1y2GveGoxZG747u0TfIK75a_L2EmbjfE1UFOOwaxbtEqCnf8AggsNTNcdVACCW-Pn6Wy0GL4cocf27cNNJ_DaCIGOY74IiFYytkIaEmoNRRORxuhEZSQUSmuaSZ5zAZUmt5wyCVmWVka4icRWJpJSGx-j6mQ6MScIG2mzKA-FgdqKqgSWFkSli1OZQ3pH4xq6LP2Waj843OlXjNOigGAsdV5OvZdr6GJl_bocmPGLXdND8IdZvcQn9dE1TyMmJJMCkrfT_73lDG27W8c5RNZRFdAy52hTvy9G81kDVSLabxRr6gs1gcGr
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+the+Luxury+Marketing+Model+Based+on+Machine+Learning+Classification+Algorithm&rft.jtitle=Scientific+programming&rft.au=Chen%2C+Qiaoshan&rft.au=Cai%2C+Shousong&rft.au=Gu%2C+Xiaomin&rft.date=2021-10-19&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F6511552&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon