Construction of the Luxury Marketing Model Based on Machine Learning Classification Algorithm
China has become the world’s largest luxury goods consumer market due to its population base. In view of the bright prospects of the luxury consumer market, major companies have entered and want to get a share. For the luxury goods industry, traditional mass marketing methods are not able to serve c...
Gespeichert in:
| Veröffentlicht in: | Scientific programming Jg. 2021; S. 1 - 11 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Hindawi
19.10.2021
John Wiley & Sons, Inc |
| Schlagworte: | |
| ISSN: | 1058-9244, 1875-919X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | China has become the world’s largest luxury goods consumer market due to its population base. In view of the bright prospects of the luxury consumer market, major companies have entered and want to get a share. For the luxury goods industry, traditional mass marketing methods are not able to serve corporate sales and marketing strategies more effectively, and targeted marketing is clearly much more efficient than randomized marketing. Therefore, in this paper, based on consumer buying habits and characteristics data of luxury goods, the paper uses a machine learning algorithm to build a personalized marketing strategy model. And the paper uses historical data to model and form deductions to predict the purchase demand of each consumer and evaluate the possibility of customers buying different goods, including cosmetics, jewelry, and clothing. |
|---|---|
| AbstractList | China has become the world’s largest luxury goods consumer market due to its population base. In view of the bright prospects of the luxury consumer market, major companies have entered and want to get a share. For the luxury goods industry, traditional mass marketing methods are not able to serve corporate sales and marketing strategies more effectively, and targeted marketing is clearly much more efficient than randomized marketing. Therefore, in this paper, based on consumer buying habits and characteristics data of luxury goods, the paper uses a machine learning algorithm to build a personalized marketing strategy model. And the paper uses historical data to model and form deductions to predict the purchase demand of each consumer and evaluate the possibility of customers buying different goods, including cosmetics, jewelry, and clothing. |
| Author | Cai, Shousong Gu, Xiaomin Chen, Qiaoshan |
| Author_xml | – sequence: 1 givenname: Qiaoshan surname: Chen fullname: Chen, Qiaoshan organization: Shanghai Institute of Visual ArtsShanghai 201620China – sequence: 2 givenname: Shousong orcidid: 0000-0003-2218-3840 surname: Cai fullname: Cai, Shousong organization: School of Business AdministrationShanghai Lixin University of Accounting and FinanceShanghai 201209Chinalixin.edu.cn – sequence: 3 givenname: Xiaomin surname: Gu fullname: Gu, Xiaomin organization: School of Financial TechnologyShanghai Lixin University of Accounting and FinanceShanghai 201209Chinalixin.edu.cn |
| BookMark | eNp9kM1OwzAQhC0EEm3hxgNE4gihthMn9rFU_EmtuIDEBUWOY7cuqV1sR9C3x2l7QoLTrrTfzuzOEBwbayQAFwjeIETIGEOMxgXpe3wEBoiWJGWIvR3HHhKaMpznp2Do_QpCRBGEA_A-tcYH14mgrUmsSsJSJrPuu3PbZM7dhwzaLJK5bWSb3HIvmyRicy6W2kROcmf6-bTl3mulBd_JTNqFdTos12fgRPHWy_NDHYHX-7uX6WM6e354mk5mqciyMqRI1CxTlEkEhcA0niylKGqOIK2FyDkrm5KiDJeqzAnLCBa1pAUuiWIFy3OVjcDlXnfj7GcnfahWtnMmWlaYUEYYJZBE6npPCWe9d1JVG6fX3G0rBKs-tKoPsDoEGHH8Cxc67B4Mjuv2r6Wr_VIMqOFf-n-LH4tPgW8 |
| CitedBy_id | crossref_primary_10_12688_f1000research_160010_2 crossref_primary_10_12688_f1000research_160010_1 crossref_primary_10_1155_2023_9810957 |
| Cites_doi | 10.1362/146934703771910071 10.1109/TNNLS.2021.3086093 10.1504/ijbe.2009.023796 10.1108/jcm-03-2017-2141 10.1016/j.isatra.2020.11.030 10.1109/lcomm.2020.3005947 10.2105/ajph.2017.303994 10.1016/j.ins.2021.06.016 10.1109/TPAMI.2021.3058852 10.1109/TNSE.2021.3095192 10.1109/TNNLS.2020.3042500 10.1080/10548408.2021.1889447 10.1016/j.ins.2021.05.009 10.1177/0894439308321592 10.1109/tamd.2015.2434733 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Qiaoshan Chen et al. Copyright © 2021 Qiaoshan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2021 Qiaoshan Chen et al. – notice: Copyright © 2021 Qiaoshan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1155/2021/6511552 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1875-919X |
| Editor | Gupta, Punit |
| Editor_xml | – sequence: 1 givenname: Punit surname: Gupta fullname: Gupta, Punit |
| EndPage | 11 |
| ExternalDocumentID | 10_1155_2021_6511552 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | .4S .DC 0R~ 4.4 5VS AAFWJ AAJEY ABDBF ABJNI ACGFS ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BCNDV DU5 EAD EAP EBS EDO EMK EPL EST ESX GROUPED_DOAJ HZ~ I-F IAO IHR IOS KQ8 MIO MK~ ML~ MV1 NGNOM O9- OK1 RHU RHW RHX TUS 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY ALUQN CITATION H13 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c337t-1cb93f89e10cc28919eec6ba108bcc4a97d781327f7459352cbe86275f96944f3 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777731100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1058-9244 |
| IngestDate | Fri Jul 25 09:30:06 EDT 2025 Sat Nov 29 04:06:59 EST 2025 Tue Nov 18 21:40:54 EST 2025 Sun Jun 02 19:18:03 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-1cb93f89e10cc28919eec6ba108bcc4a97d781327f7459352cbe86275f96944f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2218-3840 |
| OpenAccessLink | https://dx.doi.org/10.1155/2021/6511552 |
| PQID | 2589598505 |
| PQPubID | 2046410 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2589598505 crossref_primary_10_1155_2021_6511552 crossref_citationtrail_10_1155_2021_6511552 hindawi_primary_10_1155_2021_6511552 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-19 |
| PublicationDateYYYYMMDD | 2021-10-19 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Scientific programming |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 |
| References_xml | – ident: 1 doi: 10.1362/146934703771910071 – ident: 10 doi: 10.1109/TNNLS.2021.3086093 – ident: 3 doi: 10.1504/ijbe.2009.023796 – ident: 4 doi: 10.1108/jcm-03-2017-2141 – ident: 11 doi: 10.1016/j.isatra.2020.11.030 – ident: 9 doi: 10.1109/lcomm.2020.3005947 – ident: 5 doi: 10.2105/ajph.2017.303994 – ident: 15 doi: 10.1016/j.ins.2021.06.016 – ident: 12 doi: 10.1109/TPAMI.2021.3058852 – ident: 7 doi: 10.1109/TNSE.2021.3095192 – ident: 13 doi: 10.1109/TNNLS.2020.3042500 – ident: 8 doi: 10.1080/10548408.2021.1889447 – ident: 14 doi: 10.1016/j.ins.2021.05.009 – ident: 2 doi: 10.1177/0894439308321592 – ident: 6 doi: 10.1109/tamd.2015.2434733 |
| SSID | ssj0018100 |
| Score | 2.2461534 |
| Snippet | China has become the world’s largest luxury goods consumer market due to its population base. In view of the bright prospects of the luxury consumer market,... |
| SourceID | proquest crossref hindawi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Behavior Buying Classification Consumers Consumption Cosmetics Data mining Datasets Decision making Decision trees Jewelry Machine learning Marketing Mathematical models Neural networks Sample size |
| Title | Construction of the Luxury Marketing Model Based on Machine Learning Classification Algorithm |
| URI | https://dx.doi.org/10.1155/2021/6511552 https://www.proquest.com/docview/2589598505 |
| Volume | 2021 |
| WOSCitedRecordID | wos000777731100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1875-919X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018100 issn: 1058-9244 databaseCode: 24P dateStart: 19920101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uKHjxtzidI4d5kmLTJk1ynOLYwY0hCrtIadLEDeYm2_zx5_vSpQMdorcWXnt4X16-95rX9yHUlFwBqlYEoeI2oJKoQAFNBzyWmcojAymHLsQmeK8nBgPZ90OS5utH-MB2rjwnVwlz17DXVgRznVv3ncHqsECQcDl0gEHsAl2V_e0_nv3GPFtDV_J-jNa24IJX2ntoxyeEuLVEcB9tmMkB2i3FFrCPvUP05KQ1y2GveGoxZG747u0TfIK75a_L2EmbjfE1UFOOwaxbtEqCnf8AggsNTNcdVACCW-Pn6Wy0GL4cocf27cNNJ_DaCIGOY74IiFYytkIaEmoNRRORxuhEZSQUSmuaSZ5zAZUmt5wyCVmWVka4icRWJpJSGx-j6mQ6MScIG2mzKA-FgdqKqgSWFkSli1OZQ3pH4xq6LP2Waj843OlXjNOigGAsdV5OvZdr6GJl_bocmPGLXdND8IdZvcQn9dE1TyMmJJMCkrfT_73lDG27W8c5RNZRFdAy52hTvy9G81kDVSLabxRr6gs1gcGr |
| linkProvider | Hindawi Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+the+Luxury+Marketing+Model+Based+on+Machine+Learning+Classification+Algorithm&rft.jtitle=Scientific+programming&rft.au=Chen%2C+Qiaoshan&rft.au=Cai%2C+Shousong&rft.au=Gu%2C+Xiaomin&rft.date=2021-10-19&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F6511552&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon |