On-Ground Distributed COVID-19 Variant Intelligent Data Analytics for a Regional Territory

The onset of the COVID-19 pandemic and the subsequent transmission among communities has made the entire human population extremely vulnerable. Due to the virus’s contagiousness, the most powerful economies in the world are struggling with the inadequacies of resources. As the number of cases contin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wireless communications and mobile computing Ročník 2021; číslo 1
Hlavní autoři: Khuhawar, Umrah Zadi, Siddiqui, Isma Farah, Arain, Qasim Ali, Siddiqui, Mokhi Maan, Qureshi, Nawab Muhammad Faseeh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Hindawi 2021
John Wiley & Sons, Inc
Témata:
ISSN:1530-8669, 1530-8677
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The onset of the COVID-19 pandemic and the subsequent transmission among communities has made the entire human population extremely vulnerable. Due to the virus’s contagiousness, the most powerful economies in the world are struggling with the inadequacies of resources. As the number of cases continues to rise and the healthcare industry is overwhelmed with the increasing needs of the infected population, there is a requirement to estimate the potential future number of cases using prediction methods. This paper leverages data-driven estimation methods such as linear regression (LR), random forest (RF), and XGBoost (extreme gradient boosting) algorithm. All three algorithms are trained using the COVID-19 data of Pakistan from 24 February to 31 December 2020, wherein the daily resolution is integrated. Essentially, this paper postulates that, with the help of values of new positive cases, medical swabs, daily death, and daily new positive cases, it is possible to predict the progression of the COVID-19 pandemic and demonstrate future trends. Linear regression tends to oversimplify concepts in supervised learning and neglect practical challenges present in the real world, often cited as its primary disadvantage. In this paper, we use an enhanced random forest algorithm. It is a supervised learning algorithm that is used for classification. This algorithm works well for an extensive range of data items, and also it is very flexible and possesses very high accuracy. For higher accuracy, we have also implemented the XGBoost algorithm on the dataset. XGBoost is a newly introduced machine learning algorithm; this algorithm provides high accuracy of prediction models, and it is observed that it performs well in short-term prediction. This paper discusses various factors such as total COVID-19 cases, new cases per day, total COVID-19 related deaths, new deaths due to the COVID-19, the total number of recoveries, number of daily recoveries, and swabs through the proposed technique. This paper presents an innovative approach that assists health officials in Pakistan with their decision-making processes.
AbstractList The onset of the COVID-19 pandemic and the subsequent transmission among communities has made the entire human population extremely vulnerable. Due to the virus’s contagiousness, the most powerful economies in the world are struggling with the inadequacies of resources. As the number of cases continues to rise and the healthcare industry is overwhelmed with the increasing needs of the infected population, there is a requirement to estimate the potential future number of cases using prediction methods. This paper leverages data-driven estimation methods such as linear regression (LR), random forest (RF), and XGBoost (extreme gradient boosting) algorithm. All three algorithms are trained using the COVID-19 data of Pakistan from 24 February to 31 December 2020, wherein the daily resolution is integrated. Essentially, this paper postulates that, with the help of values of new positive cases, medical swabs, daily death, and daily new positive cases, it is possible to predict the progression of the COVID-19 pandemic and demonstrate future trends. Linear regression tends to oversimplify concepts in supervised learning and neglect practical challenges present in the real world, often cited as its primary disadvantage. In this paper, we use an enhanced random forest algorithm. It is a supervised learning algorithm that is used for classification. This algorithm works well for an extensive range of data items, and also it is very flexible and possesses very high accuracy. For higher accuracy, we have also implemented the XGBoost algorithm on the dataset. XGBoost is a newly introduced machine learning algorithm; this algorithm provides high accuracy of prediction models, and it is observed that it performs well in short-term prediction. This paper discusses various factors such as total COVID-19 cases, new cases per day, total COVID-19 related deaths, new deaths due to the COVID-19, the total number of recoveries, number of daily recoveries, and swabs through the proposed technique. This paper presents an innovative approach that assists health officials in Pakistan with their decision-making processes.
Author Qureshi, Nawab Muhammad Faseeh
Siddiqui, Isma Farah
Siddiqui, Mokhi Maan
Khuhawar, Umrah Zadi
Arain, Qasim Ali
Author_xml – sequence: 1
  givenname: Umrah Zadi
  orcidid: 0000-0002-2951-6188
  surname: Khuhawar
  fullname: Khuhawar, Umrah Zadi
  organization: Department of Computer Systems EngineeringMehran University of Engineering and TechnologyJamshoroPakistanmuet.edu.pk
– sequence: 2
  givenname: Isma Farah
  orcidid: 0000-0002-2058-4336
  surname: Siddiqui
  fullname: Siddiqui, Isma Farah
  organization: Department of Software EngineeringMehran University of Engineering and TechnologyJamshoroPakistanmuet.edu.pk
– sequence: 3
  givenname: Qasim Ali
  orcidid: 0000-0003-2095-7435
  surname: Arain
  fullname: Arain, Qasim Ali
  organization: Department of Software EngineeringMehran University of Engineering and TechnologyJamshoroPakistanmuet.edu.pk
– sequence: 4
  givenname: Mokhi Maan
  orcidid: 0000-0002-6130-5188
  surname: Siddiqui
  fullname: Siddiqui, Mokhi Maan
  organization: Department of Electrical EngineeringMehran University of Engineering and TechnologyJamshoroPakistanmuet.edu.pk
– sequence: 5
  givenname: Nawab Muhammad Faseeh
  orcidid: 0000-0002-5035-2640
  surname: Qureshi
  fullname: Qureshi, Nawab Muhammad Faseeh
  organization: Department of Computer EducationSungkyunkwan UniversitySeoulRepublic of Koreaskku.edu
BookMark eNp9kE1LAzEYhINUsK3e_AEBj7o2HybZPZZWa6FQkNqDlyWbj5qyZmuSRfrv3dLiQdDTO7w8MwwzAD3feAPANUb3GDM2IojgEeaiyCk7A33MKMpyLkTvR_PiAgxi3CKEaAf3wdvSZ7PQtF7DqYspuKpNRsPJcj2fZriAaxmc9AnOfTJ17Tam01OZJBx7We-TUxHaJkAJX8zGNd0PrkwILjVhfwnOrayjuTrdIXh9elxNnrPFcjafjBeZolSkDAvJTGUZEbmUCnHOhOG4EFxoqrSkFUHWEqN5Xtj8IReFNQorwSuibaEpoUNwc8zdheazNTGV26YNXZVYEo4xZTkvWEeRI6VCE2MwtlQuydR1TkG6usSoPGxYHjYsTxt2prtfpl1wHzLs_8Jvj_i781p-uf_pb4kzf9U
CitedBy_id crossref_primary_10_7189_jogh_15_04213
crossref_primary_10_1016_j_engappai_2023_107743
Cites_doi 10.1016/j.chaos.2020.110512
10.1109/TPWRS.2004.835632
10.1007/s11277-020-07312-3
10.1016/j.chaos.2020.110050
10.1016/j.chaos.2020.110056
10.1109/ACCESS.2020.2997311
10.3390/s21103322
10.2196/18828
10.1109/ICICT50816.2021.9358506
10.1155/2021/5587188
10.1016/j.ijsu.2020.02.034
10.20944/preprints202005.0147.v1
10.3390/a10040114
10.1109/ICRCICN50933.2020.9296175
10.1016/j.idm.2020.08.008
10.1007/s11042-021-10906-z
10.14569/IJACSA.2020.0111281
10.1016/j.chaos.2020.110189
10.1007/s00477-020-01827-8
10.1038/s41746-020-00372-6
10.3389/fpubh.2020.00357
10.1038/s41598-020-79405-9
10.1016/j.rinp.2021.103813
10.2196/preprints.19406
10.1016/j.dsx.2020.07.045
10.1016/j.chaos.2020.110059
10.3389/fpubh.2020.587937
10.1016/j.patter.2020.100074
10.3390/a13100249
10.1007/s11277-020-07215-3
ContentType Journal Article
Copyright Copyright © 2021 Umrah Zadi Khuhawar et al.
Copyright © 2021 Umrah Zadi Khuhawar et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2021 Umrah Zadi Khuhawar et al.
– notice: Copyright © 2021 Umrah Zadi Khuhawar et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2021/1679835
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Khattak, Hasan Ali
Editor_xml – sequence: 1
  givenname: Hasan Ali
  surname: Khattak
  fullname: Khattak, Hasan Ali
ExternalDocumentID 10_1155_2021_1679835
GeographicLocations Pakistan
India
GeographicLocations_xml – name: India
– name: Pakistan
GroupedDBID .3N
.4S
.DC
.GA
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABIJN
ABPVW
ACGFO
ADBBV
ADIZJ
AENEX
AEUQT
AFBPY
AFKRA
AIAGR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ARCSS
ASPBG
ATUGU
AVWKF
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
EDO
F00
F01
F04
F21
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HZ~
I-F
IAO
ITC
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LITHE
LP6
LP7
M0N
MK4
MY~
N04
N05
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WLBEL
XPP
XV2
~IA
~WT
.Y3
24P
31~
5VS
AAEVG
AAMMB
AANHP
AAYXX
AAZKR
ACBWZ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AEUCX
AFFHD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
AZFZN
BDRZF
BFHJK
CITATION
EJD
FEDTE
H13
HF~
HVGLF
LH4
LW6
O8X
PHGZM
PHGZT
PQGLB
ROL
WYUIH
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
COVID
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c337t-17a5ebf5278aac06657e619767d3cda3b20ff2ed689f84879fec1c76b2df9d323
IEDL.DBID K7-
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000821202100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-8669
IngestDate Fri Jul 25 09:30:40 EDT 2025
Tue Nov 18 20:58:05 EST 2025
Sat Nov 29 01:44:05 EST 2025
Sun Jun 02 18:51:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-17a5ebf5278aac06657e619767d3cda3b20ff2ed689f84879fec1c76b2df9d323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5035-2640
0000-0002-6130-5188
0000-0002-2951-6188
0000-0003-2095-7435
0000-0002-2058-4336
OpenAccessLink https://www.proquest.com/docview/2611358695?pq-origsite=%requestingapplication%
PQID 2611358695
PQPubID 2034344
ParticipantIDs proquest_journals_2611358695
crossref_citationtrail_10_1155_2021_1679835
crossref_primary_10_1155_2021_1679835
hindawi_primary_10_1155_2021_1679835
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_26_2
e_1_2_8_9_2
Ballı S. (e_1_2_8_25_2) 2021; 142
e_1_2_8_2_2
e_1_2_8_1_2
e_1_2_8_4_2
Bandyopadhyay S. K. (e_1_2_8_37_2) 2020
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
Jain N. (e_1_2_8_27_2) 2021; 21
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
Namasudra S. (e_1_2_8_32_2) 2021
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_36_2
Khan F. (e_1_2_8_35_2) 2020; 140
Visa S. (e_1_2_8_28_2) 2011; 710
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
Khan A. A. (e_1_2_8_34_2) 2020; 11
Lalmuanawma S. (e_1_2_8_5_2) 2020; 139
References_xml – volume: 142
  year: 2021
  ident: e_1_2_8_25_2
  article-title: Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110512
– ident: e_1_2_8_2_2
– ident: e_1_2_8_21_2
– ident: e_1_2_8_23_2
  doi: 10.1109/TPWRS.2004.835632
– ident: e_1_2_8_33_2
  doi: 10.1007/s11277-020-07312-3
– ident: e_1_2_8_36_2
  doi: 10.1016/j.chaos.2020.110050
– start-page: 1
  volume-title: Neural processing letters
  year: 2021
  ident: e_1_2_8_32_2
– ident: e_1_2_8_1_2
  doi: 10.1016/j.chaos.2020.110056
– ident: e_1_2_8_7_2
  doi: 10.1109/ACCESS.2020.2997311
– ident: e_1_2_8_29_2
  doi: 10.3390/s21103322
– ident: e_1_2_8_11_2
  doi: 10.2196/18828
– ident: e_1_2_8_19_2
  doi: 10.1109/ICICT50816.2021.9358506
– ident: e_1_2_8_16_2
  doi: 10.1155/2021/5587188
– volume: 11
  year: 2020
  ident: e_1_2_8_34_2
  article-title: Impact of coronavirus disease (COVID-19) pandemic on psychological well-being of the Pakistani general population
  publication-title: Frontiers in Psychiatry
– ident: e_1_2_8_15_2
– volume: 710
  start-page: 120
  year: 2011
  ident: e_1_2_8_28_2
  article-title: Confusion matrix-based feature selection
  publication-title: MAICS
– ident: e_1_2_8_26_2
  doi: 10.1016/j.ijsu.2020.02.034
– ident: e_1_2_8_10_2
  doi: 10.20944/preprints202005.0147.v1
– ident: e_1_2_8_13_2
  doi: 10.3390/a10040114
– ident: e_1_2_8_6_2
  doi: 10.1109/ICRCICN50933.2020.9296175
– ident: e_1_2_8_12_2
  doi: 10.1016/j.idm.2020.08.008
– ident: e_1_2_8_38_2
  doi: 10.1007/s11042-021-10906-z
– ident: e_1_2_8_22_2
  doi: 10.14569/IJACSA.2020.0111281
– volume: 140
  year: 2020
  ident: e_1_2_8_35_2
  article-title: Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using vector autoregressive model in Pakistan
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110189
– ident: e_1_2_8_31_2
  doi: 10.1007/s00477-020-01827-8
– ident: e_1_2_8_9_2
  doi: 10.1038/s41746-020-00372-6
– ident: e_1_2_8_30_2
  doi: 10.3389/fpubh.2020.00357
– ident: e_1_2_8_17_2
– ident: e_1_2_8_18_2
  doi: 10.1038/s41598-020-79405-9
– ident: e_1_2_8_14_2
– volume: 21
  year: 2021
  ident: e_1_2_8_27_2
  article-title: Prediction modelling of COVID using machine learning methods from B-cell dataset
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2021.103813
– ident: e_1_2_8_8_2
  doi: 10.2196/preprints.19406
– ident: e_1_2_8_24_2
  doi: 10.1016/j.dsx.2020.07.045
– volume-title: Machine learning approach for confirmation of covid-19 cases: positive, negative, death and release
  year: 2020
  ident: e_1_2_8_37_2
– volume: 139
  year: 2020
  ident: e_1_2_8_5_2
  article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110059
– ident: e_1_2_8_20_2
  doi: 10.3389/fpubh.2020.587937
– ident: e_1_2_8_3_2
  doi: 10.1016/j.patter.2020.100074
– ident: e_1_2_8_4_2
  doi: 10.3390/a13100249
– ident: e_1_2_8_39_2
  doi: 10.1007/s11277-020-07215-3
SSID ssj0003021
Score 2.2911108
Snippet The onset of the COVID-19 pandemic and the subsequent transmission among communities has made the entire human population extremely vulnerable. Due to the...
The onset of the COVID‐19 pandemic and the subsequent transmission among communities has made the entire human population extremely vulnerable. Due to the...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Coronaviruses
COVID-19
Data analysis
Decision making
Decision trees
Fatalities
Machine learning
Model accuracy
Pandemics
Prediction models
Trends
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LSwMxEMeDLQp6EJ9YrZJDPclid7N5HaW1WJBWSi3Fy5KnFmSVdtWvb7JNi1pEjwuze5jJTPKbWf4BoOEw2uBUW5dpXEUpdswqRerSXatUWlcSpS0jfUt7PTYe87sgkjRbHeG73c7jeXxZTgsQroAKw37xDm7Gy4KLmkmQRW1GjBC--L_9x7vfdp6NJ4-8H5OVElzuK50dsB0OhPBqHsFdsGbyPbD1RSZwHzz088j3iHIN217n1l9RZTRs9UfddhRzOHK86xwEu0t5zQK2RSFgqTjidZihO5pCAQfmsez8waHXY_Tj9QNw37ketm6icCdCpBCiRRRTgY20OKFMCFXOTYxjIEqoRkoLJJOmtYnRhHHLHIxwa1SsKJGJtlyjBB2Cav6SmyMAmZTcESomhnrJSC6QQ7tEYe0pTMSkBi4W_spUEAz391Y8ZyU4YJx572bBuzVwvrR-nQtl_GLXCK7_w6y-iEsWsmqWOdqLEWaE4-P_feUEbPrHecukDqrF9M2cgnX1Xkxm07NyFX0CiNS9Ng
  priority: 102
  providerName: Hindawi Publishing
Title On-Ground Distributed COVID-19 Variant Intelligent Data Analytics for a Regional Territory
URI https://dx.doi.org/10.1155/2021/1679835
https://www.proquest.com/docview/2611358695
Volume 2021
WOSCitedRecordID wos000821202100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: K7-
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: PIMPY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLdGAQkOGx-bYOuQD-w0WW3sOo5P09aCqGAlqhgqvUSOP7ZKKIU2bP_-_Fy3TJrGDlwiJXmKIr8Pv9971u8hdOxhtOUd47ynSU063GPWUnW8uxvdKZ0PiaULmr4Qg0E2Gsk8Ftzm8VjlMiaGQG2mGmrkLZ_pJ4xnqeSf7u4JTI2C7mocobGG1hNKE7Dzc0FWkZi1aeRLbZMsTeXy4DvngPmTVmhBhEFvj1vS5g_Awr8mf8XmsOGcvnrur-6glzHVxJ8XtrGLXthqD23_QUC4j8aXFYHqU2VwDxh0YfiVNbh7ed3vkUTia4-k_dLj_oq4s8Y9VSscuEyA4Rn7pBcrPLTfQ00RXwHTIzTuX6NvpydX3TMSpy0QzZioSSIUt6XjVGRK6dCRsR5diVQYpo1iJW07R61JM-kyD3OkszrRIi2pcdIwyt6gRjWt7AHCWVlKj315agWQUUrFPGikmhvAdypJD9HH5YIXOlKRw0SM2yJAEs4LUE8R1XOIPqyk7xYUHP-QO466-49Yc6m1IvrrvHhU2dunX79DW_CxRRGmiRr17MG-Rxv6Zz2Zz47Q-peTQT48Cmborzkf-2d5_2t-4--GZ6Pf4aDjGw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4haFU40Ld4tj7ACVls4jiODwghFsRqt0tVLQj1kjp-FCQUlt0A4k_xG_F4k6VS1fbEoeeMIiX-5vGN7W8ANjyNtjwxznua1DThnrMWKvHubnRSOB8SCxdWuif6_ezsTH6dgYfmLgweq2xiYgjU5kpjj3zbV_oR41kq-e7wmuLUKNxdbUZoTGDRtfd3nrKNdzptv76bcXx4MNg_ovVUAaoZExWNhOK2cDwWmVI67DxYzyJEKgzTRrEibjkXW5Nm0mW-nJfO6kiLtIiNk4ah0IEP-XMJywRq9XcFnUZ-1oprfdYWzdJUNgftOcceQ7QdtjzCYLmnFPjyHLn33cVvuSAkuMPX_9uveQOLdSlN9ibYfwsztnwHC78ILL6H78clxe5aaUgbFYJxuJc1ZP_4tNOmkSSnyvtfWZHOVJi0Im1VKRK0WlDBmviinijyzf4MPVMyQCVLPJjwAU6e5eM-wmx5VdolIFlRSM_teWoFim1KxTwpjjU3yF9VlC7DVrPAua6l1nHix2UeKBfnOcIhr-GwDJtT6-FEYuQPdhs1Vv5httagJK_j0Th_gsjK3x9_hldHgy-9vNfpd1dhHl88aTitwWw1urHr8ELfVhfj0acAfQI_nhtQjzVfO_U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4h-hAcyqMgKFB8gBOydpOs4_hQoYp01dWiBVUUoV5Sx48WCYXHpkX9a_11nfEmS6WqcOLAOVakxN88vvH4G4AdpNFO9KxHS1OG9wRy1lL30Nyt6ZUeXWLpw04fytEoOztTxzPwu70LQ22VrU8MjtpeGqqRdzDTjxKRpUp0fNMWcZz396-uOU2QopPWdpzGBCJD9-sW6dv43SDHvd6N4_6Hk4OPvJkwwE2SyJpHUgtXehHLTGsTTiEcMgqZSpsYq5My7nofO5tmymeY2ivvTGRkWsbWK5uQ6AG6_2cYhQXZ2FDyaRRIunGj1drlWZqqtuleCKo3RJ1w_BGGzN2FwxffiYffnv8TF0Kw6y885d-0CK-aFJu9n9jEEsy4ahnm_xJefA1fjipOVbfKspyUg2nol7Ps4Oh0kPNIsVONdlnVbDAVLK1ZrmvNgoYLKVszTPaZZp_ct1BLZSekcEkNCyvw-VE-bhVmq8vKrQHLylIh5xepkyTCqXSCZDk2whKv1VG6DnvtZhemkWCnSSAXRaBiQhQEjaKBxjrsTldfTaRH_rNup8HNA8s2W8QUjZ8aF3dweXP_4214iTgqDgej4QbM0XsndahNmK1vfrgteG5-1ufjm7fBChh8fWw8_QFDhkSv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-Ground+Distributed+COVID-19+Variant+Intelligent+Data+Analytics+for+a+Regional+Territory&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Khuhawar%2C+Umrah+Zadi&rft.au=Isma+Farah+Siddiqui&rft.au=Qasim+Ali+Arain&rft.au=Mokhi+Maan+Siddiqui&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F1679835&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon