A preprocessing technique for quadratic unconstrained binary optimization

To solve combinatorial optimization problems more easily, it can be valuable to identify a set of necessary or sufficient conditions that an optimal solution of the problem must satisfy. For instance, weak and strong duality conditions in linear programming support the development of the well-known...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete optimization Jg. 58; S. 100914
Hauptverfasser: Gueye, S., Michelon, P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.11.2025
Elsevier
Schlagworte:
ISSN:1572-5286, 1873-636X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To solve combinatorial optimization problems more easily, it can be valuable to identify a set of necessary or sufficient conditions that an optimal solution of the problem must satisfy. For instance, weak and strong duality conditions in linear programming support the development of the well-known optimization algorithms for these problems. Similarly, the Karush–Kuhn–Tucker conditions give necessary and sufficient conditions for optimality in convex quadratic programming that underlie the development of optimization algorithms in this domain. Although such continuous conditions do not exist for integer programming, some necessary conditions can be derived from Karush–Kuhn–Tucker conditions for the Quadratic Unconstrained Binary Optimization (QUBO) problem. We present these conditions and show how they lead to a derivation of well-known criteria for fixing the values of single variables in the QUBO problem. From this, we show how to generalize these criteria to fix a product of any number of p (integer) literals, which also may be viewed as a generalization of the persistency notion, consisting of clauses of a Constraint Satisfaction Problem that the optimal solution must satisfy. We then couple our list of persistencies with state-of-the-art rules not covered by our approach. The resulting integrated set of conditions for fixing values of variables is tested in computational experiments on instances from standard databases available in the literature, showing that we can fix more variables and reduce problems more fully than previous approaches.
AbstractList To solve combinatorial optimization problems more easily, it can be valuable to identify a set of necessary or sufficient conditions that an optimal solution of the problem must satisfy. For instance, weak and strong duality conditions in linear programming support the development of the well-known optimization algorithms for these problems. Similarly, the Karush–Kuhn–Tucker conditions give necessary and sufficient conditions for optimality in convex quadratic programming that underlie the development of optimization algorithms in this domain. Although such continuous conditions do not exist for integer programming, some necessary conditions can be derived from Karush–Kuhn–Tucker conditions for the Quadratic Unconstrained Binary Optimization (QUBO) problem. We present these conditions and show how they lead to a derivation of well-known criteria for fixing the values of single variables in the QUBO problem. From this, we show how to generalize these criteria to fix a product of any number of p (integer) literals, which also may be viewed as a generalization of the persistency notion, consisting of clauses of a Constraint Satisfaction Problem that the optimal solution must satisfy. We then couple our list of persistencies with state-of-the-art rules not covered by our approach. The resulting integrated set of conditions for fixing values of variables is tested in computational experiments on instances from standard databases available in the literature, showing that we can fix more variables and reduce problems more fully than previous approaches.
ArticleNumber 100914
Author Gueye, S.
Michelon, P.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0001-7217-8543
  surname: Gueye
  fullname: Gueye, S.
  email: serigne.gueye@univ-avignon.fr
  organization: Avignon Université, Laboratoire d’Informatique d’Avignon, 339 chemin des Meinajariès, Agroparc BP 1228, Avignon Cedex 9, 84911, France
– sequence: 2
  givenname: P.
  surname: Michelon
  fullname: Michelon, P.
  email: philippe.michelon@univ-avignon.fr
  organization: Avignon Université, Laboratoire de Mathématiques d’Avignon, 340 chemin des Meinajariès, Agroparc, Avignon, 84140, France
BackLink https://hal.science/hal-05331726$$DView record in HAL
BookMark eNp9UE1LAzEQDVLBVv0HHvbqYWu-Npu9CKWoLRS8KHgLaTJrU9qkTbYF_fVmWfHoaWYe772ZeRM08sEDQncETwkm4mE7tS6FQzelmFYZwg3hF2hMZM1KwcTHKPdVTcuKSnGFJiltMWa8YdUYLWfFIcIhBgMpOf9ZdGA23h1PULQhFseTtlF3zhQnb4JPXdTOgy3Wzuv4VeSdbu--MyH4G3TZ6l2C2996jd6fn97mi3L1-rKcz1alYazuSiJqzSVYRjQX1DS6JZYzRtaCSmb7AYyRWvBGcskwNRKMra3MOq65BnaN7gffjd6pQ3T7fIgK2qnFbKV6DFfZrqbiTDKXD1wTQ0oR2j8BwaqPTm3VEJ3qo1NDdFn2OMgg_3F2EFUyDrwB6yKYTtng_jf4Aab4fAM
Cites_doi 10.1016/j.ejor.2017.08.025
10.1057/jors.1990.166
10.1287/mnsc.44.3.336
10.3389/fphy.2014.00005
10.1109/CVPR.2019.00625
10.1007/s12532-023-00236-6
10.1016/S0167-5060(08)70343-1
10.1016/S0166-218X(96)00003-0
ContentType Journal Article
Copyright 2025 The Authors
Attribution
Copyright_xml – notice: 2025 The Authors
– notice: Attribution
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
DOI 10.1016/j.disopt.2025.100914
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-636X
ExternalDocumentID oai:HAL:hal-05331726v1
10_1016_j_disopt_2025_100914
S1572528625000374
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AAAKF
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
J9A
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
~G-
~HD
9DU
AAYXX
CITATION
1XC
ID FETCH-LOGICAL-c337t-167a48ed31a462c9af1d4331b6283df1d4ecc8a649848302c8ecd7d81674a4ae3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001606346300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1572-5286
IngestDate Mon Oct 27 06:30:08 EDT 2025
Sat Nov 29 07:00:10 EST 2025
Sat Nov 22 16:52:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Combinatorial optimization
90Cxx
Karush–Kuhn–Tucker conditions
Constraint programming
Quadratic unconstrained binary optimization
Persistencies
Language English
License This is an open access article under the CC BY license.
Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-167a48ed31a462c9af1d4331b6283df1d4ecc8a649848302c8ecd7d81674a4ae3
ORCID 0000-0001-7217-8543
OpenAccessLink https://dx.doi.org/10.1016/j.disopt.2025.100914
ParticipantIDs hal_primary_oai_HAL_hal_05331726v1
crossref_primary_10_1016_j_disopt_2025_100914
elsevier_sciencedirect_doi_10_1016_j_disopt_2025_100914
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Discrete optimization
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Glover, Lewis, Kochenberger (b6) 2018; 265
Chvátal (b18) 1997; 73
Boros (b7) 2022
(b1) 2022
Hansen (b4) 1979; 5
Hammer, Rudeanu (b3) 1968
Rosenberg (b12) 1972; 6
Rehfeldt, Koch, Shinano (b9) 2023; 15
Glover, Kochenberger, Alidaee (b14) 1998; 44
Beasley (b15) 1998
Glover, Alidaee, Rego, Kochenberger (b16) 2000
Hammer, Hansen (b11) 1981; 26
Beasley (b13) 1990; 41
Ferizovic, Hespe, Lamm, Mnich, Schulz, Strash (b10) 2020
(b17) 2023
Lucas (b2) 2014; 2
Boros, Hammer, Tavares (b5) 2006
J.-H. Lange, B. Andres, P. Swoboda, Combinatorial Persistency Criteria for Multicut and Max-Cut, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019.
(10.1016/j.disopt.2025.100914_b1) 2022
Hammer (10.1016/j.disopt.2025.100914_b11) 1981; 26
Boros (10.1016/j.disopt.2025.100914_b5) 2006
Ferizovic (10.1016/j.disopt.2025.100914_b10) 2020
Hammer (10.1016/j.disopt.2025.100914_b3) 1968
Glover (10.1016/j.disopt.2025.100914_b16) 2000
Beasley (10.1016/j.disopt.2025.100914_b13) 1990; 41
Rosenberg (10.1016/j.disopt.2025.100914_b12) 1972; 6
(10.1016/j.disopt.2025.100914_b17) 2023
Glover (10.1016/j.disopt.2025.100914_b6) 2018; 265
Boros (10.1016/j.disopt.2025.100914_b7) 2022
Glover (10.1016/j.disopt.2025.100914_b14) 1998; 44
Hansen (10.1016/j.disopt.2025.100914_b4) 1979; 5
Chvátal (10.1016/j.disopt.2025.100914_b18) 1997; 73
Rehfeldt (10.1016/j.disopt.2025.100914_b9) 2023; 15
10.1016/j.disopt.2025.100914_b8
Lucas (10.1016/j.disopt.2025.100914_b2) 2014; 2
Beasley (10.1016/j.disopt.2025.100914_b15) 1998
References_xml – volume: 2
  year: 2014
  ident: b2
  article-title: Ising formulations of many NP problems
  publication-title: Front. Phys.
– volume: 6
  start-page: 95
  year: 1972
  end-page: 97
  ident: b12
  article-title: 0-1 optimization and nonlinear programming
  publication-title: Rev. Franç. D’Autom. Inform. Rech. Opér.
– volume: 73
  start-page: 81
  year: 1997
  end-page: 99
  ident: b18
  article-title: Resolution search
  publication-title: Discrete Appl. Math.
– year: 2006
  ident: b5
  article-title: Preprocessing of Unconstrained Quadratic Binary Optimization
– year: 2023
  ident: b17
  article-title: Proceedings of SAT competition 2023: Solver, benchmark and proof checker descriptions
  publication-title: Department of Computer Science Series of Publications B
– year: 2000
  ident: b16
  article-title: One-Pass Heuristics for Large Scale Unconstrained Binary Quadratic Problems
– year: 2022
  ident: b1
  publication-title: The Quadratic Unconstrained Binary Optimization Problem : Theory, Algorithms, and Applications
– start-page: 121
  year: 2022
  end-page: 137
  ident: b7
  article-title: Autarkies and persistencies for QUBO
  publication-title: The Quadratic Unconstrained Binary Optimization Problem: Theory, Algorithms, and Applications
– volume: 15
  start-page: 445
  year: 2023
  end-page: 470
  ident: b9
  article-title: Faster exact solution of sparse MaxCut and QUBO problems
  publication-title: Math. Prog. Comp.
– volume: 41
  start-page: 1069
  year: 1990
  end-page: 1072
  ident: b13
  article-title: OR-Library : distributing test problems by electronic mail
  publication-title: J. Oper. Res. Soc.
– year: 1998
  ident: b15
  article-title: Heuristic Algorithms for the Unconstrained Binary Quadratic Programming Problem
– volume: 5
  start-page: 53
  year: 1979
  end-page: 70
  ident: b4
  article-title: Method of non-linear 0-1 programming
  publication-title: Ann. Discret. Math.
– reference: J.-H. Lange, B. Andres, P. Swoboda, Combinatorial Persistency Criteria for Multicut and Max-Cut, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019.
– volume: 44
  start-page: 336
  year: 1998
  end-page: 345
  ident: b14
  article-title: Adaptative memory tabu search for binary quadratic programs
  publication-title: Manag. Sci.
– year: 1968
  ident: b3
  article-title: Boolean Methods in Operations Research and Related Areas
– start-page: 27
  year: 2020
  end-page: 41
  ident: b10
  article-title: Engineering kernelization for maximum cut
– volume: 265
  start-page: 829
  year: 2018
  end-page: 842
  ident: b6
  article-title: Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems
  publication-title: European J. Oper. Res.
– volume: 26
  start-page: 421
  year: 1981
  end-page: 429
  ident: b11
  article-title: Logical relations in quadratic 0-1 programming
  publication-title: Rom. J. Pure Appl. Math.
– volume: 265
  start-page: 829
  issue: 3
  year: 2018
  ident: 10.1016/j.disopt.2025.100914_b6
  article-title: Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2017.08.025
– volume: 41
  start-page: 1069
  issue: 11
  year: 1990
  ident: 10.1016/j.disopt.2025.100914_b13
  article-title: OR-Library : distributing test problems by electronic mail
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1990.166
– volume: 44
  start-page: 336
  year: 1998
  ident: 10.1016/j.disopt.2025.100914_b14
  article-title: Adaptative memory tabu search for binary quadratic programs
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.44.3.336
– year: 1998
  ident: 10.1016/j.disopt.2025.100914_b15
– year: 2000
  ident: 10.1016/j.disopt.2025.100914_b16
– year: 2023
  ident: 10.1016/j.disopt.2025.100914_b17
  article-title: Proceedings of SAT competition 2023: Solver, benchmark and proof checker descriptions
– volume: 26
  start-page: 421
  issue: 3
  year: 1981
  ident: 10.1016/j.disopt.2025.100914_b11
  article-title: Logical relations in quadratic 0-1 programming
  publication-title: Rom. J. Pure Appl. Math.
– year: 2022
  ident: 10.1016/j.disopt.2025.100914_b1
– volume: 2
  year: 2014
  ident: 10.1016/j.disopt.2025.100914_b2
  article-title: Ising formulations of many NP problems
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2014.00005
– ident: 10.1016/j.disopt.2025.100914_b8
  doi: 10.1109/CVPR.2019.00625
– volume: 15
  start-page: 445
  year: 2023
  ident: 10.1016/j.disopt.2025.100914_b9
  article-title: Faster exact solution of sparse MaxCut and QUBO problems
  publication-title: Math. Prog. Comp.
  doi: 10.1007/s12532-023-00236-6
– volume: 6
  start-page: 95
  year: 1972
  ident: 10.1016/j.disopt.2025.100914_b12
  article-title: 0-1 optimization and nonlinear programming
  publication-title: Rev. Franç. D’Autom. Inform. Rech. Opér.
– start-page: 121
  year: 2022
  ident: 10.1016/j.disopt.2025.100914_b7
  article-title: Autarkies and persistencies for QUBO
– volume: 5
  start-page: 53
  year: 1979
  ident: 10.1016/j.disopt.2025.100914_b4
  article-title: Method of non-linear 0-1 programming
  publication-title: Ann. Discret. Math.
  doi: 10.1016/S0167-5060(08)70343-1
– year: 2006
  ident: 10.1016/j.disopt.2025.100914_b5
– year: 1968
  ident: 10.1016/j.disopt.2025.100914_b3
– volume: 73
  start-page: 81
  issue: 1
  year: 1997
  ident: 10.1016/j.disopt.2025.100914_b18
  article-title: Resolution search
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(96)00003-0
– start-page: 27
  year: 2020
  ident: 10.1016/j.disopt.2025.100914_b10
SSID ssj0034935
Score 2.3659658
Snippet To solve combinatorial optimization problems more easily, it can be valuable to identify a set of necessary or sufficient conditions that an optimal solution...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 100914
SubjectTerms Combinatorial optimization
Computer Science
Constraint programming
Karush–Kuhn–Tucker conditions
Operations Research
Persistencies
Quadratic unconstrained binary optimization
Title A preprocessing technique for quadratic unconstrained binary optimization
URI https://dx.doi.org/10.1016/j.disopt.2025.100914
https://hal.science/hal-05331726
Volume 58
WOSCitedRecordID wos001606346300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-636X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034935
  issn: 1572-5286
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZg44E9cBkgxk0W4tWTEie-PEZsUwtVVYmB-mY5scs2jax07bT9e86JnTRlQowHXqzWSdvE5-vxsfN95xDyQXvNK2VnzMLcyjInc6ZywVnqHfTqvJRNOaBvIzkeq-lUT2LN1sumnICsa3V9ref_1dTQB8ZG6ew_mLv7UuiA12B0aMHs0N7J8AXq_ueB_99oobosrcgo_LmybtFkaYUJDWNDLBGBUWjQ5V6AB_kRpZn9uPXgFNyLR0rB7ycgd2flb8JONtzf9_Vz-kAzDY_1J_v9_YU0j0K7btMrztB9Hylx_dpmsA59SnImeFOUsHOsISf7LR8dtgvO9pEuNUc6a5ojV0MHMelmSuxB8cVMDo7MaDj-vHm0xyMcFCNoT-w5Q2ExRGTiCtbD26nMNfi57WJ4OP3Uzs48003R1e4mWjllw_m7fUl_Clfun7Qb700gcvyEPIorCFoEyz8l93y9Sx631TlodNa7ZKeXavIZGRZ0Axa0gwUFWNAOFnQDFjTAgvat_px8PTo8_jhgsYwGqziXS5YIaTPlHU9sJtJK21niUCdXCggtHb6Bv7GyItMqw2xwlfKVk06hPsVm1vMXZKu-qP1LQkVZzkSZWp0olZVOqplUTiSVs7msUqf2CGtHy8xDthTT0gjPTBhdg6NrwujuEdkOqYkRX4jkDIDlL598DxbofgSTpAMMDPatQfDqLie9Jg_XsH9DtpaLlX9LHlRXy9PLxbsIn19LOIP0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+preprocessing+technique+for+quadratic+unconstrained+binary+optimization&rft.jtitle=Discrete+optimization&rft.au=Gueye%2C+Serigne&rft.au=Michelon%2C+P.&rft.date=2025-11-01&rft.pub=Elsevier&rft.issn=1572-5286&rft.eissn=1873-636X&rft.volume=58&rft_id=info:doi/10.1016%2Fj.disopt.2025.100914&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-05331726v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-5286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-5286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-5286&client=summon