A fully dynamic algorithm for modular decomposition and recognition of cographs
The problem of dynamically recognizing a graph property calls for efficiently deciding if an input graph satisfies the property under repeated modifications to its set of vertices and edges. The input to the problem consists of a series of modifications to be performed on the graph. The objective is...
Saved in:
| Published in: | Discrete Applied Mathematics Vol. 136; no. 2; pp. 329 - 340 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article Conference Proceeding |
| Language: | English |
| Published: |
Lausanne
Elsevier B.V
15.02.2004
Amsterdam Elsevier New York, NY |
| Subjects: | |
| ISSN: | 0166-218X, 1872-6771 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The problem of dynamically recognizing a graph property calls for efficiently deciding if an input graph satisfies the property under repeated modifications to its set of vertices and edges. The input to the problem consists of a series of modifications to be performed on the graph. The objective is to maintain a representation of the graph as long as the property holds, and to detect when it ceases to hold. In this paper, we solve the dynamic recognition problem for the class of cographs and some of its subclasses. Our approach is based on maintaining the modular decomposition tree of the dynamic graph, and using this tree for the recognition. We give the first fully dynamic algorithm for maintaining the modular decomposition tree of a cograph. We thereby obtain fully dynamic algorithms for the recognition of cographs, threshold graphs, and trivially perfect graphs. All these algorithms work in constant time per edge modification and O(
d) time per
d-degree vertex modification. |
|---|---|
| AbstractList | The problem of dynamically recognizing a graph property calls for efficiently deciding if an input graph satisfies the property under repeated modifications to its set of vertices and edges. The input to the problem consists of a series of modifications to be performed on the graph. The objective is to maintain a representation of the graph as long as the property holds, and to detect when it ceases to hold. In this paper, we solve the dynamic recognition problem for the class of cographs and some of its subclasses. Our approach is based on maintaining the modular decomposition tree of the dynamic graph, and using this tree for the recognition. We give the first fully dynamic algorithm for maintaining the modular decomposition tree of a cograph. We thereby obtain fully dynamic algorithms for the recognition of cographs, threshold graphs, and trivially perfect graphs. All these algorithms work in constant time per edge modification and O(
d) time per
d-degree vertex modification. |
| Author | Sharan, Roded Shamir, Ron |
| Author_xml | – sequence: 1 givenname: Ron surname: Shamir fullname: Shamir, Ron email: rshamir@tau.ac.il organization: School of Computer Science, Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel – sequence: 2 givenname: Roded surname: Sharan fullname: Sharan, Roded email: roded@icsi.berkeley.edu organization: International Computer Science Institute, 1947 Center St., Suite 600, Berkeley, CA 94704, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15534658$$DView record in Pascal Francis |
| BookMark | eNqFkE1LAzEQhoNUsK3-BCEXQQ-rmc1usuJBSvELCj2o4C2k-Wgju5uSbIX-e9Ou9OCllxne4X1nhmeEBq1vDUKXQG6BALt7T4VlOVRf14TeEFIUVcZP0BAqnmeMcxig4cFyhkYxfhNCIKkhmk-w3dT1FuttKxunsKyXPrhu1WDrA2683tQyYG2Ub9Y-us75FstW45Amy7bX3uIkglyv4jk6tbKO5uKvj9Hn89PH9DWbzV_eppNZpijlXQaEg7UKQEOhF6XhulT3OVPUFkwxyUFXwJkhlHGpVUUtY6RQC2DFAriVOR2jq37vWkYlaxtkq1wU6-AaGbYCypIWrKyS76H3qeBjDMYK5Tq5-7oL0tUCiNgxFHuGYgdIECr2DAVP6fJf-nDgSO6xz5mE4MeZIKJyplVGu8StE9q7Ixt-AfoWjEs |
| CODEN | DAMADU |
| CitedBy_id | crossref_primary_10_1049_iet_syb_20070065 crossref_primary_10_1007_s00453_013_9835_7 crossref_primary_10_1016_j_tcs_2019_01_007 crossref_primary_10_1016_j_tcs_2021_07_040 crossref_primary_10_1016_j_tcs_2018_05_012 crossref_primary_10_1016_j_tcs_2012_03_020 crossref_primary_10_1016_j_cosrev_2010_01_001 crossref_primary_10_1016_j_tcs_2008_07_020 crossref_primary_10_1007_s00453_023_01107_1 crossref_primary_10_3390_a16060289 crossref_primary_10_1016_j_tcs_2017_01_007 crossref_primary_10_1080_00207160_2010_539681 crossref_primary_10_1007_s00453_008_9273_0 |
| Cites_doi | 10.1016/0012-365X(78)90178-4 10.1137/S0097539700372216 10.1145/58562.59300 10.1137/1.9780898719796 10.1137/S0097539792269095 10.1007/3-540-61576-8_70 10.1007/BFb0017474 10.1137/0214065 10.1016/0166-218X(81)90013-5 10.1007/BF02579333 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2003 Elsevier B.V. 2004 INIST-CNRS |
| Copyright_xml | – notice: 2003 Elsevier B.V. – notice: 2004 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW |
| DOI | 10.1016/S0166-218X(03)00448-7 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Applied Sciences |
| EISSN | 1872-6771 |
| EndPage | 340 |
| ExternalDocumentID | 15534658 10_1016_S0166_218X_03_00448_7 S0166218X03004487 |
| GroupedDBID | -~X 6I. AAFTH ADEZE AFTJW AI. ALMA_UNASSIGNED_HOLDINGS FA8 FDB OAUVE VH1 WUQ AAYXX CITATION IQODW |
| ID | FETCH-LOGICAL-c337t-1071ffc11d14db5e7d5c926c3f46c6a71d8176e0367adc83f6604cb164b17fa23 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000188089200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-218X |
| IngestDate | Wed Apr 02 07:26:02 EDT 2025 Sat Nov 29 02:59:22 EST 2025 Tue Nov 18 22:09:53 EST 2025 Sat Apr 29 22:44:07 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Modular decomposition Fully dynamic algorithm Cograph Recognition Graph decomposition Tree(graph) Computer theory Decomposition method Edge set Optimization |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MeetingName | The 1st Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW 2001) |
| MergedId | FETCHMERGED-LOGICAL-c337t-1071ffc11d14db5e7d5c926c3f46c6a71d8176e0367adc83f6604cb164b17fa23 |
| OpenAccessLink | https://dx.doi.org/10.1016/S0166-218X(03)00448-7 |
| PageCount | 12 |
| ParticipantIDs | pascalfrancis_primary_15534658 crossref_citationtrail_10_1016_S0166_218X_03_00448_7 crossref_primary_10_1016_S0166_218X_03_00448_7 elsevier_sciencedirect_doi_10_1016_S0166_218X_03_00448_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2004-02-15 |
| PublicationDateYYYYMMDD | 2004-02-15 |
| PublicationDate_xml | – month: 02 year: 2004 text: 2004-02-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationPlace | Lausanne Amsterdam New York, NY |
| PublicationPlace_xml | – name: Amsterdam – name: Lausanne – name: New York, NY |
| PublicationTitle | Discrete Applied Mathematics |
| PublicationYear | 2004 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | A. Cournier, M. Habib, A new linear algorithm for modular decomposition, in: 19th International Colloquium (CAAP’94), 1994, lNCS 787, pp. 68–82. Deng, Hell, Huang (BIB6) 1996; 25 J. Spinrad, Two dimensional partial orders, Ph.D. Thesis, Department of Computer Science, Princeton University, Princeton, NJ, 1982. Mahadev, Peled (BIB13) 1995; Vol. 56 Golumbic (BIB7) 1978; 24 A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes—a Survey, SIAM Monographs in Discrete Mathematics and Applications, SIAM, Philadelphia, 1999. Corneil, Lerchs, Stewart Burlingham (BIB2) 1981; 3 Hsu (BIB10) 1996; 1120 R.M. McConnell, J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, in: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94), ACM Press, New York, 1994, pp. 536–545. Hammer, Simeone (BIB8) 1981; 1 L. Ibarra, Fully dynamic algorithms for chordal graphs, in: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99), Baltimore, MD, 1999, pp. 923–924. Corneil, Perl, Stewart (BIB3) 1985; 14 Hell, Shamir, Sharan (BIB9) 2002; 31 Muller, Spinrad (BIB15) 1989; 36 E. Dahlhaus, J. Gustedt, R. McConnell, Efficient and practical modular decomposition, in: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’97), New Orleans, LA, 1997, pp. 26–35. L. Ibarra, A fully dynamic algorithm for recognizing interval graphs using the clique-separator graph, Technical Report, University of Victoria, Vic., Canada, 2001. Corneil (10.1016/S0166-218X(03)00448-7_BIB2) 1981; 3 Muller (10.1016/S0166-218X(03)00448-7_BIB15) 1989; 36 Deng (10.1016/S0166-218X(03)00448-7_BIB6) 1996; 25 10.1016/S0166-218X(03)00448-7_BIB16 Mahadev (10.1016/S0166-218X(03)00448-7_BIB13) 1995; Vol. 56 Golumbic (10.1016/S0166-218X(03)00448-7_BIB7) 1978; 24 Hsu (10.1016/S0166-218X(03)00448-7_BIB10) 1996; 1120 10.1016/S0166-218X(03)00448-7_BIB1 Hammer (10.1016/S0166-218X(03)00448-7_BIB8) 1981; 1 Corneil (10.1016/S0166-218X(03)00448-7_BIB3) 1985; 14 10.1016/S0166-218X(03)00448-7_BIB14 10.1016/S0166-218X(03)00448-7_BIB11 10.1016/S0166-218X(03)00448-7_BIB12 Hell (10.1016/S0166-218X(03)00448-7_BIB9) 2002; 31 10.1016/S0166-218X(03)00448-7_BIB4 10.1016/S0166-218X(03)00448-7_BIB5 |
| References_xml | – volume: Vol. 56 year: 1995 ident: BIB13 publication-title: Threshold graphs and related topics – reference: E. Dahlhaus, J. Gustedt, R. McConnell, Efficient and practical modular decomposition, in: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’97), New Orleans, LA, 1997, pp. 26–35. – volume: 36 start-page: 1 year: 1989 end-page: 19 ident: BIB15 article-title: Incremental modular decomposition publication-title: J. ACM – reference: A. Cournier, M. Habib, A new linear algorithm for modular decomposition, in: 19th International Colloquium (CAAP’94), 1994, lNCS 787, pp. 68–82. – volume: 24 start-page: 105 year: 1978 end-page: 107 ident: BIB7 article-title: Trivially perfect graphs publication-title: Discrete Math. – volume: 1120 start-page: 27 year: 1996 end-page: 38 ident: BIB10 article-title: On-line recognition of interval graphs in publication-title: Lecture Notes Comput. Sci. – volume: 25 start-page: 390 year: 1996 end-page: 403 ident: BIB6 article-title: Linear time representation algorithms for proper circular arc graphs and proper interval graphs publication-title: SIAM J. Comput. – volume: 31 start-page: 289 year: 2002 end-page: 305 ident: BIB9 article-title: A fully dynamic algorithm for recognizing and representing proper interval graphs publication-title: SIAM J. Comput. – volume: 3 start-page: 163 year: 1981 end-page: 174 ident: BIB2 article-title: Complement reducible graphs publication-title: Discrete Appl. Math. – reference: J. Spinrad, Two dimensional partial orders, Ph.D. Thesis, Department of Computer Science, Princeton University, Princeton, NJ, 1982. – volume: 1 start-page: 275 year: 1981 end-page: 284 ident: BIB8 article-title: The splittance of a graph publication-title: Combinatorica – volume: 14 start-page: 926 year: 1985 end-page: 934 ident: BIB3 article-title: A linear recognition algorithm for cographs publication-title: SIAM J. Comput. – reference: R.M. McConnell, J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, in: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94), ACM Press, New York, 1994, pp. 536–545. – reference: A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes—a Survey, SIAM Monographs in Discrete Mathematics and Applications, SIAM, Philadelphia, 1999. – reference: L. Ibarra, Fully dynamic algorithms for chordal graphs, in: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99), Baltimore, MD, 1999, pp. 923–924. – reference: L. Ibarra, A fully dynamic algorithm for recognizing interval graphs using the clique-separator graph, Technical Report, University of Victoria, Vic., Canada, 2001. – volume: Vol. 56 year: 1995 ident: 10.1016/S0166-218X(03)00448-7_BIB13 – ident: 10.1016/S0166-218X(03)00448-7_BIB16 – volume: 24 start-page: 105 year: 1978 ident: 10.1016/S0166-218X(03)00448-7_BIB7 article-title: Trivially perfect graphs publication-title: Discrete Math. doi: 10.1016/0012-365X(78)90178-4 – volume: 31 start-page: 289 issue: 1 year: 2002 ident: 10.1016/S0166-218X(03)00448-7_BIB9 article-title: A fully dynamic algorithm for recognizing and representing proper interval graphs publication-title: SIAM J. Comput. doi: 10.1137/S0097539700372216 – volume: 36 start-page: 1 issue: 1 year: 1989 ident: 10.1016/S0166-218X(03)00448-7_BIB15 article-title: Incremental modular decomposition publication-title: J. ACM doi: 10.1145/58562.59300 – ident: 10.1016/S0166-218X(03)00448-7_BIB1 doi: 10.1137/1.9780898719796 – ident: 10.1016/S0166-218X(03)00448-7_BIB5 – volume: 25 start-page: 390 issue: 2 year: 1996 ident: 10.1016/S0166-218X(03)00448-7_BIB6 article-title: Linear time representation algorithms for proper circular arc graphs and proper interval graphs publication-title: SIAM J. Comput. doi: 10.1137/S0097539792269095 – ident: 10.1016/S0166-218X(03)00448-7_BIB11 – ident: 10.1016/S0166-218X(03)00448-7_BIB12 – volume: 1120 start-page: 27 year: 1996 ident: 10.1016/S0166-218X(03)00448-7_BIB10 article-title: On-line recognition of interval graphs in O(m+nlogn) time publication-title: Lecture Notes Comput. Sci. doi: 10.1007/3-540-61576-8_70 – ident: 10.1016/S0166-218X(03)00448-7_BIB14 – ident: 10.1016/S0166-218X(03)00448-7_BIB4 doi: 10.1007/BFb0017474 – volume: 14 start-page: 926 issue: 4 year: 1985 ident: 10.1016/S0166-218X(03)00448-7_BIB3 article-title: A linear recognition algorithm for cographs publication-title: SIAM J. Comput. doi: 10.1137/0214065 – volume: 3 start-page: 163 year: 1981 ident: 10.1016/S0166-218X(03)00448-7_BIB2 article-title: Complement reducible graphs publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(81)90013-5 – volume: 1 start-page: 275 year: 1981 ident: 10.1016/S0166-218X(03)00448-7_BIB8 article-title: The splittance of a graph publication-title: Combinatorica doi: 10.1007/BF02579333 |
| SSID | ssj0001218 ssj0000186 ssj0006644 |
| Score | 1.8115983 |
| Snippet | The problem of dynamically recognizing a graph property calls for efficiently deciding if an input graph satisfies the property under repeated modifications to... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 329 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Applied sciences Cograph Combinatorics Combinatorics. Ordered structures Computer science; control theory; systems Exact sciences and technology Fully dynamic algorithm Graph theory Mathematics Modular decomposition Recognition Sciences and techniques of general use Theoretical computing |
| Title | A fully dynamic algorithm for modular decomposition and recognition of cographs |
| URI | https://dx.doi.org/10.1016/S0166-218X(03)00448-7 |
| Volume | 136 |
| WOSCitedRecordID | wos000188089200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6771 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001218 issn: 0166-218X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxsMQEjCGGJfJD0wCVWF27NnOYwRDG9LKxIbUt5D4ApXatGrLNP49J7VzKQNVPPASRVacWD5ffD4fnwtCr3JqCCmIjZSTJOKFTqLCUhtZamJmrMsl8cUm5GCghsPkotf7WsfCXI9lWaqbm2T2X0UNbSDsKnT2H8TdvBQa4B6EDlcQO1xvC_6P-uf9CNYCIMP9PFDMSZObddGFSNqvjO8_-8ZXpe_n42_T-Wj5fbLyPZxMzcpF1djK7Tz4dnl39NrpyHNN7bNeN-T88jQ9P_P-Fe0ZPzR-Tge-0YSAqtrYwCv_ZB9u6S1gQV13DZJCREAThmsrqs9pEqATR6yzQrJg4PDKlvlcTbfWcW9SuGzeflgV0TqMk-r8WUWyVV71gf1vOq3xNKzKInFgWXfQdsyEgu35dnp2MvzYSTFW5c_bqY1y7RkUcDEeMsP7MbTxX0ftwF4T9iYM6m_M5v4sX8D_5nyhlA57uXqI9tq4TnzRIOYR6tlyFz0IGxEclvnFLrp33gLmMfqU4hVOcMAJbnCCASc44ASv4QQDTnAHJ3jqcI2TPfTlw8nVu9Mo1OGINGNyCZpaUuc0pYZyUxxbaY51EgvNHBda5JIaRaWwwIVkbrRiTgjCdQEb8YJKl8fsCdoqp6V9inCuLNHUFo5IzXOqFLB5LhLDJWxtmSv2Ea_nMNMhSX1VK2WcdbwRhciqqc8Iy1ZTn8l99LbpNvNZWjZ1ULWAskA1PYXMAIGbuh6sCbT9YIDas00PPEc77b_1Am0t5z_sS3RXXy9Hi_lBAOgvp22g_A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Discrete+applied+mathematics&rft.atitle=A+fully+dynamic+algorithm+for+modular+decomposition+and+recognition+of+cographs&rft.au=SHAMIR%2C+Ron&rft.au=SHARAN%2C+Roded&rft.date=2004-02-15&rft.pub=Elsevier&rft.issn=0166-218X&rft.volume=136&rft.issue=2-3&rft.spage=329&rft.epage=340&rft_id=info:doi/10.1016%2FS0166-218X%2803%2900448-7&rft.externalDBID=n%2Fa&rft.externalDocID=15534658 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |