A fully dynamic algorithm for modular decomposition and recognition of cographs

The problem of dynamically recognizing a graph property calls for efficiently deciding if an input graph satisfies the property under repeated modifications to its set of vertices and edges. The input to the problem consists of a series of modifications to be performed on the graph. The objective is...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics Vol. 136; no. 2; pp. 329 - 340
Main Authors: Shamir, Ron, Sharan, Roded
Format: Journal Article Conference Proceeding
Language:English
Published: Lausanne Elsevier B.V 15.02.2004
Amsterdam Elsevier
New York, NY
Subjects:
ISSN:0166-218X, 1872-6771
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The problem of dynamically recognizing a graph property calls for efficiently deciding if an input graph satisfies the property under repeated modifications to its set of vertices and edges. The input to the problem consists of a series of modifications to be performed on the graph. The objective is to maintain a representation of the graph as long as the property holds, and to detect when it ceases to hold. In this paper, we solve the dynamic recognition problem for the class of cographs and some of its subclasses. Our approach is based on maintaining the modular decomposition tree of the dynamic graph, and using this tree for the recognition. We give the first fully dynamic algorithm for maintaining the modular decomposition tree of a cograph. We thereby obtain fully dynamic algorithms for the recognition of cographs, threshold graphs, and trivially perfect graphs. All these algorithms work in constant time per edge modification and O( d) time per d-degree vertex modification.
AbstractList The problem of dynamically recognizing a graph property calls for efficiently deciding if an input graph satisfies the property under repeated modifications to its set of vertices and edges. The input to the problem consists of a series of modifications to be performed on the graph. The objective is to maintain a representation of the graph as long as the property holds, and to detect when it ceases to hold. In this paper, we solve the dynamic recognition problem for the class of cographs and some of its subclasses. Our approach is based on maintaining the modular decomposition tree of the dynamic graph, and using this tree for the recognition. We give the first fully dynamic algorithm for maintaining the modular decomposition tree of a cograph. We thereby obtain fully dynamic algorithms for the recognition of cographs, threshold graphs, and trivially perfect graphs. All these algorithms work in constant time per edge modification and O( d) time per d-degree vertex modification.
Author Sharan, Roded
Shamir, Ron
Author_xml – sequence: 1
  givenname: Ron
  surname: Shamir
  fullname: Shamir, Ron
  email: rshamir@tau.ac.il
  organization: School of Computer Science, Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
– sequence: 2
  givenname: Roded
  surname: Sharan
  fullname: Sharan, Roded
  email: roded@icsi.berkeley.edu
  organization: International Computer Science Institute, 1947 Center St., Suite 600, Berkeley, CA 94704, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15534658$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoNUsK3-BCEXQQ-rmc1usuJBSvELCj2o4C2k-Wgju5uSbIX-e9Ou9OCllxne4X1nhmeEBq1vDUKXQG6BALt7T4VlOVRf14TeEFIUVcZP0BAqnmeMcxig4cFyhkYxfhNCIKkhmk-w3dT1FuttKxunsKyXPrhu1WDrA2683tQyYG2Ub9Y-us75FstW45Amy7bX3uIkglyv4jk6tbKO5uKvj9Hn89PH9DWbzV_eppNZpijlXQaEg7UKQEOhF6XhulT3OVPUFkwxyUFXwJkhlHGpVUUtY6RQC2DFAriVOR2jq37vWkYlaxtkq1wU6-AaGbYCypIWrKyS76H3qeBjDMYK5Tq5-7oL0tUCiNgxFHuGYgdIECr2DAVP6fJf-nDgSO6xz5mE4MeZIKJyplVGu8StE9q7Ixt-AfoWjEs
CODEN DAMADU
CitedBy_id crossref_primary_10_1049_iet_syb_20070065
crossref_primary_10_1007_s00453_013_9835_7
crossref_primary_10_1016_j_tcs_2019_01_007
crossref_primary_10_1016_j_tcs_2021_07_040
crossref_primary_10_1016_j_tcs_2018_05_012
crossref_primary_10_1016_j_tcs_2012_03_020
crossref_primary_10_1016_j_cosrev_2010_01_001
crossref_primary_10_1016_j_tcs_2008_07_020
crossref_primary_10_1007_s00453_023_01107_1
crossref_primary_10_3390_a16060289
crossref_primary_10_1016_j_tcs_2017_01_007
crossref_primary_10_1080_00207160_2010_539681
crossref_primary_10_1007_s00453_008_9273_0
Cites_doi 10.1016/0012-365X(78)90178-4
10.1137/S0097539700372216
10.1145/58562.59300
10.1137/1.9780898719796
10.1137/S0097539792269095
10.1007/3-540-61576-8_70
10.1007/BFb0017474
10.1137/0214065
10.1016/0166-218X(81)90013-5
10.1007/BF02579333
ContentType Journal Article
Conference Proceeding
Copyright 2003 Elsevier B.V.
2004 INIST-CNRS
Copyright_xml – notice: 2003 Elsevier B.V.
– notice: 2004 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/S0166-218X(03)00448-7
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1872-6771
EndPage 340
ExternalDocumentID 15534658
10_1016_S0166_218X_03_00448_7
S0166218X03004487
GroupedDBID -~X
6I.
AAFTH
ADEZE
AFTJW
AI.
ALMA_UNASSIGNED_HOLDINGS
FA8
FDB
OAUVE
VH1
WUQ
AAYXX
CITATION
IQODW
ID FETCH-LOGICAL-c337t-1071ffc11d14db5e7d5c926c3f46c6a71d8176e0367adc83f6604cb164b17fa23
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000188089200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Wed Apr 02 07:26:02 EDT 2025
Sat Nov 29 02:59:22 EST 2025
Tue Nov 18 22:09:53 EST 2025
Sat Apr 29 22:44:07 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Modular decomposition
Fully dynamic algorithm
Cograph
Recognition
Graph decomposition
Tree(graph)
Computer theory
Decomposition method
Edge set
Optimization
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MeetingName The 1st Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW 2001)
MergedId FETCHMERGED-LOGICAL-c337t-1071ffc11d14db5e7d5c926c3f46c6a71d8176e0367adc83f6604cb164b17fa23
OpenAccessLink https://dx.doi.org/10.1016/S0166-218X(03)00448-7
PageCount 12
ParticipantIDs pascalfrancis_primary_15534658
crossref_citationtrail_10_1016_S0166_218X_03_00448_7
crossref_primary_10_1016_S0166_218X_03_00448_7
elsevier_sciencedirect_doi_10_1016_S0166_218X_03_00448_7
PublicationCentury 2000
PublicationDate 2004-02-15
PublicationDateYYYYMMDD 2004-02-15
PublicationDate_xml – month: 02
  year: 2004
  text: 2004-02-15
  day: 15
PublicationDecade 2000
PublicationPlace Lausanne
Amsterdam
New York, NY
PublicationPlace_xml – name: Amsterdam
– name: Lausanne
– name: New York, NY
PublicationTitle Discrete Applied Mathematics
PublicationYear 2004
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References A. Cournier, M. Habib, A new linear algorithm for modular decomposition, in: 19th International Colloquium (CAAP’94), 1994, lNCS 787, pp. 68–82.
Deng, Hell, Huang (BIB6) 1996; 25
J. Spinrad, Two dimensional partial orders, Ph.D. Thesis, Department of Computer Science, Princeton University, Princeton, NJ, 1982.
Mahadev, Peled (BIB13) 1995; Vol. 56
Golumbic (BIB7) 1978; 24
A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes—a Survey, SIAM Monographs in Discrete Mathematics and Applications, SIAM, Philadelphia, 1999.
Corneil, Lerchs, Stewart Burlingham (BIB2) 1981; 3
Hsu (BIB10) 1996; 1120
R.M. McConnell, J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, in: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94), ACM Press, New York, 1994, pp. 536–545.
Hammer, Simeone (BIB8) 1981; 1
L. Ibarra, Fully dynamic algorithms for chordal graphs, in: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99), Baltimore, MD, 1999, pp. 923–924.
Corneil, Perl, Stewart (BIB3) 1985; 14
Hell, Shamir, Sharan (BIB9) 2002; 31
Muller, Spinrad (BIB15) 1989; 36
E. Dahlhaus, J. Gustedt, R. McConnell, Efficient and practical modular decomposition, in: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’97), New Orleans, LA, 1997, pp. 26–35.
L. Ibarra, A fully dynamic algorithm for recognizing interval graphs using the clique-separator graph, Technical Report, University of Victoria, Vic., Canada, 2001.
Corneil (10.1016/S0166-218X(03)00448-7_BIB2) 1981; 3
Muller (10.1016/S0166-218X(03)00448-7_BIB15) 1989; 36
Deng (10.1016/S0166-218X(03)00448-7_BIB6) 1996; 25
10.1016/S0166-218X(03)00448-7_BIB16
Mahadev (10.1016/S0166-218X(03)00448-7_BIB13) 1995; Vol. 56
Golumbic (10.1016/S0166-218X(03)00448-7_BIB7) 1978; 24
Hsu (10.1016/S0166-218X(03)00448-7_BIB10) 1996; 1120
10.1016/S0166-218X(03)00448-7_BIB1
Hammer (10.1016/S0166-218X(03)00448-7_BIB8) 1981; 1
Corneil (10.1016/S0166-218X(03)00448-7_BIB3) 1985; 14
10.1016/S0166-218X(03)00448-7_BIB14
10.1016/S0166-218X(03)00448-7_BIB11
10.1016/S0166-218X(03)00448-7_BIB12
Hell (10.1016/S0166-218X(03)00448-7_BIB9) 2002; 31
10.1016/S0166-218X(03)00448-7_BIB4
10.1016/S0166-218X(03)00448-7_BIB5
References_xml – volume: Vol. 56
  year: 1995
  ident: BIB13
  publication-title: Threshold graphs and related topics
– reference: E. Dahlhaus, J. Gustedt, R. McConnell, Efficient and practical modular decomposition, in: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’97), New Orleans, LA, 1997, pp. 26–35.
– volume: 36
  start-page: 1
  year: 1989
  end-page: 19
  ident: BIB15
  article-title: Incremental modular decomposition
  publication-title: J. ACM
– reference: A. Cournier, M. Habib, A new linear algorithm for modular decomposition, in: 19th International Colloquium (CAAP’94), 1994, lNCS 787, pp. 68–82.
– volume: 24
  start-page: 105
  year: 1978
  end-page: 107
  ident: BIB7
  article-title: Trivially perfect graphs
  publication-title: Discrete Math.
– volume: 1120
  start-page: 27
  year: 1996
  end-page: 38
  ident: BIB10
  article-title: On-line recognition of interval graphs in
  publication-title: Lecture Notes Comput. Sci.
– volume: 25
  start-page: 390
  year: 1996
  end-page: 403
  ident: BIB6
  article-title: Linear time representation algorithms for proper circular arc graphs and proper interval graphs
  publication-title: SIAM J. Comput.
– volume: 31
  start-page: 289
  year: 2002
  end-page: 305
  ident: BIB9
  article-title: A fully dynamic algorithm for recognizing and representing proper interval graphs
  publication-title: SIAM J. Comput.
– volume: 3
  start-page: 163
  year: 1981
  end-page: 174
  ident: BIB2
  article-title: Complement reducible graphs
  publication-title: Discrete Appl. Math.
– reference: J. Spinrad, Two dimensional partial orders, Ph.D. Thesis, Department of Computer Science, Princeton University, Princeton, NJ, 1982.
– volume: 1
  start-page: 275
  year: 1981
  end-page: 284
  ident: BIB8
  article-title: The splittance of a graph
  publication-title: Combinatorica
– volume: 14
  start-page: 926
  year: 1985
  end-page: 934
  ident: BIB3
  article-title: A linear recognition algorithm for cographs
  publication-title: SIAM J. Comput.
– reference: R.M. McConnell, J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, in: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94), ACM Press, New York, 1994, pp. 536–545.
– reference: A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes—a Survey, SIAM Monographs in Discrete Mathematics and Applications, SIAM, Philadelphia, 1999.
– reference: L. Ibarra, Fully dynamic algorithms for chordal graphs, in: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99), Baltimore, MD, 1999, pp. 923–924.
– reference: L. Ibarra, A fully dynamic algorithm for recognizing interval graphs using the clique-separator graph, Technical Report, University of Victoria, Vic., Canada, 2001.
– volume: Vol. 56
  year: 1995
  ident: 10.1016/S0166-218X(03)00448-7_BIB13
– ident: 10.1016/S0166-218X(03)00448-7_BIB16
– volume: 24
  start-page: 105
  year: 1978
  ident: 10.1016/S0166-218X(03)00448-7_BIB7
  article-title: Trivially perfect graphs
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(78)90178-4
– volume: 31
  start-page: 289
  issue: 1
  year: 2002
  ident: 10.1016/S0166-218X(03)00448-7_BIB9
  article-title: A fully dynamic algorithm for recognizing and representing proper interval graphs
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539700372216
– volume: 36
  start-page: 1
  issue: 1
  year: 1989
  ident: 10.1016/S0166-218X(03)00448-7_BIB15
  article-title: Incremental modular decomposition
  publication-title: J. ACM
  doi: 10.1145/58562.59300
– ident: 10.1016/S0166-218X(03)00448-7_BIB1
  doi: 10.1137/1.9780898719796
– ident: 10.1016/S0166-218X(03)00448-7_BIB5
– volume: 25
  start-page: 390
  issue: 2
  year: 1996
  ident: 10.1016/S0166-218X(03)00448-7_BIB6
  article-title: Linear time representation algorithms for proper circular arc graphs and proper interval graphs
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792269095
– ident: 10.1016/S0166-218X(03)00448-7_BIB11
– ident: 10.1016/S0166-218X(03)00448-7_BIB12
– volume: 1120
  start-page: 27
  year: 1996
  ident: 10.1016/S0166-218X(03)00448-7_BIB10
  article-title: On-line recognition of interval graphs in O(m+nlogn) time
  publication-title: Lecture Notes Comput. Sci.
  doi: 10.1007/3-540-61576-8_70
– ident: 10.1016/S0166-218X(03)00448-7_BIB14
– ident: 10.1016/S0166-218X(03)00448-7_BIB4
  doi: 10.1007/BFb0017474
– volume: 14
  start-page: 926
  issue: 4
  year: 1985
  ident: 10.1016/S0166-218X(03)00448-7_BIB3
  article-title: A linear recognition algorithm for cographs
  publication-title: SIAM J. Comput.
  doi: 10.1137/0214065
– volume: 3
  start-page: 163
  year: 1981
  ident: 10.1016/S0166-218X(03)00448-7_BIB2
  article-title: Complement reducible graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(81)90013-5
– volume: 1
  start-page: 275
  year: 1981
  ident: 10.1016/S0166-218X(03)00448-7_BIB8
  article-title: The splittance of a graph
  publication-title: Combinatorica
  doi: 10.1007/BF02579333
SSID ssj0001218
ssj0000186
ssj0006644
Score 1.8115983
Snippet The problem of dynamically recognizing a graph property calls for efficiently deciding if an input graph satisfies the property under repeated modifications to...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 329
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Cograph
Combinatorics
Combinatorics. Ordered structures
Computer science; control theory; systems
Exact sciences and technology
Fully dynamic algorithm
Graph theory
Mathematics
Modular decomposition
Recognition
Sciences and techniques of general use
Theoretical computing
Title A fully dynamic algorithm for modular decomposition and recognition of cographs
URI https://dx.doi.org/10.1016/S0166-218X(03)00448-7
Volume 136
WOSCitedRecordID wos000188089200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxsMQEjCGGJfJD0wCVWF27NnOYwRDG9LKxIbUt5D4ApXatGrLNP49J7VzKQNVPPASRVacWD5ffD4fnwtCr3JqCCmIjZSTJOKFTqLCUhtZamJmrMsl8cUm5GCghsPkotf7WsfCXI9lWaqbm2T2X0UNbSDsKnT2H8TdvBQa4B6EDlcQO1xvC_6P-uf9CNYCIMP9PFDMSZObddGFSNqvjO8_-8ZXpe_n42_T-Wj5fbLyPZxMzcpF1djK7Tz4dnl39NrpyHNN7bNeN-T88jQ9P_P-Fe0ZPzR-Tge-0YSAqtrYwCv_ZB9u6S1gQV13DZJCREAThmsrqs9pEqATR6yzQrJg4PDKlvlcTbfWcW9SuGzeflgV0TqMk-r8WUWyVV71gf1vOq3xNKzKInFgWXfQdsyEgu35dnp2MvzYSTFW5c_bqY1y7RkUcDEeMsP7MbTxX0ftwF4T9iYM6m_M5v4sX8D_5nyhlA57uXqI9tq4TnzRIOYR6tlyFz0IGxEclvnFLrp33gLmMfqU4hVOcMAJbnCCASc44ASv4QQDTnAHJ3jqcI2TPfTlw8nVu9Mo1OGINGNyCZpaUuc0pYZyUxxbaY51EgvNHBda5JIaRaWwwIVkbrRiTgjCdQEb8YJKl8fsCdoqp6V9inCuLNHUFo5IzXOqFLB5LhLDJWxtmSv2Ea_nMNMhSX1VK2WcdbwRhciqqc8Iy1ZTn8l99LbpNvNZWjZ1ULWAskA1PYXMAIGbuh6sCbT9YIDas00PPEc77b_1Am0t5z_sS3RXXy9Hi_lBAOgvp22g_A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Discrete+applied+mathematics&rft.atitle=A+fully+dynamic+algorithm+for+modular+decomposition+and+recognition+of+cographs&rft.au=SHAMIR%2C+Ron&rft.au=SHARAN%2C+Roded&rft.date=2004-02-15&rft.pub=Elsevier&rft.issn=0166-218X&rft.volume=136&rft.issue=2-3&rft.spage=329&rft.epage=340&rft_id=info:doi/10.1016%2FS0166-218X%2803%2900448-7&rft.externalDBID=n%2Fa&rft.externalDocID=15534658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon