Solution of the Neutron Transport Equation on Unstructured Grids Using the Parallel Block Jacobi-Integral Transport Matrix Method via the Novel Green's Function ITMM Construction Algorithm on Massively Parallel Computer Systems
The Parallel Block Jacobi (PBJ) spatial domain decomposition is well suited for implementation on massively parallel computers to solve the neutron transport equation on unstructured grids due to the simple scheduling policy that arises from the PBJ's iterative asynchronicity. The Parallel Bloc...
Saved in:
| Published in: | Nuclear science and engineering Vol. 195; no. 10; pp. 1036 - 1064 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Taylor & Francis
03.10.2021
|
| Subjects: | |
| ISSN: | 0029-5639, 1943-748X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Parallel Block Jacobi (PBJ) spatial domain decomposition is well suited for implementation on massively parallel computers to solve the neutron transport equation on unstructured grids due to the simple scheduling policy that arises from the PBJ's iterative asynchronicity. The Parallel Block Jacobi-Integral Transport Matrix Method (PBJ-ITMM) is an iterative method that utilizes the PBJ decomposition and resolves local within-group scattering in a single iteration, but requires a matrix-vector iterative solution. This work details the development, implementation, and testing of the novel Green's Function ITMM Construction (GFIC) algorithm. The GFIC constructs the matrices required for the PBJ-ITMM's iterative solution on unstructured grids, utilizing the physical interpretation of these matrices as discretized response functions to create a local problem with a Green's Function-like source. Conducting a set of mesh sweeps over all angles on this local problem yields the ITMM matrix elements. On unstructured grids, this approach utilizes the kernel calculation and fundamental solution algorithm present in an existing transport code, thus avoiding reimplementation of code functionality. Using the GFIC, the PBJ-ITMM is implemented in THOR, a tetrahedral mesh transport code, along with the Inexact Parallel Block Jacobi (IPBJ) method for performance comparison. This comparison involves strong and weak scaling studies of the Godiva and C5G7 benchmark problems using up to 32 768 processors. These studies establish that the PBJ-ITMM executes faster than the IPBJ when the number of cells per subdomain falls below a problem-dependent threshold, ~128 cells for Godiva, >256 cells for C5G7. The largest problem tested, comprising more than 6.8 billion unknowns, solves in <30 min with the IPBJ and <20 min with the PBJ-ITMM, using 32 768 processors. These results demonstrate the PBJ-ITMM as a viable approach for solving neutron transport problems on unstructured grids using massively parallel computers. Additionally, this study illustrates the range of number of cells per subdomain over which this method is favorable. |
|---|---|
| AbstractList | Not provided. The Parallel Block Jacobi (PBJ) spatial domain decomposition is well suited for implementation on massively parallel computers to solve the neutron transport equation on unstructured grids due to the simple scheduling policy that arises from the PBJ's iterative asynchronicity. The Parallel Block Jacobi-Integral Transport Matrix Method (PBJ-ITMM) is an iterative method that utilizes the PBJ decomposition and resolves local within-group scattering in a single iteration, but requires a matrix-vector iterative solution. This work details the development, implementation, and testing of the novel Green's Function ITMM Construction (GFIC) algorithm. The GFIC constructs the matrices required for the PBJ-ITMM's iterative solution on unstructured grids, utilizing the physical interpretation of these matrices as discretized response functions to create a local problem with a Green's Function-like source. Conducting a set of mesh sweeps over all angles on this local problem yields the ITMM matrix elements. On unstructured grids, this approach utilizes the kernel calculation and fundamental solution algorithm present in an existing transport code, thus avoiding reimplementation of code functionality. Using the GFIC, the PBJ-ITMM is implemented in THOR, a tetrahedral mesh transport code, along with the Inexact Parallel Block Jacobi (IPBJ) method for performance comparison. This comparison involves strong and weak scaling studies of the Godiva and C5G7 benchmark problems using up to 32 768 processors. These studies establish that the PBJ-ITMM executes faster than the IPBJ when the number of cells per subdomain falls below a problem-dependent threshold, ~128 cells for Godiva, >256 cells for C5G7. The largest problem tested, comprising more than 6.8 billion unknowns, solves in <30 min with the IPBJ and <20 min with the PBJ-ITMM, using 32 768 processors. These results demonstrate the PBJ-ITMM as a viable approach for solving neutron transport problems on unstructured grids using massively parallel computers. Additionally, this study illustrates the range of number of cells per subdomain over which this method is favorable. |
| Author | Yessayan, Raffi A. Hoagland, Dylan S. Azmy, Yousry Y. |
| Author_xml | – sequence: 1 givenname: Dylan S. orcidid: 0000-0002-6595-955X surname: Hoagland fullname: Hoagland, Dylan S. email: dshoagla@ncsu.edu organization: North Carolina State University – sequence: 2 givenname: Raffi A. surname: Yessayan fullname: Yessayan, Raffi A. organization: North Carolina State University – sequence: 3 givenname: Yousry Y. surname: Azmy fullname: Azmy, Yousry Y. organization: North Carolina State University |
| BackLink | https://www.osti.gov/biblio/1979194$$D View this record in Osti.gov |
| BookMark | eNqFkc2O0zAUhS00SHQKj4BksWGVYsfNj8WGoZopRRNAmlZiZznOTWtw7Y7tDPR5eRGSpgjEAlbWtc93zpXPJbqwzgJCzymZUVKSV4SkPMsZn6UkpTNa8pIR_ghNKJ-zpJiXny_QZNAkg-gJugzhSz_mc55N0I87Z7qoncWuxXEH-AN00ffj2ksbDs5HfH3fyVFh8caG6DsVOw8NXnrdBLwJ2m5P6CfppTFg8Fvj1Ff8XipX62RlI2z7hz8cKxm9_o4riDvX4Actx2T30LNLD2BfBnzTWXVKXa2rCi_cOXi4uTJb53Xc7YeNKhmC7sHj7_iF2x-6CB7fHUOEfXiKHrfSBHh2Pqdoc3O9XrxLbj8uV4ur20QxVsSEEs5alvFMpTVjc5rRUjYyVYSSpszSEsq6VRlAKlNgeU1yTpqcNm1RFkBVDWyKXoy-LkQtgtIR1E45a0FFQXnBh0Km6PUoUt6F4KEVve70v9FLbQQlYihV_CpVDKWKc6k9nf1FH7zeS3_8L_dm5LRtnd_Lb86bRkR5NM63fS9KB8H-bfETRAnAiw |
| CitedBy_id | crossref_primary_10_3897_nucet_9_102507 |
| Cites_doi | 10.1137/S1064827595287997 10.1016/j.jcp.2020.109234 10.13182/NSE09-26 10.13182/NSE16-34 10.13182/NSE02-1 10.1016/j.jpdc.2006.02.003 10.1109/SC.2000.10030 10.13182/NSE10-106 10.1137/1.9780898719604 10.1002/nme.2579 10.1080/00411458908204321 |
| ContentType | Journal Article |
| Copyright | 2021 American Nuclear Society 2021 |
| Copyright_xml | – notice: 2021 American Nuclear Society 2021 |
| CorporateAuthor | North Carolina State University, Raleigh, NC (United States) UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) |
| CorporateAuthor_xml | – name: North Carolina State University, Raleigh, NC (United States) – name: UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) |
| DBID | AAYXX CITATION OTOTI |
| DOI | 10.1080/00295639.2021.1898309 |
| DatabaseName | CrossRef OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1943-748X |
| EndPage | 1064 |
| ExternalDocumentID | 1979194 10_1080_00295639_2021_1898309 1898309 |
| Genre | Research Article |
| GroupedDBID | -~X 0BK 123 30N 85S 8WZ A6W AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABEFU ABJNI ABLIJ ABPAQ ABXUL ABXYU ACBEA ACNCT ACTIO ADGTB AEISY AENEX AEYOC AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AWYRJ BLEHA CCCUG DGEBU EBS F5P H13 IPNFZ KYCEM LJTGL M4Z O9- RBQ RIG RNANH ROSJB RTWRZ TASJS TBQAZ TCY TDBHL TEN TEX TFL TFT TFW TTHFI TUROJ ZGOLN AAYXX CITATION 0R~ ABBKH ABJVF ABQHQ AEGYZ AFWLO AIRXU DWNMW OTOTI |
| ID | FETCH-LOGICAL-c337t-1093f3595c2b3341518ada2c010d8528e8bfc5ee2a2e36b0690d61df787e1cbe3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648777000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5639 |
| IngestDate | Mon Jun 12 04:06:33 EDT 2023 Tue Nov 18 22:17:45 EST 2025 Sat Nov 29 06:23:07 EST 2025 Mon Oct 20 23:48:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-1093f3595c2b3341518ada2c010d8528e8bfc5ee2a2e36b0690d61df787e1cbe3 |
| Notes | NA0002576; AC07-05ID14517 USDOE National Nuclear Security Administration (NNSA) |
| ORCID | 0000-0002-6595-955X 000000026595955X |
| PageCount | 29 |
| ParticipantIDs | osti_scitechconnect_1979194 crossref_primary_10_1080_00295639_2021_1898309 informaworld_taylorfrancis_310_1080_00295639_2021_1898309 crossref_citationtrail_10_1080_00295639_2021_1898309 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-03 |
| PublicationDateYYYYMMDD | 2021-10-03 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Nuclear science and engineering |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | HOAGLAND D. S. (cit0010) 2019 HOAGLAND D. S. (cit0009) 2017 cit0019 cit0017 cit0015 Intercomparison of Calculations for Godiva and Jezebel: An Intercomparison study by the JEFF Project with Contributions from Britain, France, the Netherlands, and Switzerland (cit0018) 1999 cit0016 KOCK K. R. (cit0024) 1992; 65 cit0013 cit0014 cit0001 cit0023 cit0021 AZMY Y. Y. (cit0007) 2015 AZMY Y. Y. (cit0012) AYACHIT U. (cit0022) 2015 HOAGLAND D. S. (cit0011) 2020 Benchmark on Deterministic Transport Calculations Without Spatial Homogenisation: A 2-D/3-D MOX Fuel Assembly Benchmark (cit0020) 2003 KOBAYASHI K. (cit0025) 2000 cit0008 cit0006 cit0004 cit0005 cit0002 cit0003 |
| References_xml | – ident: cit0013 – volume: 65 start-page: 198 year: 1992 ident: cit0024 publication-title: Trans. Am. Nucl. Soc. – volume-title: A New Algorithm for Generating Highly Accurate Benchmark Solutions to Transport Test Problems,” Proc. XI ENFIR/IV ENAN Joint Nuclear Conf., Pocos de Caldas Springs, Minas Gerais, Brazil, August 18–22, 1997 ident: cit0012 – ident: cit0016 doi: 10.1137/S1064827595287997 – ident: cit0015 – volume-title: Nuclear Energy Agency/Organisation for Economic Co-Operation and Development year: 1999 ident: cit0018 – volume-title: Nuclear Energy Agency/Organisation for Economic Co-Operation and Development year: 2003 ident: cit0020 – volume-title: presented at the Int. Conf. Mathematics & Computational Methods Applied to Nuclear Science Engineering year: 2017 ident: cit0009 – ident: cit0006 doi: 10.1016/j.jcp.2020.109234 – ident: cit0008 doi: 10.13182/NSE09-26 – ident: cit0023 – volume-title: The ParaView Guide: A Parallel Visualization Application year: 2015 ident: cit0022 – ident: cit0005 doi: 10.13182/NSE16-34 – ident: cit0002 doi: 10.13182/NSE02-1 – ident: cit0004 doi: 10.1016/j.jpdc.2006.02.003 – ident: cit0003 doi: 10.1109/SC.2000.10030 – volume-title: 3-D Radiation Transport Benchmark Problems and Results for Simple Geometries with Void Regions year: 2000 ident: cit0025 – ident: cit0014 doi: 10.13182/NSE10-106 – ident: cit0017 doi: 10.1137/1.9780898719604 – volume-title: presented at PHYSOR 2020: Transition to a Scalable Nuclear Future year: 2020 ident: cit0011 – ident: cit0019 – ident: cit0021 doi: 10.1002/nme.2579 – volume-title: presented at the Int. Conf. Mathematics & Computational Methods Applied to Nuclear Science Engineering year: 2019 ident: cit0010 – ident: cit0001 doi: 10.1080/00411458908204321 – volume-title: presented at the Joint Int. Conf. Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method year: 2015 ident: cit0007 |
| SSID | ssj0026495 |
| Score | 2.2765067 |
| Snippet | The Parallel Block Jacobi (PBJ) spatial domain decomposition is well suited for implementation on massively parallel computers to solve the neutron transport... Not provided. |
| SourceID | osti crossref informaworld |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 1036 |
| SubjectTerms | massively parallel Neutron transport Nuclear Science & Technology Parallel Block Jacobi unstructured grids |
| Title | Solution of the Neutron Transport Equation on Unstructured Grids Using the Parallel Block Jacobi-Integral Transport Matrix Method via the Novel Green's Function ITMM Construction Algorithm on Massively Parallel Computer Systems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00295639.2021.1898309 https://www.osti.gov/biblio/1979194 |
| Volume | 195 |
| WOSCitedRecordID | wos000648777000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1943-748X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026495 issn: 0029-5639 databaseCode: TFW dateStart: 19560301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXKC9RWpAPSJxSxXGStY-l6rZFyqqHregt8isQkW4gSVfwe_kjnXGcZXtAPYCUSw5jR5rxPJxvviHkfWwh7MdORXFsRZSmLo10HqsI_wGJGc8zHYZNzBYLcXUlLwKasA-wSqyhq5EowvtqPNxK9xMiDju4Iav3bSYJO2RCCu5b-CCzRxtfzj9vSq48ldkE8kCRqYfnb6vciU53uEvBZbdw6LaCz_zpf_jsXfIkZJ70aDSVZ-SBWz0njzwC1PQvyO_pgoy2FYWskC7cDV6T0w39OT35MfKCU3guA_PsTecsPe1q21OPPvCiF6rDES0N_Qih8hv9BF5X19H5yEzRbK1Y4ICAn7TwY6zpulbjzu0aZD0i6ENP5xB5_a7ny6KgOGB0orylR82XtquHr9f4RQWUAeC6m19_tp9GVtDAy_6SXM5PlsdnUZgAERnOZ0OEXFcVtg6bRHOItxkTyqrEQBFpRZYIJ3RlMucSlTiea2RdtjmzFXghx4x2_BXZWbUr95rQTFvIBCuoj3KeCqekglozzsAeZZUoxvZIOmm-NIEeHad0NCXbsKiO-itRf2XQ3x453Ih9H_lB7hOQ22ZVDv5iphqnqJT8Htl9tMESkiNk-DUIhTJDyeRMMpm--YeV98ljfPUoRX5AdkCR7i15aNZD3Xfv_Jm6BfEyHzc |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQAdELb9RSHnNA4pQqjpOsfSyoSxeaFYet6M1yHKdEhA1k0xX8Xv4IM06ybA-oB5Byi8aONON5ON98w9irsMCwHzoThGEhgzh2cZCnoQnoH5CciDTJh2ETk_lcnp-r7V4YglVSDV32RBHeV9PhpsvoERJHLdyY1vs-k4gfcqmkoB6-mwnGWoL1LaafNkVXGqtkhHmQzNjF87dlrsSnK-yl6LQbPHZb4Wd67398-H12d0g-4ai3lgfshls-ZLc9CNSuHrFf4x0ZNCVgYghzd0k35bBhQIfj7z01OOBzNpDPXraugHdtVazAAxC86EfT0pSWGt5gtPwC79Hx5lUw68kp6q0VM5oR8AMyP8ka1pXpd27WKOtBQa9XMMXg63edLbIMaMboyHoLR_VF01bd56_0RRlWAui9659_th-nVsBAzf6YnU2PF29PgmEIRGCFmHQB0V2V1D1so1xgyE24NIWJLNaRhUwi6WRe2sS5yEROpDkRLxcpL0p0RI7b3IknbGfZLN0egyQvMBkssURKRSydUQbLzTBBk1RlZDjfZ_Goem0HhnQa1FFrviFS7fWnSX960N8-O9yIfespQq4TUNt2pTt_N1P2g1S0uEb2gIxQY35EJL-W0FC201xNFFfx039Y-SW7c7LITvXpbP7hgO3SKw9aFM_YDirVPWe37LqrVu0Lf8B-A-zYI1g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQeYgLb0QpDx-QOKWK4yTrHAs0sEBWe9iK3izHD4gIm5KkK_i9_BFmnGTZHlAPIOUWjR1pxvNwvvmGkBehgbAfWhWEoRFBHNs4KNNQBfgPSMx4mpTjsInZYiFOT7PliCbsRlgl1tBuIIrwvhoP95lxEyIOO7ghq_dtJhE7ZCITHFv4rnpyLDDpVf5pW3OlcZZMKA-UmZp4_rbMhfB0gbwUfHYDp24n-uS3_8N33yG3xtSTHg22cpdcset75LqHgOruPvk13ZDRxlFIC-nCnuM9Od3yn9Pj7wMxOIXnZKSePW-toW_bynTUww-86FK1OKOlpq8gVn6l78HtllUwH6gp6p0VC5wQ8IMWfo413VRq2LnZgKyHBL3saA6h1-86XxUFxQmjE-ctPao_N23Vf_mGX1RAHQC-u_75Z_tpZgUdidkfkJP8ePX6XTCOgAg057M-QLIrh73DOio5BNyECWVUpKGKNCKJhBWl04m1kYosT0ukXTYpMw7ckGW6tPwh2Vs3a_uI0KQ0kAo6KJBSHgurMgXFZpiAQWYuUoztk3jSvNQjPzqO6agl29KoDvqTqD856m-fHG7FzgaCkMsEsl2zkr2_mXHDGBXJL5E9QBuUkB0hxa9GLJTuJctmGcvix_-w8nNyY_kmlx_niw8H5Ca-8YhF_oTsgU7tU3JNb_qqa5_54_UbMw0h_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+the+Neutron+Transport+Equation+on+Unstructured+Grids+Using+the+Parallel+Block+Jacobi-Integral+Transport+Matrix+Method+via+the+Novel+Green%E2%80%99s+Function+ITMM+Construction+Algorithm+on+Massively+Parallel+Computer+Systems&rft.jtitle=Nuclear+science+and+engineering&rft.au=Hoagland%2C+Dylan+S.&rft.au=Yessayan%2C+Raffi+A.&rft.au=Azmy%2C+Yousry+Y.&rft.date=2021-10-03&rft.issn=0029-5639&rft.eissn=1943-748X&rft.volume=195&rft.issue=10&rft.spage=1036&rft.epage=1064&rft_id=info:doi/10.1080%2F00295639.2021.1898309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00295639_2021_1898309 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5639&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5639&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5639&client=summon |