On-Ground Distributed COVID-19 Variant Intelligent Data Analytics for a Regional Territory
The onset of the COVID-19 pandemic and the subsequent transmission among communities has made the entire human population extremely vulnerable. Due to the virus’s contagiousness, the most powerful economies in the world are struggling with the inadequacies of resources. As the number of cases contin...
Saved in:
| Published in: | Wireless communications and mobile computing Vol. 2021; no. 1 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Hindawi
2021
John Wiley & Sons, Inc |
| Subjects: | |
| ISSN: | 1530-8669, 1530-8677 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The onset of the COVID-19 pandemic and the subsequent transmission among communities has made the entire human population extremely vulnerable. Due to the virus’s contagiousness, the most powerful economies in the world are struggling with the inadequacies of resources. As the number of cases continues to rise and the healthcare industry is overwhelmed with the increasing needs of the infected population, there is a requirement to estimate the potential future number of cases using prediction methods. This paper leverages data-driven estimation methods such as linear regression (LR), random forest (RF), and XGBoost (extreme gradient boosting) algorithm. All three algorithms are trained using the COVID-19 data of Pakistan from 24 February to 31 December 2020, wherein the daily resolution is integrated. Essentially, this paper postulates that, with the help of values of new positive cases, medical swabs, daily death, and daily new positive cases, it is possible to predict the progression of the COVID-19 pandemic and demonstrate future trends. Linear regression tends to oversimplify concepts in supervised learning and neglect practical challenges present in the real world, often cited as its primary disadvantage. In this paper, we use an enhanced random forest algorithm. It is a supervised learning algorithm that is used for classification. This algorithm works well for an extensive range of data items, and also it is very flexible and possesses very high accuracy. For higher accuracy, we have also implemented the XGBoost algorithm on the dataset. XGBoost is a newly introduced machine learning algorithm; this algorithm provides high accuracy of prediction models, and it is observed that it performs well in short-term prediction. This paper discusses various factors such as total COVID-19 cases, new cases per day, total COVID-19 related deaths, new deaths due to the COVID-19, the total number of recoveries, number of daily recoveries, and swabs through the proposed technique. This paper presents an innovative approach that assists health officials in Pakistan with their decision-making processes. |
|---|---|
| AbstractList | The onset of the COVID-19 pandemic and the subsequent transmission among communities has made the entire human population extremely vulnerable. Due to the virus’s contagiousness, the most powerful economies in the world are struggling with the inadequacies of resources. As the number of cases continues to rise and the healthcare industry is overwhelmed with the increasing needs of the infected population, there is a requirement to estimate the potential future number of cases using prediction methods. This paper leverages data-driven estimation methods such as linear regression (LR), random forest (RF), and XGBoost (extreme gradient boosting) algorithm. All three algorithms are trained using the COVID-19 data of Pakistan from 24 February to 31 December 2020, wherein the daily resolution is integrated. Essentially, this paper postulates that, with the help of values of new positive cases, medical swabs, daily death, and daily new positive cases, it is possible to predict the progression of the COVID-19 pandemic and demonstrate future trends. Linear regression tends to oversimplify concepts in supervised learning and neglect practical challenges present in the real world, often cited as its primary disadvantage. In this paper, we use an enhanced random forest algorithm. It is a supervised learning algorithm that is used for classification. This algorithm works well for an extensive range of data items, and also it is very flexible and possesses very high accuracy. For higher accuracy, we have also implemented the XGBoost algorithm on the dataset. XGBoost is a newly introduced machine learning algorithm; this algorithm provides high accuracy of prediction models, and it is observed that it performs well in short-term prediction. This paper discusses various factors such as total COVID-19 cases, new cases per day, total COVID-19 related deaths, new deaths due to the COVID-19, the total number of recoveries, number of daily recoveries, and swabs through the proposed technique. This paper presents an innovative approach that assists health officials in Pakistan with their decision-making processes. |
| Author | Qureshi, Nawab Muhammad Faseeh Siddiqui, Isma Farah Siddiqui, Mokhi Maan Khuhawar, Umrah Zadi Arain, Qasim Ali |
| Author_xml | – sequence: 1 givenname: Umrah Zadi orcidid: 0000-0002-2951-6188 surname: Khuhawar fullname: Khuhawar, Umrah Zadi organization: Department of Computer Systems EngineeringMehran University of Engineering and TechnologyJamshoroPakistanmuet.edu.pk – sequence: 2 givenname: Isma Farah orcidid: 0000-0002-2058-4336 surname: Siddiqui fullname: Siddiqui, Isma Farah organization: Department of Software EngineeringMehran University of Engineering and TechnologyJamshoroPakistanmuet.edu.pk – sequence: 3 givenname: Qasim Ali orcidid: 0000-0003-2095-7435 surname: Arain fullname: Arain, Qasim Ali organization: Department of Software EngineeringMehran University of Engineering and TechnologyJamshoroPakistanmuet.edu.pk – sequence: 4 givenname: Mokhi Maan orcidid: 0000-0002-6130-5188 surname: Siddiqui fullname: Siddiqui, Mokhi Maan organization: Department of Electrical EngineeringMehran University of Engineering and TechnologyJamshoroPakistanmuet.edu.pk – sequence: 5 givenname: Nawab Muhammad Faseeh orcidid: 0000-0002-5035-2640 surname: Qureshi fullname: Qureshi, Nawab Muhammad Faseeh organization: Department of Computer EducationSungkyunkwan UniversitySeoulRepublic of Koreaskku.edu |
| BookMark | eNp9kE1LAzEYhINUsK3e_AEBj7o2HybZPZZWa6FQkNqDlyWbj5qyZmuSRfrv3dLiQdDTO7w8MwwzAD3feAPANUb3GDM2IojgEeaiyCk7A33MKMpyLkTvR_PiAgxi3CKEaAf3wdvSZ7PQtF7DqYspuKpNRsPJcj2fZriAaxmc9AnOfTJ17Tam01OZJBx7We-TUxHaJkAJX8zGNd0PrkwILjVhfwnOrayjuTrdIXh9elxNnrPFcjafjBeZolSkDAvJTGUZEbmUCnHOhOG4EFxoqrSkFUHWEqN5Xtj8IReFNQorwSuibaEpoUNwc8zdheazNTGV26YNXZVYEo4xZTkvWEeRI6VCE2MwtlQuydR1TkG6usSoPGxYHjYsTxt2prtfpl1wHzLs_8Jvj_i781p-uf_pb4kzf9U |
| CitedBy_id | crossref_primary_10_7189_jogh_15_04213 crossref_primary_10_1016_j_engappai_2023_107743 |
| Cites_doi | 10.1016/j.chaos.2020.110512 10.1109/TPWRS.2004.835632 10.1007/s11277-020-07312-3 10.1016/j.chaos.2020.110050 10.1016/j.chaos.2020.110056 10.1109/ACCESS.2020.2997311 10.3390/s21103322 10.2196/18828 10.1109/ICICT50816.2021.9358506 10.1155/2021/5587188 10.1016/j.ijsu.2020.02.034 10.20944/preprints202005.0147.v1 10.3390/a10040114 10.1109/ICRCICN50933.2020.9296175 10.1016/j.idm.2020.08.008 10.1007/s11042-021-10906-z 10.14569/IJACSA.2020.0111281 10.1016/j.chaos.2020.110189 10.1007/s00477-020-01827-8 10.1038/s41746-020-00372-6 10.3389/fpubh.2020.00357 10.1038/s41598-020-79405-9 10.1016/j.rinp.2021.103813 10.2196/preprints.19406 10.1016/j.dsx.2020.07.045 10.1016/j.chaos.2020.110059 10.3389/fpubh.2020.587937 10.1016/j.patter.2020.100074 10.3390/a13100249 10.1007/s11277-020-07215-3 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Umrah Zadi Khuhawar et al. Copyright © 2021 Umrah Zadi Khuhawar et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright © 2021 Umrah Zadi Khuhawar et al. – notice: Copyright © 2021 Umrah Zadi Khuhawar et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 7XB 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1155/2021/1679835 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1530-8677 |
| Editor | Khattak, Hasan Ali |
| Editor_xml | – sequence: 1 givenname: Hasan Ali surname: Khattak fullname: Khattak, Hasan Ali |
| ExternalDocumentID | 10_1155_2021_1679835 |
| GeographicLocations | Pakistan India |
| GeographicLocations_xml | – name: India – name: Pakistan |
| GroupedDBID | .3N .4S .DC .GA 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 52M 52O 52T 52U 52W 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABIJN ABPVW ACGFO ADBBV ADIZJ AENEX AEUQT AFBPY AFKRA AIAGR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ARCSS ASPBG ATUGU AVWKF AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BROTX BRXPI CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBS EDO F00 F01 F04 F21 G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ H.T H.X HCIFZ HZ~ I-F IAO ITC ITG ITH IX1 JPC K7- KQQ LAW LITHE LP6 LP7 M0N MK4 MY~ N04 N05 NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PIMPY Q.N QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS UB1 W8V W99 WBKPD WIH WLBEL XPP XV2 ~IA ~WT .Y3 24P 31~ 5VS AAEVG AAMMB AANHP AAYXX AAZKR ACBWZ ACCMX ACRPL ACXQS ACYXJ ADNMO AEFGJ AEIMD AEUCX AFFHD AFZJQ AGQPQ AGXDD AIDQK AIDYY ALUQN AZFZN BDRZF BFHJK CITATION EJD FEDTE H13 HF~ HVGLF LH4 LW6 O8X PHGZM PHGZT PQGLB ROL WYUIH 7SC 7SP 7XB 8FD 8FE 8FG ABUWG COVID JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c337t-17a5ebf5278aac06657e619767d3cda3b20ff2ed689f84879fec1c76b2df9d323 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000821202100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-8669 |
| IngestDate | Fri Jul 25 09:30:40 EDT 2025 Tue Nov 18 20:58:05 EST 2025 Sat Nov 29 01:44:05 EST 2025 Sun Jun 02 18:51:36 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-17a5ebf5278aac06657e619767d3cda3b20ff2ed689f84879fec1c76b2df9d323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5035-2640 0000-0002-6130-5188 0000-0002-2951-6188 0000-0003-2095-7435 0000-0002-2058-4336 |
| OpenAccessLink | https://www.proquest.com/docview/2611358695?pq-origsite=%requestingapplication% |
| PQID | 2611358695 |
| PQPubID | 2034344 |
| ParticipantIDs | proquest_journals_2611358695 crossref_citationtrail_10_1155_2021_1679835 crossref_primary_10_1155_2021_1679835 hindawi_primary_10_1155_2021_1679835 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Wireless communications and mobile computing |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_26_2 e_1_2_8_9_2 Ballı S. (e_1_2_8_25_2) 2021; 142 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_4_2 Bandyopadhyay S. K. (e_1_2_8_37_2) 2020 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_21_2 Jain N. (e_1_2_8_27_2) 2021; 21 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_17_2 Namasudra S. (e_1_2_8_32_2) 2021 e_1_2_8_38_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_15_2 e_1_2_8_36_2 Khan F. (e_1_2_8_35_2) 2020; 140 Visa S. (e_1_2_8_28_2) 2011; 710 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_11_2 Khan A. A. (e_1_2_8_34_2) 2020; 11 Lalmuanawma S. (e_1_2_8_5_2) 2020; 139 |
| References_xml | – volume: 142 year: 2021 ident: e_1_2_8_25_2 article-title: Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110512 – ident: e_1_2_8_2_2 – ident: e_1_2_8_21_2 – ident: e_1_2_8_23_2 doi: 10.1109/TPWRS.2004.835632 – ident: e_1_2_8_33_2 doi: 10.1007/s11277-020-07312-3 – ident: e_1_2_8_36_2 doi: 10.1016/j.chaos.2020.110050 – start-page: 1 volume-title: Neural processing letters year: 2021 ident: e_1_2_8_32_2 – ident: e_1_2_8_1_2 doi: 10.1016/j.chaos.2020.110056 – ident: e_1_2_8_7_2 doi: 10.1109/ACCESS.2020.2997311 – ident: e_1_2_8_29_2 doi: 10.3390/s21103322 – ident: e_1_2_8_11_2 doi: 10.2196/18828 – ident: e_1_2_8_19_2 doi: 10.1109/ICICT50816.2021.9358506 – ident: e_1_2_8_16_2 doi: 10.1155/2021/5587188 – volume: 11 year: 2020 ident: e_1_2_8_34_2 article-title: Impact of coronavirus disease (COVID-19) pandemic on psychological well-being of the Pakistani general population publication-title: Frontiers in Psychiatry – ident: e_1_2_8_15_2 – volume: 710 start-page: 120 year: 2011 ident: e_1_2_8_28_2 article-title: Confusion matrix-based feature selection publication-title: MAICS – ident: e_1_2_8_26_2 doi: 10.1016/j.ijsu.2020.02.034 – ident: e_1_2_8_10_2 doi: 10.20944/preprints202005.0147.v1 – ident: e_1_2_8_13_2 doi: 10.3390/a10040114 – ident: e_1_2_8_6_2 doi: 10.1109/ICRCICN50933.2020.9296175 – ident: e_1_2_8_12_2 doi: 10.1016/j.idm.2020.08.008 – ident: e_1_2_8_38_2 doi: 10.1007/s11042-021-10906-z – ident: e_1_2_8_22_2 doi: 10.14569/IJACSA.2020.0111281 – volume: 140 year: 2020 ident: e_1_2_8_35_2 article-title: Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using vector autoregressive model in Pakistan publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110189 – ident: e_1_2_8_31_2 doi: 10.1007/s00477-020-01827-8 – ident: e_1_2_8_9_2 doi: 10.1038/s41746-020-00372-6 – ident: e_1_2_8_30_2 doi: 10.3389/fpubh.2020.00357 – ident: e_1_2_8_17_2 – ident: e_1_2_8_18_2 doi: 10.1038/s41598-020-79405-9 – ident: e_1_2_8_14_2 – volume: 21 year: 2021 ident: e_1_2_8_27_2 article-title: Prediction modelling of COVID using machine learning methods from B-cell dataset publication-title: Results in Physics doi: 10.1016/j.rinp.2021.103813 – ident: e_1_2_8_8_2 doi: 10.2196/preprints.19406 – ident: e_1_2_8_24_2 doi: 10.1016/j.dsx.2020.07.045 – volume-title: Machine learning approach for confirmation of covid-19 cases: positive, negative, death and release year: 2020 ident: e_1_2_8_37_2 – volume: 139 year: 2020 ident: e_1_2_8_5_2 article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110059 – ident: e_1_2_8_20_2 doi: 10.3389/fpubh.2020.587937 – ident: e_1_2_8_3_2 doi: 10.1016/j.patter.2020.100074 – ident: e_1_2_8_4_2 doi: 10.3390/a13100249 – ident: e_1_2_8_39_2 doi: 10.1007/s11277-020-07215-3 |
| SSID | ssj0003021 |
| Score | 2.2911108 |
| Snippet | The onset of the COVID-19 pandemic and the subsequent transmission among communities has made the entire human population extremely vulnerable. Due to the... The onset of the COVID‐19 pandemic and the subsequent transmission among communities has made the entire human population extremely vulnerable. Due to the... |
| SourceID | proquest crossref hindawi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Coronaviruses COVID-19 Data analysis Decision making Decision trees Fatalities Machine learning Model accuracy Pandemics Prediction models Trends |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA22KOhB_MRqlRzqSYKbTfN1lNZiQVoptRQvSzbJakFWaVf9-ybptqhF9Lgwu4c3k8y8meUNAI3IujIYx9yRHGZRM8YKpdhKJIkjuExqF9NBxPWW93piPJZ3pUjSbHWE77Kdp-f4MkwLCK2AiqA-eAc34-WFS6K4lEWNkGBMLv5v__Hut8yz8eQp78dk5QoOeaWzA7bLghBezT24C9Zsvge2vsgE7oOHfo58jyg3sO11bv2KKmtgqz_qthGWcOT4rgMIdpfymgVsq0LBoDjidZihK02hggP7GDp_cOj1GP14_QDcd66HrRtU7kRAmhBeIMwVtWlGYy6U0mFuYh0H4owboo0iaRxlWWwNEzITjozIzGqsOUtjk0lDYnIIqvlLbo8AzFLdFNQyyVxJ0ZRKOk85eqeoFNpgk9bAxQKvRJeC4X5vxXMSiAOliUc3KdGtgfOl9etcKOMXu0YJ_R9m9YVfkvJUzRLH9jChgkl6_L-vnIBN_zhvmdRBtZi-2VOwrt-LyWx6FqLoE18uvMM priority: 102 providerName: Hindawi Publishing |
| Title | On-Ground Distributed COVID-19 Variant Intelligent Data Analytics for a Regional Territory |
| URI | https://dx.doi.org/10.1155/2021/1679835 https://www.proquest.com/docview/2611358695 |
| Volume | 2021 |
| WOSCitedRecordID | wos000821202100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: P5Z dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: K7- dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: PIMPY dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1530-8677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-QQ--xTc56EmCm2STNCdRV3FR17KorF5KmqQqSH1s1b9vks2ugqgHL4U2oZTMdDLfTPg-ADZr1qXBmAgHcrhFdYIVyrGVSFIHcLnUzqcDieupaLWSTkemseDWjccq-zExBGrzqH2NfMdl-piyhEu2-_SMvGqU765GCY1hMIoJwd7PTwQaRGJaI5EvtYYSzmX_4DtjHvPjndCCCEJvn1vS-J3Hwu_332Jz2HCOpv_7qTNgKqaacK_nG7NgyJZzYPILAeE8uDkvka8-lQY2PIOuF7-yBh6cXzUbCEt45ZC0W3rYHBB3VrChKgUDl4lneIYu6YUKtu1tqCnCC8_06Bv3C-Dy6PDi4BhFtQWkKRUVwkIxmxeMiEQpHToy1qErwYWh2iiak1pREGt4IovEwRxZWI214DkxhTSU0EUwUj6WdgnAItf1hFkuuUtW6lJJ5wMOOComE22wyZfBdn_BMx2pyL0ixkMWIAljmTdPFs2zDLYGs596FBw_zNuMtvtj2lrfaln8X7vZp8lWfh9eBRP-Zb0izBoYqV5e7ToY02_VffdlA4zuH7bS9kZwQ3dN2Y17ljbP0mt31z7ufABPuOKo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBUR7KG9RKOBDe0JW1_b6dUCo6lJ1tcsWoaWquATHdmgllD42UPGn-I14vMkWCQGnHjhnFCnxl5n5ZibfAGz2YkqDGdeJ5KhI-5w5WrJoqRWJ4CrrE6aziOtYTybm6Mi-W4If3b8wOFbZ-cTsqMOpxxr5dsr0mZBGWfn67Jzi1ijsrnYrNOawGMXvl4myzV4NB-l8tzjfezPd3aftVgHqhdANZdrJWFaSa-Ocz52HmFiEVjoIH5woea-qeAzK2MqkdN5W0TOvVclDZYNAoYPk8m_0hdGo1T_SdOH5RY-3-qw9apSy3aC9lFhjYNu55ZEXy12FwFvHyL0vT36LBTnA7d35317NXVhrU2myM8f-PViK9X1Y_UVg8QF8PKgpVtfqQAaoEIzLvWIguweHwwFllhy69P3VDRkuhEkbMnCNI1mrBRWsSUrqiSPv4-dcMyVTVLLEwYSH8OFaHu4RLNendXwMpCp938iorErJWN86mzCeiLGT1vjAQrkOL7sDLnwrtY4bP74UmXJJWSAcihYO67C1sD6bS4z8wW6zxco_zDY6lBStP5oVVxB58vfLL-D2_vTtuBgPJ6OnsII3nhecNmC5ufgan8FN_605mV08z9An8Om6AfUTkPA7gg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5SF64FlEoYAP7QlZu3bWdnxACDWsWG21rVCpKi7BsR2ohNLHBir-Gr-OGW-yRULAqQfOsSIl_ubxjcffAGwNI6bBQhokOTrykRSOVyJabjMkuNp6xHQScd01s1l-dGT3V-BHfxeG2ip7n5gcdTjxVCMfYKYvMpVrqwZ11xaxX4xfnZ5xmiBFJ639OI0FRKbx-wXSt_nLSYF7vS3l-M3BzlveTRjgPstMy4VxKla1kiZ3zqdTiIiMwmgTMh9cVslhXcsYdG7rHFN7W0cvvNGVDLUNGYkeoPu_hlFYkY1NDV9GgWwoO63WIc-1tn3TvVJUbxCDdPyRhsxdhsMbn4mHXxz_FhdSsBvf-Z9_01243aXY7PXCJu7BSmzuw9ovwosP4MNew6nq1gRWkHIwDf2Kge3sHU4KLiw7dGiXTcsmS8HSlhWudSxpuJCyNcNknzn2Ln5KtVR2QAqX1LCwDu-v5OMewmpz0sRHwOrKj3IVtdWYpI2ss4h9JMxO2dwHEaoNeNFvduk7CXaaBPKlTFRMqZKgUXbQ2IDt5erThfTIH9Ztdbj5x7LNHjFl56fm5SVcHv_98XO4iTgqdyez6RO4Re9d1KE2YbU9_xqfwnX_rT2enz9LVsDg41Xj6SeGIkQ8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On%E2%80%90Ground+Distributed+COVID%E2%80%9019+Variant+Intelligent+Data+Analytics+for+a+Regional+Territory&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Khuhawar%2C+Umrah+Zadi&rft.au=Siddiqui%2C+Isma+Farah&rft.au=Arain%2C+Qasim+Ali&rft.au=Siddiqui%2C+Mokhi+Maan&rft.date=2021&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1155%2F2021%2F1679835&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_1679835 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon |